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S1. Weighted adaptive-elastic-net penalty

We use the adaptive elastic net penalty [Zou and Hastie, 2005, Zou and Zhang, 2009],

ρpC;λq “ ρpC;W1, λ, αq “ αλ}W1 ˝ C}1 ` p1 ´ αqλ}C}2F

“ αλ
p

ÿ

i“1

q
ÿ

j“1

wij1|cij | ` p1 ´ αqλ
p

ÿ

i“1

q
ÿ

j“1

c2ij . (1)

Here } ¨ }1 denotes the ℓ1 norm, the operator “˝” stands for the Hadamard product, W1 “ rwij1spˆq is a
pre-specified weighting matrix, λ is a tuning parameter controlling the overall amount of regularization,
and α P p0, 1q controls the relative weights between the two penalty terms. We set W1 “ | rC1|´γ such

that wij1 “ w
pdq

1 w
puq

i1 w
pvq

j1 , with

w
pdq

1 “ | rd1|´γ ,w
puq

1 “ rw
puq

11 , ..., w
puq

p1 sT “ |ru1|´γ ,w
pvq

1 “ rw
pvq

11 , ..., w
pvq

q1 sT “ |rv1|´γ , (2)

where rC1 “ rd1ru1rvT
1 is the first set of unit-rank RRR estimators and γ is a non-negative constant with

| ¨ |´γ componentwisely defined.
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S2. URE-TARO procedure

Here, we provide additional detail on the unit rank estimation procedure for TARO described in Section
2.2 of the main manuscript. In our previous work on sparse factor regression Mishra et al. [2021], we
imposed sparsity directly on C. To enable appropriate aggregation of the microbiome features in the
factor regression framework, we instead propose to impose sparsity on Γ.

pβ, pd, pu, pv ” argmin
β,d,u,v

}Y ´ Zβ ` rXΓ}22 ` ρλprΓ ˝ Γq,

s.t. Γ “ duvT,1T
p Au “ 0, }u} “ 1, }v} “ 1, (3)

In terms of the parameters tβ, d,u,vu, the optimization problems of URE-TARO is a multi-convex
problem. We define the weighted penalty as:

ρλprΓ1 ˝ Γ1q “ αλ
ÿ

i,j

|γ̃ij
1 d1u1iv1j | ` p1 ´ αq}d1u1v

T
1 }2F , (4)

where λ is the tuning parameter, α provides a relative weights of ℓ1 and ℓ2 penalty. We estimate the model
parameters using an iterative procedure that cycles between u-step, v-step and β-step until convergence.

u-step: For the fixed v and β, we jointly update pd,uq satisfying }v} “ 1. Let us define ǔ “ du.
In terms of ǔ, the optimization problem (3) is equivalent to solving (constrained adaptive elastic-net
problem)

min
ǔ

#

1

2
}y ´ Xpuqǔ}22 ` λ

puq

1

p
ÿ

i“1

wi|ǔi| ` λ
puq

2

p
ÿ

i“1

ǔ2
i , s.t.1

T
p Aǔ “ 0

+

, (5)

where y “ vecpY ´ Zβq, Xpuq
“ v b X, λ

puq

1 “ αλwpdqp
řq

j“1 w
pvq

j |vj |q , and λ
puq

2 “ p1 ´ αqλ
řq

j“1 v
2
j .

Here vecp¨q is the vectorization operator, and b denotes the Kronecker product. We recover the singular

value estimate as d̂ “ }ǔ} and singular vector estimate as û “ ǔ{d̂.

v-step: For fixed u and β, we minimize the objective function in terms of the block variable pd,vq such
that }u} “ 1. Let us define v̌ “ dv. In terms of v̌, the optimization problem (3) is equivalent to solving
(an adaptive elastic-net problem)

min
v̌

#

}y ´ Xpvqv̌}22 ` λ
pvq

1

q
ÿ

j“1

wj |v̌j | ` λ
pvq

2

q
ÿ

j“1

v̌2j

+

, (6)

where Xpvq “ Iq b pXuq, λ
pvq

1 “ αλwpdqp
řp

i“1 w
puq

i |ui|q, and λ
pvq

2 “ p1 ´ αqλ
řp

i“1 u
2
i . We recover the

singular value estimate as d̂ “ }ǔ} and singular vector estimate as û “ ǔ{d̂.

β-step: For fixed {d,u,v}, unique solution minimizing the objective function is given by

β “ pZTZq´1ZTpY ` rXΓq

S2.1 Constrained adaptive elastic-net solution

Consider a genetic form of the linear constrained adaptive elastic net regression,

min
β P Rp

#

Jpβq ”
1

2
}y ´ Xβ}22 ` λ1

p
ÿ

j“1

wj |βj | `
λ2

2

p
ÿ

j“1

β2
j

+

, s.t. Aβ “ b, (7)
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where y P Rn, X P Rnˆp, A “ pa1, . . . ,apq P Rhˆp, b P Rhˆ1, w “ rw1, ..., wpsT are some predetermined
weights, and λ1 and λ2 are tuning parameters.

This is an equality-constrained convex optimization problem. The augmented Lagrangian function is

Lµpβ, cq “ Jpβq ` cTpAβ ´ bq `
µ

2
}Aβ ´ b}22,

where c is the Lagrange multiplier, and µ ą 0 is a penalty parameter. The iterative steps to solve the
problem,

βps`1q
“ argmin

β
Lµpβ, cpsqq

“ argmin
β

tJpβq `
µ

2
}Aβ ´ b ´

cpsq

µ
}22u,

cps`1q “cpsq ´ pAβps`1q
´ bqµ.

,

/

/

/

/

/

.

/

/

/

/

/

-

(8)

The method converges under very general conditions. As the iteration proceeds, the residual Aβs`1
´ b

converges to zero, yielding optimality.
Following (8), the key is to minimize

βps`1q
“ min

β

#

1

2
}y ´ Xβ}22 ` λ1

p
ÿ

j“1

wj |βj | `
λ2

2
}β}22 `

µpsq

2
}Aβ ´ b ´

cpsq

µpsq
}22

+

. (9)

Here the penalty parameter µpsq can be updated along the interactions; let µ Ñ 8 or increase with small
increments can in general improve the speed of convergence [Goldstein and Osher, 2009]. The above
problem can be efficiently minimized by a coordinate descent algorithm. Suppose all the βks are fixed
except βj , and denote rj “ y ´

ř

k‰j xkβk. The objective function with respect to βj becomes

1

2
}rj ´ xjβj}22 ` λ1wj |βj | `

µpsq

2
}ajβj `

ÿ

k‰j

akβk ´ b ´
cpsq

µpsq
}22 `

λ2

2
β2
j ` const.

Then it can be easily verified that

pβj “

S
´

py ´
ř

i‰j βixiq
Txj ` µpsqtpc

psq

µpsq ` bqTaj ´
ř

i‰j βia
T
i aju, λwj

¯

λ2 ` xT
j xj ` µpsqaTj aj

, (10)

where Spm,λq “ signpmqp|m|´λq` is the soft-thresholding operator. (9) can then be solved by iteratively
updating each βj , j “ 1, . . . , p, by (10) until convergence. Our proposed algorithm is presented in
Algorithm 1.

Algorithm 1 Bregman Coordinate Descent Algorithm (BCDA)

Initialization: s “ 0, βp0q
P Rp, cp0q “ 0, µp0q “ 1, and ρ ě 1.

repeat
(1) Use coordinate descent to obtain βps`1q by iteratively updating βjs using (10) until convergence.

(2) cps`1q “ cpsq ´ pAβps`1q
´ bqµpsq.

(3) µps`1q “ µpsqρ.

s Ð s ` 1.
until convergence, i.e., }βps`1q

´ βpsq
}{}βpsq

} ă ϵ.

return β̂pλ1, λ2q.
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S2.2 Constrained reduced-rank regression

We consider a general form of the linear-constrained reduced rank regression as

min
Γ P Rpˆq

"

JpΓq ”
1

2
}Y ´ XΓ}2F

*

, s.t. rankpΓq “ 1, AΓ “ B, (11)

where Y P Rnˆq, X P Rnˆp, A “ pa1, . . . ,apq P Rhˆp and B P Rhˆq. To solve the optimization problem,
we write the augmented Lagrangian function as

LµpΓ, δq “ JpΓq ` trpδTpAΓ ´ Bqq `
µ

2
}AΓ ´ B}2F ,

where δ P Rhˆp is the Lagrange multiplier, and µ ą 0 is a penalty parameter. The iterative steps to solve
the problem,

Γps`1q
“ argmin

Γ
LµpΓ, δpsq

q s.t. rankpΓq “ 1,

“ argmin
Γ

JpΓq `
µ

2
}AΓ ´ B ´

δpsq

µ
}22 s.t. rankpΓq “ 1,

δps`1q
“δpsq

´ pAΓps`1q
´ Bqµ.

,

/

/

/

/

/

.

/

/

/

/

/

-

(12)

The method converges under very general conditions. As the iteration proceeds, the residual }AΓs`1
´B}

converges to zero, yielding optimality. We simplify the rank constrained LµpΓ, δpsq
q as

LµpΓ, δpsq
q “

1

2
}Y ´ XΓ}2F `

µ

2
}AΓ ´ B ´

δpsq

µ
}2F

“
1

2
} rY ´ rXΓ}2F ,

where rY “ rYT ?
µBT

` δpsqT
?
µ sT and rX “ rXT ATsT. An optimal solution of

argmin
Γ

1

2
} rY ´ rXΓ}2F s.t. rankpΓq “ 1,

is given by pΓ “ p rXT
rXq´1

rXT
rYṽṽT where ṽ is the largest eigen-vector of rYT

rXp rXT
rXq´1

rXT
rY. Our

proposed algorithm is presented in Algorithm 2.

Algorithm 2 Linear Constrained Reduced Rank Regression

Initialization: s “ 0, Γp0q
P Rpˆq, δp0q

“ 0, µp0q “ 1, and ρ ě 1.
repeat
(1) Γps`1q

“ p rXT
rXq´1

rXT
rYṽṽT where ṽ is the largest eigen-vector of rYT

rXp rXT
rXq´1

rXT
rY such

that rY “ rYT ?
µBT

` δpsqT
?
µ sT and rX “ rXT ATsT.

(2) δps`1q
“ δpsq

´ rAΓps`1q
´ Bsµ.

(3) µps`1q “ µpsqρ.
s Ð s ` 1.

until convergence, i.e., }Γps`1q
´ Γpsq

}{}Γpsq
} ă ϵ.

return rΓ.
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S2.3 Tuning parameter selection

We have outlined the sequential procedure in Algorithm 1 of the main manuscript. Within each step of
this sequential process, we solve a unit-rank estimation (URE-TARO) problem, as described above. With
only one tuning parameter, λ, we generate a solution path for various λ values within the range of λmax

to λmin (a chosen multiple of λmax), depicted in the first two subplots of Figure S1. Subsequently, we
employ k-fold cross-validation (with k=5 recommended) to select the λ value associated with the lowest
error, as demonstrated in the rightmost plot of Figure S1.
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Figure S1: Tuning parameter selection using k-fold cross-validation in TARO. The left subplot represents
solution paths for û1, the center subplot represents solution paths for v̂1, and the right subplot represents
the cross validation error for increasing values of λ.

S3. Supplementary figures

S3.1 Simulation results

Here, we provide additional figures summarizing the simulation results for the settings described in
Section 3.1 of the main manuscript. Specifically, we considered simulation settings where the unit-rank
components of the coefficient matrix are constructed such that the following feature sets are relevant: a)
features with higher variation, b) rare features, c) fine-resolution features (leaf nodes), and d) aggregated
features (internal nodes). We have provided more details about the four simulation settings in Table S1.
The results for setting a) are given in Figure 2 of the main manuscript. The results for the remaining
scenarios are provided in Figure S2. TARO consistently outperforms the alternative methods considered
in terms of accuracy in the estimation of the true coefficient matrix, prediction accuracy, and recovery of
the true features.

S3.1.1 Robustness to choice of pseudocount

By default, TARO assumes a pseudocount of 1. To assess the robustness of TARO to the choice of
pseudocount value, we have compared the default setting of TARO with pseudocount values of 0.5, 0.25,
and 2 (see Figure S3 for performance comparison). We found that in all four settings, the pseudocount
of 2 significantly increases the error estimate Er(C).

In Setting c), we observe an increase in the error estimate with pseudocounts of 0.25 or 0.5 compared
to the default pseudocount of 1. Setting c) aims to showcase the model’s efficacy in a scenario where the
underlying relationship between the multivariate response and predictors is expressed solely in terms of
leaf nodes in the taxonomic tree.
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Figure S2: Model performance comparison in various simulated settings in terms of estimation accuracy,
prediction, and sparsity recovery.
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Table S1: Detail on the simulation settings. Further details regarding the implementation can be obtained
from the taro sim function within the R package taro.

Description

Setting 1 In this setting, a greater number of leaf taxa in the taxonomic tree affect the outcome. We
randomly select 10% of taxa, including both internal nodes and leaves, favoring those with
higher variability across samples. Specifically, we include one taxon with four leaf nodes as
children, one taxon with three leaf nodes as children, and three taxa with two leaf nodes as
children. The remaining relevant features come mainly from leaf nodes in the taxonomic tree.

Setting 2 In this setting, a greater number of leaf taxa in the taxonomic tree affect the outcome. We
randomly select 10% of taxa, including both nodes and leaves, favoring those with lower vari-
ability across samples. Specifically, we include one taxon with four leaf nodes as children, one
taxon with three leaf nodes as children, and three taxa with two leaf nodes as children. The
remaining relevant features come mainly from leaf nodes in the taxonomic tree.

Setting 3 In this setting, only leaf nodes in the taxonomic tree affect the outcome. We randomly select
10% of taxa, favoring those with lower variability across samples.

Setting 4 In this setting, a greater number of higher taxa in the taxonomic tree affect the outcome.
We randomly select 10% of taxa, including both internal nodes and leaves, favoring those
with lower variability across samples. Specifically, we include four taxa with four leaf nodes
as children, two taxa with three leaf nodes as children, and ten taxa with two leaf nodes as
children are deemed relevant. The remaining relevant features come from leaf nodes in the
taxonomic tree.

In summary, our analysis indicates that the choice of a pseudocount of 1 is optimal for multivariate
analysis using TARO.

Figure S3: Simulation study: TARO estimation error evaluated for different choices of the pseudocount:
1 (default setting), 0.5, 0,25, and 2.

S3.1.2 Robustness to model misspecification

We have conducted a comprehensive series of simulations where we deliberately introduce model mis-
specifications. This involved systematically varying both the error structure (including different levels of
correlation in the errors among the multivariate responses) and the error distribution (considering heavy-
tailed symmetric distributions such as the Laplace, Cauchy, and Student’s t distributions). This analysis
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aimed to provide insights into our method’s ability to maintain accuracy and reliability in real-world
scenarios where the underlying assumptions may not hold. We summarize the results in Figure S4.

The performance of TARO deteriorates when there is a high correlation among the multivariate
responses or when the errors arise from heavy-tailed distributions. This is because TARO assumes that
the errors are independent and normally distributed. The alternative methods considered in the main
manuscript make similar assumptions, so this challenge is not unique to TARO.

Figure S4: Simulation study: Evaluation of TARO in the presence of correlated errors among the multi-
variate responses and errors from heavy-tailed distributions like Cauchy, Laplace and Student’s t.

S3.1.3 Evaluation of TARO with unobserved true abundance

TARO primarily operates under the assumption that even though true microbial abundance data are
not directly observed, the microbial abundance data are compositionally accurate. In this subsection, we
consider a simulation framework that contrasts the performance of TARO under the simulation design
discussed in Section 3.1 of the main manuscript, where the observed abundances are used to generate
Y and also as input to TARO, with a scenario where the true unobserved relative abundances are used
to generate Y, while the observed abundances are used as inputs to TARO. To construct the observed
abundances from the true unobserved relative abundances, we sample from a multinomial distribution
with the the sequencing depth as the number of trials and the true relative abundances as the event
probabilities. We summarize the results in Figure S5 for the four settings. Our simulation study suggests
that TARO’s performance remains comparable to the scenario considered in the main manuscript.
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Figure S5: Simulation study: Evaluation of TARO in the four settings with observed and unobserved
microbial abundance data.

S3.2 Application results

We provide a snapshot of the logistic regression modeling results in the upper left of Figure S6. Rect-
angular heatmaps showing the contribution of input features to the clinically relevant latent factors are
shown for the metabolite variables (upper right) and microbiome features (bottom). We observed that
the microbiome features contributing to the clinically relevant latent factors were at the family and genus
level: X2 includes 8 family-level and 68 genus-level features, X5 includes 6 family-level and 75 genus-level
features, and X7 includes 4 family-level and 76 genus-level features. Across the eight latent factors in-
ferred by TARO, aggregation to higher tree levels was relatively rare, with 1 phylum, 2 classes, and 6
orders selected in total across all latent factors. The results of metabolite set enrichment analysis for the
clinically relevant latent factors are shown in Figure S7.
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Figure S6: Assessment of the eight microbiome/metabolites latent factors in association with the out-
come of interest (healthy vs colorectal cancer patients). Heatmaps show the selected microbiome and
metabolites in respective latent factors.
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Figure S7: Metabolic pathway obtained using metabolite set enrichment analysis.
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