
Supplementary Information

Supplemental materials: Results of relaxed lasso analysis using additional AFQ tracts

To ensure that our results were not affected by our hypothesis driven selection of 22 white matter tracts,
we conducted our analysis with an extended set of white matter tracts. We included the set of tracts
segmented by AFQ 1 with the addition of the four posterior vertical tracts 2 from both hemispheres for a
total of 34 tracts. This analysis, therefore, Included the same 22 tracts as in the main text, with the
addition of 12 added tracts: uncinate, thalamic radiation, callosum forceps major, callosum forceps
minor, cingulum, and corticospinal tract. For drawing learning, results were largely consistent with the
findings using the hypothesis-driven entry of 22 tracts into the relaxed lasso regression: the left pArc
and left SLF 3 were identified as predictors of drawing learning (Supplemental Table 1). However, for
visual recognition learning, the relaxed lasso regression failed to identify any tracts that predicted visual
recognition learning where the analysis with the hypothesis-driven entry of 22 tracts into the relaxed
lasso revealed the left MDLFspl in the original and repeat dataset.

Supplemental Table 1. Relaxed lasso regression results using the set of tracts segmented by AFQ in addition to the four
posterior vertical tracts included in the main text.
Response Variable Predictor β S.E. R2

Drawing learning Left pArc 0.2803 0.3219 0.0924

Drawing learning (repeat dataset) Left pArc 0.2731 0.2926 0.2210
Left SLF3 0.2170 0.2960 -
Right fronto-thalamic radiation -0.4252 0.3247 -

Visual recognition learning - - - -

Visual recognition learning (repeat dataset) - - - -

Supplemental materials: Simple linear regression to identify tracts that independently predict
drawing and recognition learning

Simple linear (marginal) regression analyses evaluated the relationship between each learning
outcome and the microstructure of each tract separately to identify individual tracts (not groups of
tracts) that were able to explain a significant amount of variance in learning outcomes. A simple linear
regression analysis was conducted for each white matter tract that was included in the relaxed lasso
regressions described in the main text and for each learning outcome, resulting in 22 simple linear
regressions with drawing learning as the dependent variable and another 22 with visual recognition
learning as the dependent variable. Model significance was evaluated using an F-test with p < 0.05.
Results from all significant regressions are reported below and in the Supplemental Table 2 and
visually displayed with 95% bootstrapped confidence intervals in the Supplemental Figure 1 with
individual data for all participants displayed in Supplemental Figure 2. Results from all regressions,
including non-significant results, are displayed in the Supplemental Table 3.
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Learning to draw novel symbols: left pArc and left SLF3

The results of the simple linear regression analyses identified the microstructure of only 2 tracts that
significantly predicted drawing learning: the left pArc and the left SLF3 (Supplemental Table 2).
Consistent with the results of the relaxed lasso regression, the relationship between each tract and
drawing learning was positive, such that participants with higher FA were participants who were the
quickest at learning to draw the novel symbols (Supplemental Figure 3), however neither result
passed a Bonferonni correction for multiple comparisons, p < 0.05/22, i.e., p < 0.0023. There were no
other tracts that significantly predicted drawing learning, all ps > 0.05.

Visual recognition learning: no significant tracts

The simple linear regression analyses did not identify any tract that individually predicted visual
recognition learning in either the original or repeat data set, all ps > 0.05.

Supplemental Figure 1. Simple linear (marginal) regression results: Prediction strength of tract microstructure for drawing
and visual recognition learning. a. Drawing learning. The left pArc and left SLF3 significantly predicted drawing learning. b.
Visual recognition learning. There were no tracts that significantly predicted visual recognition learning. Frontal aslant (FAT);
superior longitudinal fasciculus, 1st and 2nd segment (SLF1and2); superior longitudinal fasciculus, 3rd segment (SLF3);
posterior arcuate fasciculus (pArc); temporal-parietal connection (TPC); middle longitudinal fasciculus connection to the
angular gyrus (MDLFang); middle longitudinal fasciculus connection to the superior parietal lobe (MDLFspl); inferior
longitudinal fasciculus (ILF); inferior fronto-occipital fasciculus (IFOF); vertical occipital fasciculus (VOF). Error bars
represent 95% bootstrapped confidence intervals with 10,000 iterations. See Supplemental Figure 2 for simple linear
regression results for individual data on all participants • , p < 0.10; * , p < 0.05.
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Supplemental Table 2. Relationships between one learning outcome and one tract using simple linear regression.
Response Variable Predictor β S.E. p
Drawing learning Left pArc 0.3505 0.1381 0.0146 *

Left SLF3 0.2745 0.1418 0.0590 .

Drawing learning (repeat dataset) Left pArc 0.3308 0.1391 0.0216 *
Left SLF3 0.2396 0.1432 0.1010 .

Visual recognition learning - - - -

Visual recognition learning (repeat dataset) - - - -

Note: All tracts were tested for each learning outcome; however, only significant simple linear regression models are
shown here for simplicity. *, p < 0.05; . , p < 0.10.
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Supplemental Figure 2. Simple linear (marginal) regression results displayed for each tract separately.
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Supplemental Table 3.
Relationships between one learning outcome and one tract using simple linear regression.

Response Variable Predictor β S.E. p
Drawing learning

Left pArc 0.3505 0.1381 0.0146 *
Left SLF3 0.2745 0.1418 0.0590 .
Left FAT 0.0827 0.1469 0.5765
Left SLF1and2 0.0937 0.1468 0.5261
Left TPC 0.1701 0.1469 0.2530
Left MDLFang 0.1617 0.1471 0.2777
Left MDLFspl -0.0201 0.1474 0.8922
Left Arc 0.2057 0.1443 0.1607
Left ILF 0.0593 0.1472 0.6885
Left IFOF 0.0042 0.1474 0.9776
Left VOF -0.0567 0.1489 0.7052
Right pArc 0.1063 0.1467 0.4720
Right SLF3 0.0383 0.1473 0.7957
Right FAT 0.0134 0.1491 0.9286
Right SLF1and2 0.0164 0.1474 0.9119
Right TPC 0.1613 0.1455 0.2734
Right MDLFang -0.0506 0.1489 0.7356
Right MDLFspl -0.0624 0.1472 0.6736
Right Arc 0.1514 0.1457 0.3043
Right ILF -0.0571 0.1472 0.6997
Right IFOF 0.0358 0.1474 0.8091
Right VOF -0.0923 0.1468 0.5328

Drawing learning (repeat dataset)
Left pArc 0.3308 0.1391 0.0216 *
Left SLF3 0.2396 0.1432 0.1010 .
Left FAT 0.0841 0.1469 0.5699
Left SLF1and2 0.1041 0.1466 0.4816
Left TPC 0.1506 0.1474 0.3124
Left MDLFang 0.1574 0.1472 0.2908
Left MDLFspl -0.0273 0.1474 0.8541
Left Arc 0.1785 0.1451 0.2248
Left ILF 0.0310 0.1474 0.8344
Left IFOF -0.0140 0.1474 0.9247
Left VOF -0.0247 0.1490 0.8692
Right pArc 0.0959 0.1468 0.5166
Right SLF3 0.0201 0.1474 0.8919
Right FAT 0.0531 0.1489 0.7228
Right SLF1and2 0.0149 0.1474 0.9199
Right TPC 0.1551 0.1457 0.2927
Right MDLFang -0.0603 0.1488 0.6871
Right MDLFspl -0.0784 0.1470 0.5963
Right Arc 0.1447 0.1459 0.3264
Right ILF -0.0854 0.1469 0.5637
Right IFOF 0.0579 0.1472 0.6961
Right VOF -0.0688 0.1471 0.6422

Visual recognition learning
Left pArc -0.0409 0.1473 0.7826
Left SLF3 -0.1076 0.1466 0.4666
Left FAT -0.0740 0.1470 0.6171
Left SLF1and2 -0.0376 0.1473 0.8000
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Left TPC -0.1727 0.1468 0.2457
Left MDLFang -0.1101 0.1482 0.4613
Left MDLFspl -0.2448 0.1430 0.0936
Left Arc -0.0981 0.1467 0.5069
Left ILF -0.1832 0.1450 0.2126
Left IFOF -0.2017 0.1444 0.1692
Left VOF 0.1738 0.1468 0.2426
Right pArc 0.0401 0.1473 0.7869
Right SLF3 -0.0164 0.1474 0.9121
Right FAT -0.0853 0.1485 0.5687
Right SLF1and2 -0.0269 0.1474 0.8561
Right TPC -0.1020 0.1467 0.4903
Right MDLFang -0.1037 0.1483 0.4880
Right MDLFspl -0.1494 0.1458 0.3107
Right Arc -0.1029 0.1467 0.4863
Right ILF -0.1802 0.1450 0.2204
Right IFOF 0.0469 0.1473 0.7516
Right VOF 0.0773 0.1470 0.6015

Visual recognition learning (repeat dataset)
Left pArc 0.0424 0.1473 0.7747
Left SLF3 -0.0387 0.1473 0.7940
Left FAT -0.0272 0.1474 0.8546
Left SLF1and2 -0.0196 0.1474 0.8947
Left TPC -0.0527 0.1489 0.7249
Left MDLFang -0.0970 0.1484 0.5166
Left MDLFspl -0.1909 0.1447 0.1936
Left Arc -0.0393 0.1473 0.7909
Left ILF -0.0992 0.1467 0.5023
Left IFOF -0.1091 0.1466 0.4606
Left VOF 0.1938 0.1463 0.1919
Right pArc 0.0944 0.1468 0.5233
Right SLF3 0.0724 0.1471 0.6249
Right FAT -0.0906 0.1485 0.5449
Right SLF1and2 -0.0501 0.1473 0.7352
Right TPC -0.0595 0.6879 0.1472
Right MDLFang -0.0764 0.1486 0.6098
Right MDLFspl -0.1141 0.1465 0.4399
RightArc -0.0787 0.1470 0.5948
Right ILF -0.1058 0.1466 0.4741
Right IFOF 0.0484 0.1473 0.1473
Right VOF 0.0873 0.1469 0.5553

NOTE: *, p < 0.05; . , p < 0.10.

Supplemental materials: Participants learned to draw and visually recognize symbols during
training

To ensure that participants did, in fact, learn to draw and also to visually recognize symbols during the
training session, we performed one-sample t-test on the sensorimotor learning variable (i.e., slope of
draw duration across trials) to confirm that the slope was less than zero (i.e., negative) and also on the
visual recognition learning variable (i.e., accuracy) to confirm that it was above chance (i.e., 50%). These
analyses confirmed that participants did experience an increase in their ability to draw the symbols
throughout the training session and that they also learned to visually recognize the symbols throughout
the training session.
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Learning to draw novel symbols

Participants became faster at drawing symbols throughout the drawing training session, suggesting that
participants learned to draw novel symbols during training (Supplemental Figure 3a). We measured the
drawing duration for each symbol drawing trial throughout the 30-minute training session and calculated
the slope of draw duration over trials. A one-sample t-test on the slope of each participant’s drawing
durations confirmed that participants’ learning slopes (M = -8.6e-4, SD = 1.2e-3) were significantly less
than zero, t(47) = 10.05, p = 5.06e-4, demonstrating that participants spent less time drawing symbols
with each trial that they completed. Additionally, a density histogram of participants’ learning slopes
demonstrated that the learning slopes for most participants was negative (Supplemental Figure 3a).

The speed with which participants drew the symbols increased during drawing training, suggesting that
participants were learning how to draw the novel symbols during the training session. To our
knowledge, learning to draw novel symbols during drawing training has not yet been demonstrated in
adult subjects, although it is certainly an intuitive result. One prior work in adults has demonstrated that
the drawn productions of common objects became more recognizable with increased practice drawing
those objects 3, consistent with the notion that drawing practice improves drawing ability. Additionally,
training studies using other sensorimotor learning tasks report similar results: practice with piano
playing improves piano playing 4,5 and practice juggling improves juggling 6. Notably, increases in the
speed of drawing occurred without explicit pressure to learn to draw the symbols. We encouraged
participants to draw symbols as quickly and as accurately as possible and they were aware that they
would be tested on their ability to recognize the symbols after drawing, but they were not aware that we
were measuring the duration of their drawings to estimate drawing learning.

Visual recognition learning

Participants performed the visual recognition test with above-chance accuracy, suggesting that
participants learned to visually recognize the symbols during production training (Supplemental Figure
3b). A one-sample t-test confirmed that participants’ accuracy during the recognition test (M = 0.76, SD =
0.09) was significantly above chance (i.e., 50%), t(47) = 12.12, p = 4.49e-16, demonstrating that their
responses during recognition testing were not likely due to random guessing. Additionally, we visualized
reaction times for each participant (Supplemental Figure 3b) and performed a simple linear regression
that revealed no significant relationship between accuracy and reaction time, suggesting the absence of
a speed-accuracy trade-off (R2 = 0.048, beta = 0.05, p = 0.57) (Supplemental Figure 4a).
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Supplemental Figure 3. Behavioral results. a. Participants learned to draw the symbols. The draw duration across
symbols decreased over the course of the production training (left), t(47) = 10.05, p = 5.06e-4. The black line is the slope of
draw duration across trials for all participants. Each non-black line is the linear fit of draw duration across trials for a single
participant. The slope of the linear fit of draw duration across trials was negative for nearly all participants with a probability
density centered around -8e-4, indicating that the majority of participants learned to draw the novel symbols during training. b.
Participants learned to recognize the symbols. Participants visually recognized the symbols with above-chance accuracy
after production training, t(47) = 12.12, p = 4.49e-16, suggesting that participants learned to recognize the trained symbols.
Each dot represents the proportion correct during the visual recognition test for each individual participant. Average reaction
time is also displayed for each individual participant. Error bars represent standard error across correct trials. For both a and b,
individual subjects are color coded and represented only once per plot.

Prior work has demonstrated that drawing is beneficial for visual recognition learning 7–12, and our
results are consistent with the results of these prior studies. In the current study, participants were
asked to draw symbols that they had never seen before and were then tested on their ability to visually
recognize those symbols. Participants recognized symbols with above chance accuracy after drawing
training (Supplemental Figure 3b), suggesting that the drawing training contributed to visual
recognition learning. However, we did not explicitly manipulate the drawing training and are, therefore,
unable to conclude that the drawing training affected visual recognition learning in this study. The
drawing training was a copy task in which a typed symbol remained on the screen as a model while
participants copied the symbol. It is possible that the above chance recognition accuracy after drawing
training resulted from exposure to the model symbol and not the drawing training. Because these were
novel symbols, any exposure to the symbols would be expected to lead to above-chance recognition
accuracy.

Although it is possible that the above chance recognition accuracy observed after training resulted from
only the visual experience of seeing the model symbol, it is highly likely that some of the recognition
learning observed after training resulted from drawing. First, prior work has demonstrated that drawing
experience facilitates visual recognition of the items that were drawn more than visually perceiving
typed symbols 9–14 and more than other motor activities, such as typing 9,10. Second, although
participants may have learned to visually recognize the symbols from seeing the model symbol, prior
research has demonstrated that the act of drawing the symbol has its own effect on visual recognition.
In pre-post training studies that have included a model symbol for copying, drawing the symbol beneath
a model symbol increased visual recognition more than watching someone else draw the symbol
beneath a model symbol, drawing the symbol using a pen without ink beneath a model symbol,
watching a symbol unfold on a screen as if being drawn beneath a model symbol, or viewing a static
handwritten version of the symbol beneath a model symbol 12,14. Thus, although we did not include a
control condition in this study to determine that the recognition learning was not simply a consequence
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of exposure to the model symbol during training, prior work using similar study designs suggests that at
least some of the recognition learning resulted from drawing.

No significant relationship between learning to draw and learning to visually recognize

A simple linear regression was used to determine if the learning rate of symbol drawing was related to
visual recognition learning. The predictor was the slope of the draw duration across trials during
production training and the response variable was accuracy. We also tested to see if the slope of draw
duration across trials was related to reaction time. We tested the significance of the model using an
F-test with alpha set to 0.05.

We conducted a simple linear regression analysis to determine if the participants who were quicker at
learning to draw symbols were also the participants who were better able to recognize the symbols after
drawing. Surprisingly, we observed no significant relationship between learning to draw and learning to
visually recognize symbols. Drawing learning was not related to visual recognition learning. A simple
linear regression revealed that the learning slope of symbol drawing duration was not a significant
predictor of visual recognition learning, as measured by either accuracy (R2 = 0.019, beta = 0.05, p =
0.72) or reaction time (R2 = 0.014, beta = -0.07, p = 0.55) (Supplemental Figure 4b). We followed these
results with a linear mixed-effects analysis that included random effects for symbol and participant and
found similar results. The addition of random effects for symbol and participant significantly improved the
model fits; however, the relationship between draw duration slope on visual recognition performance
remained non-significant, all ps > 0.05.

Supplemental Figure 4. Relationships among behavioral measurements. a. Visual recognition learning: no
speed-accuracy trade-off. The relationship between accuracy and reaction time was not significantly different from zero,
beta = 0.05, p = 0.57, suggesting that no speed-accuracy trade-off occurred. b. Non-significant relationship between
drawing and recognition learning. The slope of draw duration over trials was not related to visual recognition accuracy,
beta = 0.13, p = 0.38, or reaction time, etab = -0.13, p = 0.38, suggesting that participants who were better at learning to
draw the symbols were not the same participants who were better at recognition.
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Supplemental materials: J-test

Results of the J-test were consistent with the results of the Cox test and revealed that adding the fitted
values from the original recognition model as an additional predictor in the drawing learning model to
create a new transfer model did not significantly improve the model fit beyond the fit of the original
drawing learning model fit, t = 0.227, p = 0.821, and the fit of the original recognition learning model
was not significantly better than the fit of the transfer model, t = 1.686, p = 0.099.

In the repeat dataset, again, transfer model did not significantly improve the model fit beyond the fit of
the original drawing learning model fit, t = 0.2169, p = 0.8293, and the fit of the original recognition
learning model was not significantly better than the fit of the transfer model, t = 1.5153, p = 0.1368.

Supplemental materials: Cox-test and J-test for reaction time measurement of visual recognition
learning

The analysis reported in the main text uses the accuracy measurement for visual recognition learning.
Here, we report the analyses using the reaction time measurement for visual recognition learning. More
specifically, we demonstrate that the predictors selected by the relaxed lasso (RL) regression for
drawing learning do not transfer to visual recognition learning when visual recognition learning was
measured using reaction time. This result is consistent with the results reported in the main text for
visual recognition learning measured as accuracy.

The first analysis was exactly the same as the first analysis reported in the main text, an RL regression
with cross-validation to identify the set of predictors that best explains variance in drawing learning. The
selected model included two predictors corresponding to the L pArc and L SLF3, with an OLS R2 =
0.1180 (Table 1).

The second analysis was the same as the second analysis reported in the main text, except that we
measured visual recognition learning using reaction time instead of accuracy. We performed an RL
regression with cross-validation to identify the set of predictors that best predicted visual recognition
learning (using reaction time). The selected model included no predictors, indicating that an intercept
model was the best model for predicting visual recognition learning as measured using reaction time.

The third analysis used the Cox-test, as in the main text, to determine if the predictors originally
selected for drawing learning (i.e., with predictors corresponding to the left pArc and left SLF3) might be
able to explain additional variance in visual recognition learning beyond the variance explained by the
predictors selected in the original recognition model (i.e., an intercept only model). Results
demonstrated that the model selected for drawing learning (i.e., with predictors corresponding to the left
MDLFspl and the, left TPC) was a better fit for visual recognition learning than the transfer model (i.e.,
an intercept only model), z = -1.293, p = 2e-16.

The J-test provided complementary results. Adding the fitted values from the original recognition model
as an additional predictor in the drawing learning model to create a new transfer model could not
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significantly improve the model fit beyond the fit of the original drawing learning model fit, by definition,
because the transfer model was an intercept only model in this case. Adding the fitted values from the
original drawing learning model as an additional predictor in the visual recognition model did not
significantly improve the model fit beyond the original visual recognition model, t = 1.595, p = 0.118.

Results in the repeat dataset were consistent with these results. The first analysis selected the L pArc
and L SLF3 as the best predictors of drawing learning, as originally reported in the main text, with an
OLS R2 = 0.0969 (Table 1). The second analysis selected the model that best predicted visual
recognition learning based on the reaction time measurement, finding that the intercept was the best
fitting model. Finally, the third analysis used the Cox-test to demonstrate that the model selected for
drawing learning (i.e., with predictors corresponding to the left MDLFspl and the, left TPC) was a better
fit for visual recognition learning than the transfer model (i.e., an intercept only model), z = -1.51e13, p
= 2e-16. The J-test revealed similar results. Adding the fitted values from the original drawing learning
model as an additional predictor in the visual recognition learning model did not significantly improve
the model fit beyond the original visual recognition model, t = 1.439, p = 0.157.
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