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Supplementary Fig. 1. Related to Fig. 1. Cortical disorder-associated risk genes expressed in
human neurons in vitro. a and d) GWCoGAPS analysis defined transcriptomic patterns across (a)
neuronal differentiation of human NSC-derived from multiple iPSC lines * (p1-12), and (d) across
sequentially passaged human NSCs derived from H9 ESCs ° (p1-11). Column labels indicate steps of
differentiation from self-renewal (SR) of the iPSCs to NSCs and terminally differentiated neurons (a),
and from NSCs to terminally differentiated neurons and astrocytes (d). (*) indicates the patterns defining
the strongest changes across time and distinguishing discrete cortical cells in (b and e). b and e) The
telencephalic identity of the in vitro cells at different phases of differentiation was confirmed by projection
of scRNA-seq data from the developing macaque ¥ and human “® telencephalon, and bulk RNA-seq
data from microdissected developing human *° and macaque *° cortex into the GWCoGAPS patterns
from (a) and (d). Thresholding within each in vivo dataset was used to show tissues and cells with highest
expression of each GWCoGAPS pattern, i.e. dark cells indicate high levels of in vitro transcriptomic
patterns in the in vivo data. D: dorsal; V: ventral; ESC: embryonic stem cells; NE: neuroepithelial stem
cells; ERG: early radial glia; MRG: midradial glia; LRG: late radial glia; NE-NE: neurons derived from
NE; NE-ERG: neurons derived from ERG; NE-MRG: neurons derived from MRG; NE-LRG: neurons
derived from LRG; AST-LRG: astrocytes derived from LRG. RG: radial glia; oRG: outer RG; vRG:

ventricular RG; tRG:truncated RG; IPC: intermediate precursor cell; nEN: new excitatory neurons; EN:
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excitatory neurons; MGE: medial ganglionic eminence; GE: ganglionic eminence; nIN: new inhibitory
neurons; IN: inhibitory neurons; Astro: astrocytes; OPC: oligodendrocyte progenitor cells; VZ: ventricular
zone; SVZ: subventricular zone, i: inner, o: outer; CP: cortical plate; WM: white matter; I1Z: intermediate
zone; MGZ: marginal zone; SGctx: subgranular cortex; Ctx: cortex. ¢ and f) Enrichment analysis of the
disease gene sets in GWCoGAPS patterns from panels a (c¢) and d (f). n.s.: not significant; P:
uncorrected P-values at p<0.05 (yellow); Padj. Dis: significance correcting by each disease
independently (light orange); Padj. AllTest: significance after multiple-testing correction using the whole

dataset (orange).
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Supplementary Fig. 2. Related to Fig. 1. Sequentially passaged hNSCs recapitulate cell states
and transcriptomic dynamics of in vivo corticogenesis. a) Scheme of H9 human embryonic stem

cell (hESC) differentiation and progression of NSCs across sequential passages (PS) in presence of
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different FGF2 doses from Micali et al., 2020 #°, here defined as NSC progression protocol. N2 + LSB
(LDN193189 + SB431542) medium was applied at PS1 for 8 days, then hNSCs were serially passaged
in N2 + 20 ng/mL FGF2 medium every 6 days up to PS8. In parallel, cultures of NSCs at PS2, 3, 4, 6,
and 8 were subjected to FGF2 modulation (20, 10, 1, 0.1 ng/mL) for 6 days during their terminal passage
before RNA collection. b) Heatmap depicting GWCoGAPS patterns (pl-24) describing progression of
hNSCs across passages (PS2-8) and FGF2 dose from Micali et al., 2020 “°. (*) indicates the patterns
defining the strongest changes across passage and FGF2 and distinguishing discrete cortical cells in
(c). These selected GWCo0GAPS patterns are shown in Fig. 1. ¢) Projection of scRNA-seq data from the
developing macaque 37 and human “® telencephalon, and bulk RNA-seq data from microdissected
developing human “° and macaque %° cortex into GWCo0GAPS patterns from (b). Thresholding within
each in vivo dataset was used to show tissues and cells with highest expression of each GWCoGAPS
pattern, i.e. dark cells indicate high levels of in vitro transcriptomic patterns in the in vivo data.
Abbreviations as in S1. d) Projection of sScRNA-seq data from developing macaque brain ¥ into specific
GWCO0GAPS patterns from “°. Early passage patterns (p8 and p2) show high expression in in vivo
organizers; mid- and late passage patterns (p5 and p21) have high expression in in vivo neurogenesis,
and late passage patterns (p3 and p18) show high expression in both late neurogenesis and gliogenesis

in vivo (NeMO/CoGAPS).
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Supplementary Fig. 3. Related to Fig. 1. Expression dynamics of disease-associated risk genes
across cortical neurogenesis. a-v) Multi-panel heatmaps displaying: (i) expression levels for each risk
gene in the FGF2-regulated hNSC progression across passages . Genes are ordered by the temporal
peak of expression. The distribution is represented by the left column colored by passage and FGF2
concentration. (ii) Temporal gene expression change across neuronal differentiation of age specific RG
cells from developing mouse cortex %, (iii) Temporal expression change across the maturation of the
neurons from DeCoN dataset °’. (iv) Disease-gene association (left panel), and log10 P value of the
MAGMA gene-level test of association with each GWAS dataset (right panel). Black dots indicate a top

hit gene in the corresponding GWAS publication, based on genome-wide significant loci.
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progression of hNSCs ordered as: PS2 and PS3 high to low, PS4 and PS8 low to high. The majority of
the cortical disorder-related gene sets resulted highly enriched at PS4 low FGF2, indicating that this
pattern represents a neuronal specific signature which is not shared by non-brain diseases.
Glioblastoma risk genes result enriched in the late RG cells of PS8, consistent with previous works 3778,
Moreover, certain cortical disorders and brain cancers might share similar NSC transcriptomic features.
b) Barplot summarizing the gene proportion for each disease influenced by FMRP and CHD8. We tested
the enrichment of FMRP and CHD8 targets derived from An et al., 2018, h Cotney et al., 2015 ” Darnell
etal., 2011 %, Sugathan et al., 2014 81 Casingal et al., 2020 8 including embryonic and adult datasets,
in our NDD gene sets and DisGeNET human diseases, across the progression of the in vitro hNSCs
(Supplementary Table 2). FMRP targets derived from adult brain showed the highest overlap with all
ASD gene sets, except for those GWAS-derived, and Dev.Delay-associated genes. Other diseases
including FCD, SCZ, Neuroticism and 1Q also showed a significant enrichment in specific sets of targets.
LIS risk genes were enriched only in adult FMRP targets, while HET- or HC-associated genes were only
enriched in embryonic FMRP targets. CHD8 targets also showed significant associations with non-
GWAS ASD gene sets. CHDS8 targets identified in NSCs showed significant overlap with cortical
disorders caused by genes of earlier expression, for example MIC and several types of cancers. Genes
associated with late onset diseases, such as AD and PD, were not enriched in any set of CHD8 and
FMRP targets. These data indicate a transcriptional intersection of FMRP and CHD8 with their targets
from the early phases of the NSC progression up to neurons. Besides replicating the expected
association of ASD with CHD8 and FMRP targets, other cortical disorders also presented significant
numbers of targets, with strong dependency on the tissue where they have been identified and
developmental time. The findings suggest that the effects of the alteration of FMRP and CHD8 function
extend beyond ASD and may implicate genes of earlier expression during telencephalic development

involved in MCDs and other NDDs.
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Supplementary Fig. 5. Related to Fig. 2. Expression of risk genes in telencephalic organizers. a)
(Top panel) We have previously described 6 hiPSC lines (2063-1, -2; 2053-2, -6; 2075-1, -3)

differentiated into forebrain NSCs. RNAseq data were generated across differentiation and decomposed
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with GWCo0GAPS, which identified 30 patterns of gene expression (p1-30) “°. In Micali et al., 2020,
GWCOoGAPS and projection of bulk human developing cortex RNAseq data “°, distinguished 2 groups
of cells: 2053-6 and 2075-1, -3, and 2063-1, -2 and 2053- 2, involving dorsal or ventral telencephalic
genes across their differentiation trajectory, respectively (Supplementary Fig. 20ci). GWCoGAPS
patterns p2 and p16 showed differential expression in these 2 groups of lines at DIV8, as shown in top
panel here. Patterns p2 was highly expressed in 2053-6 and 2075-1, -3 lines while patterns p16 was
highly expressed in 2063-1, -2 and 2053- 2 lines. The data in Micali et. al, 2020 indicate that cortical
hem genes were highly weighted in p2, while anteroventral organizer genes were more represented in
pl6. Here, we further confirmed the differentiation bias of these 2 groups of cell lines by projection of
scRNA-seq data from our recently reported developing macaque brain 37 into the GWCoGAPS patterns
(p1-30). (Bottom panel) Projection of patterning center (PC) scRNA-seq data from developing macaque
brain into the dorsal telencephalic pattern p2 and the ventral pattern p16 shows enrichment of p2 in
monkey cortical hem cluster, and enrichment of pl6 in rostral patterning center (RPC) cluster

(NeMO/CoGAPSII). UMAP of all the PC clusters (bottom left panel). b) (i) Dorsoventral expression bias

of PC marker genes from macaque brain single-cell data 3 in NSC lines at DIV 8-30, regardless of
disease association and bias significance; gene expression of the same PC markers in (ii) clusters
annotated as PCs [ RPC (PC FGF17), AV (PC NKX2-1 LMO1), AV (PC NKX2-1 NKX6-1), GE (RG
NKX2-1 DLK1), GE (NKX2-1 OLIG1), hem (PC RSPO3), hem/CPe, (PC TTR), antihem (PC SFRP2),
and ZLI (PC TCF7L2)], and in (iii) other cell subtypes from the same macaque dataset. Only filtered PC
marker genes are displayed, using no more than 15 genes per cell cluster, based on the lowest p-value
from the original data ¥’ (see methods). Gene-disease association on the left. ¢) Dot plots representing
risk gene expression in the cell clusters annotated as (i) patterning centers (anteromedial pole, cortical
hem and floor plate) and forebrain RGs, and (ii) other neural cell types at different maturation phases
from mouse fetal brain single-cell data 8. Only disease genes with significant dorsoventral expression
differences in the 6 hNSC lines at DIV 8 are displayed. Significance in dorsoventral bias is indicated in

the left colored column. Gene-disease association on the left. A-M: Antero-medial cerebral pole.
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Supplementary Fig. 6. Related to Fig. 3. Expression dynamics of disease-regulon members
across hNSC progression. (a and b) Expression of core TFs (in red) and target genes of 2

representative regulons, one early (CNOT3) and one late (KLF6), across the progressing hNSCs. The
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“Peak Sample” column represents the peak of gene expression. The “Bicorrelation” column shows the
correlation between the expression of any target gene and the core TF. The grid on the right indicates
gene-disease association, specifying core TFs and target genes in the disease regulons. Each core TF
may have a differential expression level and functionality along cortical development. Their target genes
can be expressed at multiple phases across the NSC progression diverging from the core TF expression
peak. This uncoupling might reflect multiple TF-effector mechanisms (e.g. co-factors’ stoichiometry and
their combinations, post-translational modifications and subcellular localizations, etc.), a negative

regulatory effect, or unspecific associations between TFs and their motifs due to motif similarity.
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Supplementary Fig. 7. Related to Fig. 3. Disease-regulon genes expressed in vivo and in vitro.
Proportion of genes for each disease regulon a) sorted by passages and FGF2 conditions according to
their maximum expression as explained in Fig. 3a; b) classified into different bins of expression fold
change across NSC differentiation from %, c¢) classified into different bins of expression fold change
across the maturation of the neurons from °’; d) classified into different bins of expression fold change
in dorsoventral trajectory bias from 0 e) Temporal regulons across passages. Small nodes represent
target genes, and bigger, labelled nodes represent core TFs of temporal regulons (squares), disease

regulons (circles) or both (octagons).
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Supplementary Fig. 8. Related to Fig. 3. Motif similarity of core TFs in temporal regulons. (a-c)
Similarity of all motifs associated with core TFs of regulons found in the progression of hNSCs. a) All

regulons. b) Regulons from Passage 4, 0.1 ng/mL FGF2. c) Regulons from Passage 8, 20 ng/mL
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FGF2. Genes associated with multiple motifs are identified in parenthesis. The passage and FGF2
concentration of maximum expression is indicated in the right column “hNSC progression”. Motif

similarity and TF-motif association data are from Lambert et al., 2018 8,

54


https://doi.org/10.1101/2024.06.14.598925
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.14.598925; this version posted June 14, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

a Trevino et al., 2021 initial annotation b Trevino et al., 2021 re-annotation
EGgps g 5 %

Cycling Progenitors
Early RG
® Late RG
® {RG
@ nIPC
o multipotent (m)GPC
® OPC/Oligo
® GluN1
® GluN2
® GIuN3
© GluN4
GIuNS
GIuNG
@ GIuN7
® GluN8
UMAP 1 © Subplate (SP) 3
® CGEIN All donors (PCW1 6-24)8} Epen

MGE IN
microglia (MG) UMAP 1

original 2
UMAP 2

o tRG EOMES+ mGPC

UMAP 2

® Epen Astro
® 0RG E OPC
oRG L Oligo
Low Quality (LQ)
RG

Pericityes N .

Red blood cells (RBC) C Neurogenesis

Leptomen. cells (VLMC) PCW24 o
Endothelial cells (EC)

original 2
UMAP 2

Donor's age
® powi16

® pow20
pow21
pow24

UMAP 2

original 1 UMAP 1 UMAP 1

d Trevino et al., 2021 annotation e
[Joa [ eayre [l Re [ merc

Donor age [_|Total [[lleowte [Illpow20 [T pew21 [ ] pewzs [ cyeprog [ teerc [ niec [ll] oPcioigo
re-annotation Median score in group
VRG E (628)
VRG L (477) 0.25 0.50
tRG (415) Re-annotation
tRG EOMES+ (139) oRG L A ¢<><x><g¢+
o ROE| $42 Lo
o F1aa
VRG E
oRG L (1506) Fezo SO Lo
nIPC (2483) |2tz VRGL| &< L+ 4
Neu E (790) L {RG EOMES+ { ® 4 L 9
IN (64) RG{ bbb LoP
mGPC (2045) o0 ————
Astro (884) oo I |
OPC (597) gggegese
Oligo (92) S oo aaa
LQ RG (200)
0. 0.0 0.2 0.4 0.6 0.8 1.0
% of cells % of cells
f & > o
Pan RG markers 0\\}0 (-\\&\\}00
Cydling RG RG &Q CPQ}'*‘Q
progemtors RG Early Late apical RG tRG Ependymal oRG nlPC <& & mGPC Astrocytes  OPC Oligo
L —— 1o 1 & 1 & 1o 1o L 1 & 1o 1
VRG E+ ll_gJ_?g_t_g_L_L‘LQQ_g?Q‘L_L_J__L_L_L_L_J_,gg_g_tJ_?J__L_L_LJ_J_J_J__L_L:___J_J_J__L_L_L_L___L
VRG LA

11,1 Peée i s i oPeee e | | sees i) 1141 & 41 b

RG] L1 1 1V 6441 R VR s o 1 2 i 2 1 o1 1 1 (1 i1 . 4. &a®i 2V

t(RGEOMES+{ | | | 1 QP® 1 o+ + 1Re 1 22QO@® v v v . .3 o1 1 3P P13, P @0 0
Epen1 2, , . VA . ®P. . ii0 Pehs®® “ove. i 0a.V. RGN R ) S
oRG E+

11T eels119siseel i1 11, s¥ePevl i i i i i i i 11 1T ie T
TR SRty S22 =2 R SRS Y S
Las KX N N SR R R B SRR S B R I N W R S SR
NeuE{ L L | (@b i 11 i 8 bsoel 111, 0 ¢ 3Pl i il i i®e (01 (4111411
IN4 ,l,LJ;J;‘*L**‘L*‘L‘LA*‘L 77777 L @ PP e
mePC § 4 4 1 @04 v 4 4 4B b e 40 LLLLLQLL;LLLLL;L!LL!LL;LL;;
Astro-| ‘L‘LJgJg’?LAL’J‘,O;J‘ALgALL**4;*4;ALA;J;?QQ,?LLALLAA;*LALAL#LQQQLLAL,#;L*
OPC L L1 J it i 1@l i1 %1 b0 01, 14 @R T 101111 . YTLl 1, ieds
Oigoy ., ., . . . ., ®., YT+, .o . & T S 1 )
mm’LLLLLLLLLLL&LLLLLLLLLLLL LLLLL?LL#LL LLLLLL LLLLL

PELFEP G P @cﬁt&'ﬁ% +>“<z«°fo~°°" A, N“ w?@ &"w&* ¢ <°'” S8 @@o LS O Ew

Median expression in group

oRG L+

Re-annotated clusters

Cell type speciflc marker gene
00 25

Supplementary Fig. 9. Related to Fig. 4. Re-annotation of single cells from human fetal brain data.
(a) UMAP representation of scRNA-seq data from developing human brain 1 All cells in the study are

represented (left). A subset of progenitor cells of interest for this study was reannotated (right). Colors
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show the original cell annotation (top) and the age of the donors (bottom). b) UMAP colored by the new
annotation of the subset of cells in this study. ¢) Neurogenesis trajectories in Trevino et al., 2021
analyzed in CellOracle. PCW20, PCW21 and PCW24 donors were independently considered. PCW16
donor was not included in the neurogenic lineage since we could not obtain a clear trajectory from NSCs
towards differentiated cells in the cell diffusion maps. For the maturation of RGs and gliogenesis, all
donors were included. d) Size, donor and distribution of the new cell identities. The total number of cells
is shown next to the cell type nomenclature. The barplots represent cell distribution in the donors (left)
and the distribution of cell types from the original annotation (right) present in the new cell groups. e)
Expression scores of genes associated with the progression of RG cells. Marker genes associated with
the progression of RG cells from Telley et al., 2019 *® were used to establish the early/late subclasses
of reannotated RG cells in Trevino et al., 2021. The gene module “prog_1" includes genes with both
early and late expression; gene modules “prog_2” to “prog_6" classify genes according to their early-to-
late expression bias. Genes in “prog_2”" and “prog_3” have an early expression pattern, while “prog_5"
and “prog_6" include genes with a late expression pattern. We observed early and late gene signatures
enriched in specific vVRG and oRG clusters which we use to label early and late vRG and early and late
oRG clusters. f) Gene expression of cell type markers in re-annotated cell subtypes. Violin plots
representing expression normalized by total counts per cell, in log-scale. The color represents the

median gene expression in that group of cells.

56


https://doi.org/10.1101/2024.06.14.598925
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.14.598925; this version posted June 14, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

a

Genes used in CellOrade

Only pertubed cisTarget reguion genes or disease-linked genes are shown RG maturation & Gliogenesis Neurogenesis (PCW20 Neurogenesis (PCW21 Neurogenesis (PCW24
Reguion
2 Disease reguions | Temporal regulons ] e |frocessing  Celltype GRN Jprocessind  Celltype GRN fprocessing]  Cell type GRN__|[processing] _ Cell type GRN
H z 22 2238 228 228 2232
% S B s3 g2¢8 228 F8¢8 G828
g€ e ¥ So ororcocco = 385 £82 §82 3§2 889
28355 8 8.2 Sonooncinsions s3vs 238 €58 €58 £s8
2 5 § c O"g‘_ <_n,§ P P P P P P P P e P P P P < S = o2 c gL gL
5 2 5 8208KR8%> COO00060EEEEE6 §82 oy 585 590 5i%o
=1 T 3 ST a8 LULUUELLCOLLLLLL § &> Q8 0B 08 08
§ 225 2qu888303 PR 0080808088 222 255 EES EES 253
€ & 28 2RUQ043092 0000000000000 2 58 rx @ @ r @
- T - T
NREA [ = = = || . [
CREg3L4 = = -
REX .
Gl -
~ ‘1 - - g
3 = =
% ||
- =
- -
RSA8
I ! - =
Y -
i =
SINA
K
T =
ONE -ii
o
oL
=’;§‘?
BIH T
i I
V6 1
i B
BHLA : ——
i | =
) j——
(s E
B -
2 [ l -
RA T
) 1
X2-: 1
Disease risk Tested in scRNA data SCATAC data
Expression k s Regulon: N N
£ pression pea association Cell Oracle eguions preprocessing preprocessing
D _Ps2 PS3PS4PS6 PS8
= 20= = = = TRUE TRUE Core Both Not highly variable GRN source [Jjj Both
o 108 B E B FALSE FALSE Target || None Highly variable GRNarget | None
ol

Supplementary Fig. 10. Related to Fig. 4. Overview of the genes tested in CellOracle associated
with any disease or regulon. a) From the left to the right column: phase of peak expression across
hNSC progression at different passage and FGF2 condition from Micali et al., 2020 i; association to any

disease; test of a gene in CellOracle in both neurogenesis and gliogenesis. The columns under disease-
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regulons and temporal-regulons show if a gene has been identified as core TF or target gene in the
regulons from Fig. 3, derived from disease-associations and from the hNSC progression, respectively.
These are summarized in the ‘Regulon role’ columns. For each subset, it is also shown if a gene passed
preprocessing in scRNA-seq data and scATAC-Seq data, if the knock-out (KO) simulation succeeded,
and the role (source gene or target gene) in each cell type’s GRN (subsetted to the top 2000 regulatory
connections in the network). SCRNA-seq preprocessing included removing low-expression genes and
considering only the top 3000 highly variable genes (see methods). SCATAC-seq preprocessing
included the generation of a base GRN using Cicero # to find coaccessible chromatin regions and a
motif-based filtering to recover potentially regulatory links between these regions. For every trajectory,
the gene expression data is modelled using the GRN derived from the corresponding scATAC-seq data.
Expression is modeled individually in each cell type, resulting in a cell type-specific model of gene

expression that connects TFs and target genes.
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Supplementary Fig. 11. Related to Fig. 4. Network scores for the disease-associated TFs. The
columns split the genes based on the associated diseases. The colored dots on the x axis represent the
cell types with a score value for the genes on the y axis: a) degree centrality (out connections) represents
the number of genes regulated by a given TF relative to the network size; b) betweenness centrality
represents the importance of a given TF for connecting any two genes in the network. For genes and
cell types measured in both trajectories (RG maturation and gliogenesis, and neurogenesis), data from

RG maturation and gliogenesis are shown.
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Supplementary Fig. 12. Related to Fig. 4. CellOracle KO simulation of core TFs across RG
maturation/gliogenesis and neurogenesis. a) PAGA map of RG maturation and gliogenesis (top),
and PHATE map of neurogenesis (bottom). b and c¢) (i) Developmental flow of (b) RG maturation and
gliogenesis and (c) neurogenesis. Arrows represent the direction of the progression in the map. ii) KO
simulation for MEF2C and KLF6 in RG maturation/gliogenesis and neurogenesis trajectory perturbation,
respectively. Arrows show the perturbation of the cell flow that the KO simulation produces, and color
represents the flow direction change upon perturbation (green means same direction, i.e., promoted
trajectory, and red means opposite direction, i.e., depleted trajectory). iii) Sankey plot representing the
cell transitions observed in the perturbation. Original cell identities (left axis) and after KO simulation

(right axis) are shown.
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Supplementary Fig. 13. Related to Fig. 4. Comprehensive TF KO simulation across RG maturation

for

L
ey
[

and gliogenesis (PCW16-24). a) The peak expression phase across the in vitro hNSC progression from

Micali et al., 2020 is shown for all perturbable TFs on the left column. i) Perturbation score indicating
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gaining or depletion of a given cell type, measured as the ratio of cells with an identity before and after
the perturbation. Values are normalized per cell type. ii) Cell type transitions upon KO simulation. The
first bar of the top axis represents the original cell type, and the second bar represents the cell identity
resulting from the simulation. The grids represent the fraction of the original cell type (labelled in red)
and their final identity. iii) Regulatory role of every gene in each cell type. TFs connecting different GRN
modules are considered hubs, and they are ordered according to their connectivity to local modules:
from ‘Ultra peripheral’ to ‘Kinless’ for non-hubs, and from ‘Provincial’ to ‘Kinless’ for hub TFs. iv) Disease
association of every gene. TF association to disease can be risk-only, target of a disease-regulon and

core of a disease-regulon.
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Supplementary Fig. 14. Related to Fig. 4. Comprehensive TF KO simulation across neurogenesis
(PCW20). a) The peak expression phase across the in vitro hNSC progression from Micali et al., 2020

is shown for all perturbable TFs on the left column. i) Perturbation score indicating gaining or depletion
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of a given cell type, measured as the ratio of cells with an identity before and after the perturbation.
Values are normalized per cell type. ii) Cell type transitions upon KO simulation. The first bar of the top
axis represents the original cell type, and the second bar represents the cell identity resulting from the
simulation. The grids represent the fraction of the original cell type (labelled in red) and their final identity.
iii) Regulatory role of every gene in each cell type. TFs connecting different GRN modules are
considered hubs, and they are ordered according to their connectivity to local modules: from ‘Ultra
peripheral’ to ‘Kinless’ for non-hubs, and from ‘Provincial’ to ‘Kinless’ for hub TFs. iv) Disease association
of every gene. TF association to disease can be risk-only, target of a disease-regulon and core of a

disease-regulon.
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Supplementary Fig. 15. Related to Fig. 4. KO simulation in neurogenesis across species. (a)
Comparison of KO simulation between mouse (x axis) and human (y axis) neurogenesis leveraging data
from Noack et al, 2021 8 and donors PCW20, PCW21 and PCW24 from Trevino et al, 2021 61,

respectively. The effect of the gene KO simulation on each cell identity group (RG cells and neurons) is
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shown as the ratio of final over initial number of cells, in log2 scale. Only genes knocked-out in both
datasets are shown. A regression model is overlaid on the plot. The genes with a positive or negative
effect in both datasets, or opposite effects after KO simulation, are indicated. b) Comparison of KO
effects in human donors. Same as in a, one-to-one comparisons in neurogenesis of three human donors.
¢ and d) Fisher tests of genes showing the same direction of effect. For each comparison, the table
shows the number of genes with a positive or negative effect in both datasets, and opposite effects. The

odd ratio of genes with coincident effects, its confidence interval and p-value are also indicated.
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Supplementary Fig. 16. Related to Fig. 5. Quality overview of control- and ASD-derived in vitro
NSC scRNA-seq data. a) UMAP showing clusters of cell types identified. b) Quality check of the
clusters. Violin plots showing the percentage of mitochondrial counts, the number of genes detected and
the number of Unique Molecular Identifiers (UMIs) per cluster. ¢) expression level (color gradient) and
percentage of cells (dot size) expressing subtype markers for each cluster identified. d) Sankey plots
showing the integration of the DIV8 scRNA-seq with macaque developing brain dataset ¥ Left, middle

and right column showing macaque annotation, raw seurat clusters and final annotation in the DIV8
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dataset, respectively. The top panel includes the most representative cells of the macaque dataset and
all cells in the DIV8 dataset. The bottom panel includes patterning centers and the ventricular radial glial
cell (vRG) subtypes of the macaque dataset, and PC FGF17-like and RG clusters in the DIV8 dataset.
e) Bar plot showing number of cells for each cluster in each donor. f) Number of UMIs, total detected

genes, percentage of mitochondrial and ribosomal genes expression in each cluster for each donor.
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Supplementary Fig. 17. Related to Fig. 5. Cell cycle phase characterization of control- and ASD-
derived cell lines. a) Fraction of cell cycle phases in every cell type in each donor. Significant
differences between ASD and control cells are highlighted with black outlines. b) Per-donor proportion
of total cells in the different cell cycle phases. Significant differences between groups are marked with

“*** (adjusted p-value < 0.05).
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Supplementary Fig. 18. Related to Fig. 5. Differential gene expression analysis of control- and
ASD- derived cell lines. a) Principal component analysis of RGeany pseudobulk samples from scRNA-

seq data generated from control and ASD hiPSCs at DIV 8 of neural induction. PC6 segregates control
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and ASD lines. b) Projection of Micali et al., 2020 bulk RNA-seq from sequentially passaged human
NSCs into PC6. PC6 shows highest levels in PS4 NSCs (NeMO/PCA). c) Projection of bulk RNA-seq
data from sequentially passaged control and ASD cell lines in vitro (see Fig. 5g and Supplementary Fig.
20) into PC6. PC6, which segregates control and ASD lines in the scRNA-seq, also shows elevated
levels in these same ASD lines in the bulk passaging data (NeMO/PCA). d) Venn diagrams of DEGs in
mesenchymal (Mes.) progenitor cells and RGLate in individual ASD samples versus grouped controls,
evaluated in scRNA-seq data and excluding sex chromosome genes. In Mes. progenitors, 69 genes (9
TFs) up-regulated and 79 genes (9 TFs) down-regulated were found in ASD. In RGrae, 100 genes (8
TFs) up-regulated and 39 genes (8 TFs) down-regulated were found in ASD (Supplementary Table 9).
e) Expression level (color gradient) and percentage of cells (dot size) expressing cortical region genes
in RGearly in each NSC line (left); and corresponding differential expression across ASD-control pairs in
cortical organoid RG cluster at TDO, from Jourdon et al., 2023 34 The genes were selected from those
associated with cortical regions in progenitor cell types in Micali et al., 2023. 25 genes with the highest

expression in our data that were expressed maximum in two cortical regions were considered.
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Supplementary Fig. 19. Related to Fig. 5. Intersection with differential gene expression in multiple
ASD-control pair derived organoid lines. a) Number of ASD-control cortical organoid pairs, per NSC
subtype (RG-hem, RG, tRG, oRG) and differentiation stage (terminal differentiation, TDO, TD30 and
TD60), tested for differential expression in Jourdon et al., 2023 **. In Jourdon et al., 2023, cortical
organoids were generated from iPSC lines derived from ASD probands and control fathers from 13
families (or “pairs”); scRNA-seq data were collected at 3 time points (TDO, TD30 and TD60, with TDO
corresponding to the initiation of neurogenesis) and differential expression test was performed
independently in each cell type (gimGamPoi, adjusted p-value < 0.01, absoluted log2FC > 0.25). b)
Venn diagrams showing (i) intersection between all pairwise DEGs in organoid NSC subtypes (RG-hem,
RG, tRG, oRG) from Jourdon et al. dataset and ASD versus Control line DEGs in any cluster of DIV8

scRNA-seq data identified in this study (Supplementary Table 9); (ii) intersection between all pairwise
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DEGs in organoid NSC subtypes (RG-hem, RG, tRG, oRG) from Jourdon et al. dataset and DEGs from
ASD versus Control lines in RGegany cluster from scRNA-seq at DIV8 identified in this study; (iii)
intersection only for DEGs in RGgan, from this study and from organoid RG cluster of TDO from Jourdon
et al. In each diagram, TFs from both sets were identified using a list of all human TFs (in green) 8, c)
Overlap of DEGs from this study (Fig. 5c) and DEGs identified in any of the ASD-control pairs from
Jourdon et al., 2023 *. The overlap is depicted as the cumulative fraction of DEGs identified in our study
(y-axis, grouped into different DEG subsets by color) that are also found to be differentially expressed
in varying frequencies among the ASD-control pairs in Jourdon et al. (x-axis). Distribution of all
genes/TFs DEG in Jourdon et al. is given as reference (black/grey lines). d) Heatmap of pairwise DEGs
between ASD proband (8 macrocephalic and 5 normocephalic)- and father control-derived organoids
from Jourdon et al. for the TFs differentially expressed in RGgayy of the individual ASD lines identified in
Fig. 5¢c. Note that the direction of change, although often concordant across the organoid NSC subtypes
at the same stage, varied between pairs, i.e., a same gene may exhibit upregulation or downregulation
across pairs. This result suggests that while perturbation of a gene is frequent across ASD lines

compared to controls (as shown in S19C), the direction of change may be different among pairs.
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Supplementary Fig. 20. Related to Fig. 5. Characterization of the telencephalic identity and
trajectory bias of control- and ASD-derived in vitro NSCs. a) NSC progression protocol for six newly-
generated hiPSC lines from 3 control (#290, #311, #317)- and 3 ASD (#375, #384, #434)-affected donors
showing progression of NSCs across sequential passages (PS) and FGF2 doses, similar to the scheme
described in Supplementary Fig. 2. N2 + LSB was applied at PS1 for 8 days, then hNSCs were serially
passaged in N2 + 20 ng/mL FGF2 every 6 days up to PS8. In parallel, cultures of NSCs at PS2, 4, and
8 were subjected to FGF2 modulation (20 or 0.1 ng/mL) for 6 days in their terminal passage, before bulk
RNA collection and RNA-seq. b) Neuronal differentiation protocol. The same 6 iPSC lines were
passaged in mTesR + Rock inhibitor, then the day after were switched to N2-B27 + XLSB medium for
12 days to induce NSCs. Cells were terminally differentiated into neurons using Neurobasal (NB) +
neurothrophins (NTs) until DIV 38 as described in Micali et al., 2020 *°. On day 8 and 17, NSCs were
passaged. Single cell suspensions for the scRNA-seq were collected at DIV8 from parallel cultures.

Days for bulk RNA collection are indicated. ¢) (i) PC3 of 6 human NSC lines (2075-1 and -3; 2063-1 and
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-2; 2053-6 and -2) from 3 donors showing dorsal (2075-1 and -3, 2053-6, green) or ventral (2063-1 and
-2; 2053-2 orange) neuronal lineage bias, based on the projection of human developing pallium and
ganglionic eminence bulk transcriptomic data * These data, previously reported in Micali et al., 2020,
show that hiPSC-derived NSC lines have dorsal or ventral telencephalic lineage bias even with the same
neuronal differentiation protocol. Lines 2075-1 and -3 exhibit dorsal pallium bias in their differentiation
trajectory; 2063-1 and -2 exhibit ventral telencephalic bias; lines 2053-6 and -2, which are 2 replicates
of the same donor, show divergent lineage trajectories, i.e. dorsal (2053-6) and ventral (2053-2). (ii) To
examine telencephalic differentiation bias, the bulk RNA-seq data generated from 3 control and 3 ASD-
derived NSC lines, differentiated using the neuronal differentiation protocol (panel b), were projected
into the Micali et al., 2020 PC3, distinguishing dorsal versus ventral NSC fates. The analysis confirmed
a ventral identity for ASD#384, a dorsal identity for Cntr#290, and no clear trajectory bias for the other
lines. d) Projection of macaque patterning centers signatures from Micali et al., 2023 *"into the bulk
RNA-seq of the control- and ASD-derived NSC lines at DIV8 and 17. The data highlight AV telencephalic
features in #384 and slight posterior telencephalic organizer features in ASD#434 which express ZLlI
genes. RPC: rostral patterning center; AV: anteroventral; GE: ganglionic eminence; CPe: Choroid

Plexus epitelium; ZLI: zona limitans intrathalamica.
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Supplementary Fig. 21. Related to Fig. 5. TF expression across progression and differentiation

of control-and ASD-derived NSCs. a) Expression of TFs differentially expressed in RGgaqy in individual

ASD samples versus grouped controls from Fig. 5c, across passages and differentiation stages. The
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expression bias of these TFs in ASD/Control RGg.i, from scRNA-seq analysis is on the right. b)
Normalized gene expression (see Methods) for selected genes from panel (a), and selected DEGs
(ZNF703, JUND, NR2F2, FEZF1) from Mes progenitors and RG, clusters, shown in Supplementary

Fig. 18d, across passages and differentiation.
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