Supplementary figure 1. iPSC characterisation of pluripotency.

protocol. SOX17 (SRY-BOX 17; endoderm-related), TUJ1 (Neuronal Class III β -Tubulin;
ectoderm-related), and SMA (Alpha Smooth Muscle Actin; mesoderm-related) markers
are shown. Nuclei were counterstained with DAPI. Scal protocol. SOX17 (SRY-BOX 17; endoderm-related), TO31 (Neuronal Class III β-Tubulin;
ectoderm-related), and SMA (Alpha Smooth Muscle Actin; mesoderm-related) markers
are shown. Nuclei were counterstained with DAPI. Scale b ectoderm-related), and SMA (Alpha Smooth Muscle Actin, mesoderm-related) markers
are shown. Nuclei were counterstained with DAPI. Scale bar, 500 µm. n=1 biological
replicate per line.
(B) Immunofluorescence for pluripotenc

are shown. Nuclei were counterstained with DAPI. Scale bar, 200 µm. n=1 biological
(B) Immunofluorescence for pluripotency markers NANOG, OCT4, TRA-1-60, TRA-1-81
in iPSC lines. Nuclei were counterstained with DAPI. Scale replicate per line.
(B) Immunofluore
in iPSC lines. Nucle
replicate per line. (B) Immunohaorescence for pluripotency markers NANOG, OCT4, TRA-1-60, TRA-1-61
in iPSC lines. Nuclei were counterstained with DAPI. Scale bar, 200 µm. n=1 biological
replicate per line.
(C) Epi-Pluri-Score testing for iPSC

in interplicate per line.

(C) Epi-Pluri-Score testing for iPSC lines. DNA methylation profiles (β-values) in genes
ANKRD46, C14orf115, and POU5F1 for all iPSC lines match profiles of pluripotent replicate per line.
(C) Epi-Pluri-Score
ANKRD46, C14orf
samples (red cloud (C) Epi-Pluri-Score testing for in SC lines. DNA methylation profiles (β-values) in genes
ANKRD46, C14orf115, and POU5F1 for all iPSC lines match profiles of pluripotent
samples (red cloud). n=1 biological replicate per l ANKRD46, C14orf115, and POU5F1 for all iPSC lines match profiles of pluripotent
samples (red cloud). n=1 biological replicate per line.
(D) RT PCR in iPSC lines for expression of pluripotency markers SOX2, KLF4, NANOG,
OCT

Samples (red cloud). It is also given applicate per line.
(D) RT PCR in iPSC lines for expression of pluripoten
OCT4. H9 human embryonic stem cell (H9 hESC) line. (D) RT PCR in iPSC lines for expression or pluripotency markers SOX2, KLF4, NANOG,
OCT4. H9 human embryonic stem cell (H9 hESC) line and human dermal fibroblasts
were used as positive and negative controls, respectively. G Were used as positive and negative controls, respectively. GAPDH was used as a
housekeeping gene. n=1 biological replicate per line.
(E) RT PCR in iPSC lines for detection of Sendai virus genome and pluripotency

housekeeping gene. n=1 biological replicate per line.

(E) RT PCR in iPSC lines for detection of Sendai virus genome and pluripotency

transgenes. A positive (+ve) control (SeV DNA) and a negative control (cDNA from the (E) RT PCR in iPSC lines for detection of Sendai
transgenes. A positive (+ve) control (SeV DNA) and a
H9 human embryonic stem cell line, H9 hESC) were a transgenes. A positive (+ve) control (SeV DNA) and a negative control (cDNA from the
H9 human embryonic stem cell line, H9 hESC) were also analysed. GAPDH was used as
a housekeeping gene. n=1 biological replicate per line. transferences. A positive (+ve) control (19) human embryonic stem cell line, H9 hESC) were also analysed. GAPDH was used as
a housekeeping gene. n=1 biological replicate per line.
(F) Chromatograms from genomic DNA sequenc

He manual embryonic stem cell line, H9 hese y also analysed. In a statution are
a housekeeping gene. n=1 biological replicate per line.
(F) Chromatograms from genomic DNA sequencing in BPAN iPSC lines. iPSC lines
maintain a housekeeping gene. n=1 biological replicate per line.

(F) Chromatograms from genomic DNA sequencing in BPAN iPSC lines. iPSC lines

maintain disease-causing mutations. WDR45 disease-causing mutations are

highlighted in (F) Chromatograms from genomic DNA sequencing in BPAN iPSC lines. iPSC lines
maintain disease-causing mutations. WDR45 disease-causing mutations are
highlighted in the red rectangles. n=1 biological replicate per line.
(G)

maintain district channig mutations. Memorial district channig mutations in the
highlighted in the red rectangles. n=1 biological replicate per line.
(G) SNP array analysis of all iPSC lines used for downstream experiments (G) SNP array analysis of all iPSC lines used for downstream expression of all iPSC lines used for downstream expression the two isogenic controls. Representative images. All deletions/ the two isogenic controls. Representative images. All deletions/ gains in iPSCs used
48

the two isogenic controls. Representative images with internal $\frac{1}{2}$ and $\frac{1$

For dominated in the small (small) and defined as independent as μ
BlueFuse Multi. n=1 biological replicate per line.
(H) Alignment of wild type, patient 02 (c.19C>T), patient 03 (c.700C>T) and CRISPR
corrected WDR45 Fuse Multimeter European replicate per line.

(H) Alignment of wild type, patient 02 (c.19C>1

corrected WDR45 genomic DNA (above) an

Premature protein truncation results from both (H) Alignment of wild type, patient 02 (c.19C>T), patient 03 (c.700C>T) and CRISPR
corrected WDR45 genomic DNA (above) and amino acid (below) sequences.
Premature protein truncation results from both c.19C>T and c.700C>T m Premature protein truncation results from both c.19C>T and c.700C>T mutations. For
each CRISPR-corrected line, three nucleotide substitutions have occurred after HDR
(red rectangles). For both corrections, the first two ar each CRISPR-corrected line, three nucleotide substitutions have occurred after HDR (red rectangles). For both corrections, the first two are silent/ synonymous changes and, overall, the sequence leads to translation of a full-length WDR45 protein. and, overall, the sequence leads to translation of a full-length WDR45 protein.

Supplementary Figure 2. Generation and basic characterisation of mDA model.

(A) Protocol for A9-type mDA differentiation.

(B) Immunofluorescence for ventral midbrain progenitor-specific markers FOXA2 and

LMX1A at Day 11 bar, 500 μ m. n=3 biological replicates per line. (B) Immunohablescence for ventral midbrain progenitor-specific markers FOXA2 and
LMX1A at Day 11 of mDA differentiation. Nuclei were counterstained with DAPI. Scale
bar, 500 µm. n=3 biological replicates per line.
(C) Quan

biological replicates for all lines, 3 individual images from random areas of a well for **C)** Quantification of FOXA2 and LMX1A ab
biological replicates for all lines, 3 individual in
each biological replicate. Percentages were ca (C) Quantification of FOXA2 and LMX1A abundance in Day 11 progenitors. n=3
biological replicates for all lines, 3 individual images from random areas of a well for
each biological replicate. Percentages were calculated aft biological replicate. Percentages were calculated after manual counting of cells
on ImageJ/Fiji (approximately 500 nuclei counted per image, followed by counting of
cells also staining positive for FOXA2 and/or LMX1A). ear ImageJ/Fiji (approximately 500 nuclei counted per image, followed by counting of
cells also staining positive for FOXA2 and/or LMX1A).
(D) qRT-PCR at d11 for pluripotency markers OCT4 and NANOG, and midbrain related

on Images, City, (approximately 500 nuclei counted per image, following to cells also staining positive for FOXA2 and/or LMX1A).

(D) qRT-PCR at d11 for pluripotency markers OCT4 and NANOG, and midbrain related

markers FO (D) qRT-PCR at d11 for pluripotency markers OCT4 are markers FOXA2, LMX1A, LMX1B, EN1, EN2, relative and normalised to their respective iPSCs (n = 1 for e (D) qRT-PCR at d11 for pluripotency markers OCT4 and NANOG, and midbrain related
markers FOXA2, LMX1A, LMX1B, EN1, EN2, relative to housekeeping gene (GAPDH)
and normalised to their respective iPSCs (n = 1 for each line, 3 and normalised to their respective iPSCs ($n = 1$ for each line, 3 technical replicates).
Error bars indicate the Standard Error of Mean.

Error bars indicate the Standard Error of Mean.
(E) qRT-PCR for TH, SNCA, NURR1, DAPT and DAT at day 65. mRNA values are relative
to the housekeeping gene and normalised to the corresponding iPSCs (n = 3-5 per **(E)** qRT-PCR for TH, SNCA, NURR1, DAPT and D*A*
to the housekeeping gene and normalised to
line). (E) qRT-PCR for TH, SNCA, NORR1, DAPT and DAT at day 65. MRNA values are relative
to the housekeeping gene and normalised to the corresponding iPSCs (n = 3-5 per
(F) Cropped immunoblot of total WDR45 and beta actin protein

to the housekeeping gene and normalised to the corresponding in Esc (ii) $\frac{1}{2}$ per line).
(F) Cropped immunoblot of total WDR45 and beta actin protein expression at Day 11,
and relevant quantification. n=3-4 biological line).
(F) Cr
Error

(F) Cropped immunoblot of total WDR45 and beta actin protein expression at Day 11,
and relevant quantification. n=3-4 biological replicates for each line.
Error bars represent the Standard Error of Mean. Statistics were ca Error bars represent the Standard Error of Mean. Statistics were
ANOVA. Abbreviations: EBs= embryoid bodies. FC= fold change Error bars represent the Standard Error of Mean. Statistics were calculated using
ANOVA. Abbreviations: EBs= embryoid bodies. FC= fold change ANOVA. Abbreviations: EBs= embryoid bodies. FC= fold change

Supplementary Figure 3. RNASeq at Day 65 of differentiation

(A) List of differentially expressed genes when comparing Patient 01, Patient 02,
Patient 03 versus Control 01, Control 02, CRISPR 01 and CRISPR 02 mDA neurons.
(B) ClueGO analysis of GO terms enrichment of differentially (B) ClueGO analysis of GO terms enrichment of differentially expressed geometrical control of differentially expressed for the showing pie charts for cellular component (CC), and molecular function (MF).

(B) ClueGO analysis of GO terms emficilient of differentially expressed genes,
showing pie charts for cellular component (CC), and molecular function (MF).
(C) Volcano plots of differentially expressed genes when comparing showing pie charts for charts for cellular component (C) Volcano plots of differentially expressed genes when comparing Patient
corresponding CRISPR line (CRISPR 01), as well as Patient 03 versus corres
CRISPR line (CRISPR (C) Volcano plots of differentially expressed genes when comparing Patient 02 and
corresponding CRISPR line (CRISPR 01), as well as Patient 03 versus corresponding
CRISPR line (CRISPR 02). The top 40 genes (as per lowest p crais are labelled. Right:
CRISPR line (CRISPR 02). The top 40 genes (as per lowest p-values) are labelled. Right:
GO Term and KEGG pathway enrichment analysis depicting intracellular pathways
jointly corrected in both Pat CO Term and KEGG pathway enrichment analysis depicting intracellular pathways
jointly corrected in both Patients 02 and 03, when compared to CRISPR 01 and 02.
(D) List of intracellular pathways and genes corrected in both

Jointly corrected in both Patients 02 and 03, when compared to CRISPR 01 and 02.

(D) List of intracellular pathways and genes corrected in both Patients 02 and 03,

when compared to CRISPR 01 and 02. (D) List of intracellular pathways and genes corrected in both Patients 02 and 03, when compared to CRISPR 01 and 02.

(D) List of intracellular pathways and genes conceted in both Patients 02 and 03,
when compared to CRISPR 01 and 02.
(E) List of differentially expressed genes and involved pathways when comparing
Patient 02, versus CRISPR E) List of differentially expressed go
Patient 02, versus CRISPR 01 (Patier
Digoxin-treated mDA neurons. Patient 02, versus CRISPR 01 (Patient 02 Corrected) and Patient 02 Torin 1- and
Digoxin-treated mDA neurons.

Patient 12, versus Christian 22 (Patitim 12 Correcting) and Patitim 12 Correction
Digoxin-treated mDA neurons.
(F) ClueGO analysis of GO terms enrichment of differentially expressed genes,
showing pie charts for cellular c **(F)** ClueGO analysis of GO to
showing pie charts for cellular of
n=3 for all lines. modian TPM

(F) ClueGO analysis of GO terms emfement of differentially expressed genes,
showing pie charts for cellular component (CC), and molecular function (MF).
n=3 for all lines, median TPM values analysed. Network graph nodes re show it that if the component of the mest significant are named) and edges indicate shared genes betw
terms (the most significant are named) and edges indicate shared genes betw
terms. Functional groups of GO terms are ind nterms (the most significant are named) and edges indicate shared genes between GO
terms. Functional groups of GO terms are indicated by the same colour. Pie charts
show the percentages of each functional group representat terms. Functional groups of GO terms are indicated by the same colour. Pie charts
show the percentages of each functional group representation. GO functional groups
exhibiting statistically significant differences (p< 0.05 show the percentages of each functional group representation. GO functional groups
exhibiting statistically significant differences (p< 0.05) are shown. exhibiting statistically significant differences (p< 0.05) are shown.
Solutions of the statistically significant differences (p< 0.05) are shown. exhibiting statistically significant differences (p< 0.05) are shown.

Supplementary Figure 4. Defective autophagy flux in BPAN cells.

(A) reationary flux inducers (Torin 1) and/ or inhibitors (Bafilomycin A1). Representative
images. Cells were plated in 96-well plates at a density of 15,000 cells/well. n=5
biological replicates for each line. For each bi images. Cells were plated in 96-well plates at a density of 15,000 cells/well. n=5
biological replicates for each line. For each biological replicate, all lines were seeded
on the same 96-well plate. images. Cells were plates for each line. For each biological replicate, all lines were seeded
on the same 96-well plate.
(B) Quantification of LC3 puncta/ nuclei in control and patient-derived fibroblasts. For

biological replicates for each line. For each biological replicate, all lines for each control and position of
B) Quantification of LC3 puncta/ nuclei in control and patient-derived fibroblasts. For
statistical analysis, t on the same 96-well plate.
(B) Quantification of LC3 plate.
statistical analysis, the Strepresent the Standard Erre (B) Quantification of LC3 puncta/ nuclei in control and patient-derived neuronal
(C) Quantification of LC3 puncta/ nuclei in control and patient-derived neuronal

represent the Standard Error of Mean.
(C) Quantification of LC3 puncta/ nuclei in control and patient-derived neuronal
progenitors, at basal (DMSO-treated) conditions. Experiment identical to the one r
(C) Quantification of LC3 puncta/ nu
progenitors, at basal (DMSO-treated)
depicted in Fig. 3A-B, but with mo progenitors, at basal (DMSO-treated) conditions. Experiment identical to the one depicted in Fig. 3A-B, but with more independent biological replicates (n=11).
Additional replicates enhance the statistical significance of previous findings. For
statistical analysis, the Student's unpaired two tailed t-Additional replicates enhance the statistical significance of previous findings. For
statistical analysis, the Student's unpaired two tailed t-test was used. Error bars
represent the Standard Error of Mean. Additional replicates enhance the statistical engineeries of previous intemperates
statistical analysis, the Student's unpaired two tailed t-test was used. Error bars
represent the Standard Error of Mean.
(D) Day 11 ventra

represent the Standard Error of Mean.
(D) Day 11 ventral progenitors imaged after 3-hour autophagy flux induction or
inhibition. Representative images. Cells were plated in 96-well plates at a density of represent the Standard Error of Mean.
(D) Day 11 ventral progenitors image
inhibition. Representative images. Cell
15,000 cells/well. n=7 independent d inhibition. Representative images. Cells were plated in 96-well plates at a density of
15,000 cells/well. n=7 independent differentiations/ biological replicates for each inhibition. Representative images. Cells were plated in 96-well plated in 96-well plates for each
15,000 cells/well. n=7 independent differentiations/ biological replicates for each
line. For each biological replicate, all 15,000 cells
15,000 cells and the sach biological replicate, all 5 lines had the same start date of differentiation
15,000 and were seeded on the same 96-well plate.
16.000 cells for each of LC3 puncta/ nuclei in control a

line. For each biological replicate) and the same that the same than the same the same
and were seeded on the same 96-well plate.
(E) Quantification of LC3 puncta/ nuclei in control and patient-derived neurons. For
statist and were seeded on the same 96-well plate.
(E) Quantification of LC3 puncta/ nuclei in c
statistical analysis, the Student's unpaired
represent the Standard Error of Mean. statistical analysis, the Student's unpaired two tailed t-test was used. Error bars
represent the Standard Error of Mean. statistical and the Standard Error of Mean.
The Standard Error of Mean.
The Standard test was used. Example, the Standard S represent the Standard Error of Mean.

Supplementary Tables

Supplementary Table 1. Fibroblast and corresponding iPSC lines used.

Maracterisation of pluripotency, one if
The internal differentiations. The first patienties After characterisation of pluripotency, one is a transformation clone from each line
downstream differentiations. The first patient line (Patient 01, BPAN07) carries a
splice site mutation that leads to aberrant splicing a splice site mutation that leads to aberrant splicing and an early stop codon. Alignment
of wild type & WDR45 c.344+2T>A amino acid sequences shows premature
truncation of the protein by 246 amino acids with the inclusion o splice site mutation that leads to aberrain spliting and an early stop premature of wild type & WDR45 c.344+2T>A amino acid sequences shows premature truncation of the protein by 246 amino acids with the inclusion of 2 abe of the protein by 246 amino acids with the inclusion of 2 aberrant residues
(arginine and Alanine); p.(Ile116Argfs*3) (data not shown). The other two patient
lines (587-02 and 535-02) harbour nonsense pathogenic mutations (arginine and Alanine); p.(Ile116Argfs*3) (data not shown). The other two patient
lines (587-02 and 535-02) harbour nonsense pathogenic mutations leading to an early
stop codon. In the isogenic controls R7-72 and R234-68, lines (587-02 and 535-02) harbour nonsense pathogenic mutations leading to an early
stop codon. In the isogenic controls R7-72 and R234-68, disease-causing mutations (in lines (587-22 and 537-02) and R234-68, disease-causing mutations (in
Patients 02 and 03, respectively) were corrected using CRISPR/Cas9-mediated
genome editing (Supplementary Figure 1). Age- matched healthy control fibrobl stop corrected using CRISPR/Cas9-mediated
genome editing (Supplementary Figure 1). Age- matched healthy control fibroblasts
HDF-7301 were collected from the MRC Centre for Neuromuscular Disorders Biobank. genome editing (Supplementary Figure 1). Age- matched healthy control fibroblasts
HDF-7301 were collected from the MRC Centre for Neuromuscular Disorders Biobank.
Patient fibroblast line BUCL01 was ascertained from the Uni HDF-7301 were collected from the MRC Centre for Neuromuscular Disorders Biobank.
Patient fibroblast line BUCL01 was ascertained from the University College London
(UCL) Great Ormond Street Institute of Child Health (UCL GO Patient fibroblast line BUCL01 was ascertained from the University College London
(UCL) Great Ormond Street Institute of Child Health (UCL GOS ICH), London, UK.
Control fibroblast line 582-202 and patient lines 587-201A an (UCL) Great Ormond Street Institute of Child Health (UCL GOS ICH), London, UK.
Control fibroblast line 582-202 and patient lines 587-201A and 535-201 were
obtained from Oregon Health and Science University (OHSU), Portland Control fibroblast line 582-202 and patient lines 587-201A and 535-201 were
obtained from Oregon Health and Science University (OHSU), Portland, Oregon, USA.
Patient BUCL01 and control HDF-7301 fibroblasts were reprogramme Control fibrolence and patient lines of the second time set also have been interested.

Detained from Oregon Health and Science University (OHSU), Portland, Oregon, USA.

Patient BUCL01 and control HDF-7301 fibroblasts wer Patient BUCL01 and control HDF-7301 fibroblasts were reprogrammed into iPSC at 53

> UCL GOS ICH, while control 582-202 and patients 587-201A and 535-201 fibroblasts at
the Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute (Anne
McLaren Laboratory for Regenerative Medicine, Cambridge, U McLaren Laboratory for Regenerative Medicine, Cambridge, UK). Lines 587-02 and
535-02 (as well as the isogenic controls R7-72 and R234-68) were initially plated on
Vitronectin XF (Stemcell Technologies)-coated plates and c McLaren Laboratory for Regenerative Medicine, Cambridge, 20, 2002 (as well as the isogenic controls R7-72 and R234-68) were initially plated on
Vitronectin XF (Stemcell Technologies)-coated plates and cultured in TeSR-E8
(Vitronectin XF (Stemcell Technologies)-coated plates and cultured in TeSR-E8
(StemCell Technologies). These lines were subsequently transferred to Matrigel/
mTeSR1 culture conditions. (StemCell Technologies). These lines were subsequently transferred to Matrigel/
mTeSR1 culture conditions. (Stemcell Technologies). These lines were subsequently transferred to Matrix of Matrix
mTeSR1 culture conditions.

Supplementary Table 2. sgRNA and HDR donor templates used for CRISPR/Cas9

O3 (clone 535-02) iPSC lines was performed at the Wellcome Trust-Medical Research
Council Cambridge Stem Cell Institute. sgRNA= single guide RNA, HDR= Homology-
Directed Repair

Council Cambridge Stem Cell Institute. sgRNA= single guide RNA, HDR= Homology-

Directed Repair

Supplementary Table 3. PCR primers for WDR45 gene sequencing.

Tm= annealing temperature. F= forward, R= reverse
Supplementary Table 4. Primers used for WDR45 cDNA sequencing.

 $F = 101$ ward, $R = 1$ everse

Supplementary Table 5. Primer pairs for detection of pluripotency marker

 F = forward, R = reverse

KLF4 R ACTCAGCCATGGACTGGAGCATCC Supplementary Table 6. Primers used for Sendai Virus Clearance-related RT PCR

F= forward, R= reverse, SeV= Sendai $\mathcal{F}_{\mathcal{F}}$ for $\mathcal{F}_{\mathcal{F}}$ for $\mathcal{F}_{\mathcal{F}}$ for $\mathcal{F}_{\mathcal{F}}$

Supplementary Table 7. qRT PCR primers used for Day 11 and Day 65 characterisation.

WDR45 R
The following protocol was used on the StepOne The following protocol was used on the StepOneP
of 5 min (initial denaturation step) followed b of 5 min (initial denaturation step) followed by 40 cycles at 95°C for 15 sec
(denaturation) and at 60°C for 60 sec (annealing, extension). Abbreviations: F=
forward; R= reverse (denaturation) and at 60° C for 60 sec (annealing, extension). Abbreviations: F= (denaturation) and at 60°C for 60 sec (annealing, extension). Abbreviations: F=
forward; R= reverse for $\frac{1}{2}$

Supplementary Table 8. Primary and corresponding secondary antibodies used for
immunofluorescence and western blotting experiments.

> Supplementary Table 9. Hits Hommelstwick screen with the 200 ingnest z-scores.1.

> Meyer E, Kurian MA, Hayflick SJ. Neurodegeneration with Brain Iron

> Accumulation: Genetic Diversity and Pathophysiological Mechanisms. Annu
 Accumulation: Genetic Diversity and Pathophysiological Mechanisms. Annu
Rev Genomics Hum Genet 16, 257-279 (2015).
Hayflick SJ, Kurian MA, Hogarth P. Neurodegeneration with brain iron
accumulation. *Handbook of clinical*

-
- $\frac{1}{2}$ 2. Hayflick SJ, et al. beta-Propeller protein-associated neurodegeneration

2. Hayflick SJ, et al. beta-Propeller protein-associated neurodegeneration

2. Hayflick SJ, et al. beta-Propeller protein-associated neurodegenera $\frac{1}{2}$
- Rev Genomics Hum Genet 16, 257-279 (2015).
Hayflick SJ, Kurian MA, Hogarth P. Neurodegeneration with brain iron
accumulation. *Handbook of clinical neurology* 147, 293-305 (2018).
Hayflick SJ, *et al.* beta-Propeller prote Hayflick SJ, Kurian MA, Hogarth P. Neurodegen
accumulation. *Handbook of clinical neurology* :
Hayflick SJ, *et al.* beta-Propeller protein-associ:
X-linked dominant disorder with brain iron acc
1717 (2013).
Haack TB, *et* accumulation. Handbook of clinical neurology 147, 253-303 (2016).
Hayflick SJ, *et al.* beta-Propeller protein-associated neurodegenerat
X-linked dominant disorder with brain iron accumulation. *Brain* 136
1717 (2013).
Haa 3. Hannot Microsofter with brain iron accumulation. *Brain* 136, 1708-1717 (2013).

4. Haack TB, *et al.* Exome sequencing reveals de novo WDR45 mutations causing

a phenotypically distinct, X-linked dominant form of NBIA X-linked dominant disorder with brain hori acconduction. Brain 136, 1700-
1717 (2013).
Haack TB, *et al.* Exome sequencing reveals de novo WDR45 mutations cause
a phenotypically distinct, X-linked dominant form of NBIA. *A* 1717 (2013).
Haack TB*, et al.* Exome sequencing reveals de novo WDR45 mutations causing
a phenotypically distinct, X-linked dominant form of NBIA. *American journal of
human genetics* **91**, 1144-1149 (2012).
Saitsu H*, et* $\frac{1}{2}$
- !
(
-
- $rac{1}{2}$
- a phenotypically distinct, X-linked dominant form of NBIA. *American journal of*
human genetics **91**, 1144-1149 (2012).
5. Saitsu H, et al. De novo mutations in the autophagy gene WDR45 cause static
encephalopathy of child human genetics **91**, 1144-1149 (2012).

Saitsu H, et al. De novo mutations in the autophagy gene WDR45 cause static

encephalopathy of childhood with neurodegeneration in adulthood. Nature

genetics 45, 445-449, 449e441 (2 Maman genetics 31, 1144-1145 (2012).
Saitsu H, et al. De novo mutations in th
encephalopathy of childhood with neur
genetics 45, 445-449, 449e441 (2013).
Zhao YG, et al. The autophagy gene Wo
memory function and axonal hom encephalopathy of childhood with neurodegeneration in adulthood. Nature

genetics 45, 445-449, 449e441 (2013).

5. Zhao YG, et al. The autophagy gene Wdr45/Wipi4 regulates learning and

memory function and axonal homeostas genetics 45, 445-449, 449e441 (2013).

Zhao YG, et al. The autophagy gene Wdr45/Wipi4 regulates learning and

memory function and axonal homeostasis. Autophagy 11, 881-890 (2015).

Bakula D, et al. WIPI3 and WIPI4 beta-pro genetics 45, 445-449, 4450441 (2015).
Zhao YG, *et al.* The autophagy gene Wordmenory function and axonal homeosta
Bakula D, *et al.* WIPI3 and WIPI4 beta-_F
TSC signalling circuits in the control of a
Proikas-Cezanne T, memory function and axonal homeostasis. Autophagy 11, 881-890 (2015

7. Bakula D, *et al.* WIPI3 and WIPI4 beta-propellers are scaffolds for LKB1-AI

TSC signalling circuits in the control of autophagy. **8**, 15637 (2017).
 memory rancenor and axonar momeostasis. Autophagy 11, 001 000 (2015).
Bakula D, et al. WIPI3 and WIPI4 beta-propellers are scaffolds for LKB1-AM
TSC signalling circuits in the control of autophagy. **8**, 15637 (2017).
Proik $\frac{1}{2}$ TSC signalling circuits in the control of autophagy. **8**, 15637 (2017).
Proikas-Cezanne T, Takacs Z, Donnes P, Kohlbacher O. WIPI protein.
Ptdlns3P effectors at the nascent autophagosome. Journal of cell sc
207-217 (2015). {
}
- 9. Ptdlns3P effectors at the nascent autophagosome. Journal of cell science 128,
207-217 (2015).
9. Paudel R, et al. Neuropathology of Beta-propeller protein associated
neurodegeneration (BPAN): a new tauopathy. Acta neuro Paudel R, et al. N
neurodegenerati
communications
Teinert J, Behne $\frac{1}{2}$
- 9. Paudel R, *et al.* Neuropathology of Beta-propeller protein associated
neurodegeneration (BPAN): a new tauopathy. *Acta neuropathologica
communications* 3, 39 (2015).
10. Teinert J, Behne R, Wimmer M, Ebrahimi-Fakhari D r annsar erectors at the nascent autophagosome. Journal of central 2013.
Paudel R, *et al.* Neuropathology of Beta-propeller protein associated
neurodegeneration (BPAN): a new tauopathy. Acta neuropathologica
communication meurodegeneration (BPAN): a new tauopathy. Acta neuropathologica

10. Teinert J, Behne R, Wimmer M, Ebrahimi-Fakhari D. Novel insights int

clinical and molecular spectrum of congenital disorders of autophagy

of *inherite* communications 3, 39 (2015).
Teinert J, Behne R, Wimmer M, Ebrahimi-Fakhari D. Novel insights intellinical and molecular spectrum of congenital disorders of autophagy.
Of inherited metabolic disease, (2019).
Choi AM, Ryter Teinert J, Behne R, Wimmer M
Clinical and molecular spectrure of inherited metabolic disease,
Choi AM, Ryter SW, Levine B.
New England journal of medic.
Stead ER, et al. Agephagy - Ad:
Frontiers in cell and developme
Agrot $\frac{1}{2}$ 10. Teinert J, Behne R, Wimmer M, Ebrahimi-Fakhari D. Novel insights into the
clinical and molecular spectrum of congenital disorders of autophagy. Journal
of inherited metabolic disease, (2019).
11. Choi AM, Ryter SW, Lev
- of inherited metabolic disease, (2019).
Choi AM, Ryter SW, Levine B. Autophagy in human health and disease. The
New England journal of medicine **368**, 651-662 (2013).
Stead ER, et al. Agephagy Adapting Autophagy for Heal Choi AM, Ryter SW, Levine B. Autophag
New England journal of medicine **368**, 6
Stead ER, *et al.* Agephagy - Adapting Au
Frontiers in cell and developmental biol
Agrotis A, Ketteler R. On ATG4B as Drug
Tumours-The Know $\frac{1}{2}$
- New England Journal of medicine 368, 651-662 (2013).
Stead ER, *et al.* Agephagy Adapting Autophagy for Hearthcritiers in cell and developmental biology 7, 308 (2019).
Agrotis A, Ketteler R. On ATG4B as Drug Target for T $\frac{1}{2}$
- Frontiers in cent and developmental biology 7, 308 (2013).
Agrotis A, Ketteler R. On ATG4B as Drug Target for Treatm
Tumours-The Knowns and the Unknowns. *Cells* 9, (2019).
Agrotis A, von Chamier L, Oliver H, Kiso K, Singh $\frac{1}{2}$
- New England journal of medicine **368**, 651-662 (2013).

12. Stead ER, *et al.* Agephagy Adapting Autophagy for Health During Aging.

Frontiers in cell and developmental biology 7, 308 (2019).

13. Agrotis A, Ketteler R. Frontiers in cell and developmental biology 7, 308 (2019).

13. Agrotis A, Ketteler R. On ATG4B as Drug Target for Treatment of Solid

Tumours-The Knowns and the Unknowns. Cells 9, (2019).

14. Agrotis A, von Chamier L, Ol 13. Agrotis A, Ketteler R. On ATG4B as Drug Target for Treatment of Solid
Tumours-The Knowns and the Unknowns. *Cells* 9, (2019).
14. Agrotis A, von Chamier L, Oliver H, Kiso K, Singh T, Ketteler R. Human ATG4
autophagy pr Tumours-The Knowns and the Onknowns. Cells 9, (2019).
Agrotis A, von Chamier L, Oliver H, Kiso K, Singh T, Ketteler
autophagy proteases counteract attachment of ubiquitin-l 14. Agroping, The Chamier L, Oliver H, The LA, Singh T, Alexandrich Remains and Alexandrical States and States
autophagy proteases counteract attachment of ubiquitin-like LC3/GABARAF autophagy proteins-like LC3/GABARAPAPI $\overline{}$

- 1261
| Baskaran S, Ragusa M
| phosphatidylinositol
| 12621 (2012).
| Smith TF, Gaitatzes C,
| architecture for diver $\frac{1}{2}$ $15.$ phosphatidylinositol 3-phosphate by PROPPINs in autophagy. Mole

47, 339-348 (2012).

16. Smith TF, Gaitatzes C, Saxena K, Neer EJ. The WD repeat: a common

architecture for diverse functions. *Trends Biochem Sci* 24, 181-
-
- proteins to other central proteins. The Journal of biological chemistry 234,
12610-12621 (2019).
Baskaran S, Ragusa MJ, Boura E, Hurley JH. Two-site recognition of
phosphatidylinositol 3-phosphate by PROPPINs in autophagy. 47, 339-348 (2012).
Smith TF, Gaitatzes C, Saxena K, Neer EJ. The WD repeat: a common
architecture for diverse functions. *Trends Biochem Sci* **24**, 181-185 (1999).
Li D, Roberts R. WD-repeat proteins: structure characteri $\frac{1}{2}$ architecture for diverse functions. Trends Biochem Sci **24**, 181-185 (1999).

17. Li D, Roberts R. WD-repeat proteins: structure characteristics, biological

function, and their involvement in human diseases. *Cell Mol Lif* $\frac{1}{2}$ 17. Li D, Roberts R. Mathematical Proteins: Structure Characteristics, 2007

17. Lu Q, et al. The WD40 repeat PtdIns(3)P-binding protein EPG-6 regulates

progression of omegasomes to autophagosomes. *Dev Cell* 21, 343-357
-
- 47, 339-348 (2012).

Smith TF, Gaitatzes C, Saxena K, Neer EJ. The WD repeat: a common

architecture for diverse functions. *Trends Biochem Sci* 24, 181-185 (1999).

Li D, Roberts R. WD-repeat proteins: structure character architecture for diverse functions. Trends Biochem Scr 24, 101-105 (1999).
Li D, Roberts R. WD-repeat proteins: structure characteristics, biological
function, and their involvement in human diseases. *Cell Mol Life Sci* 5 Function, and their involvement in human diseases. Central Life Sci 58, 2003-2097 (2001).
Lu Q, et al. The WD40 repeat PtdIns(3)P-binding protein EPG-6 regulates
progression of omegasomes to autophagosomes. *Dev Cell* 21, Lu Q, *et al.* The WD40 repeat Ptdlns(3)P-binding protein EPG-6 regulates
progression of omegasomes to autophagosomes. *Dev Cell* **21**, 343-357 (2011).
Obara K, Sekito T, Niimi K, Ohsumi Y. The Atg18-Atg2 complex is recrui $\frac{1}{2}$ 18. Controllary progression of omegasomes to autophagosomes. *Dev Cell* 21, 343-357 (2

19. Obara K, Sekito T, Niimi K, Ohsumi Y. The Atg18-Atg2 complex is recruited

autophagic membranes via phosphatidylinositol 3-phospha progression of omegasomes to autophagosomes. Dev Cell 21, 343-357 (2011).

Obara K, Sekito T, Niimi K, Ohsumi Y. The Atg18-Atg2 complex is recruited to

autophagic membranes via phosphatidylinositol 3-phosphate and exerts $\frac{1}{2}$ 20. Comain Chapter Complete T, Nimited States And Supplementation and the Atensis of the Atensis of the Atensis of the Atlantic Complete T, Nikolaguan H, Suzuki K, Kamada Y, Ohsumi Y. Dynamics and diversity in
20. Nakatoga
- essential function. *The Journal of biological chemistry* 283, 23972-23980
(2008).
Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y. Dynamics and diversity in
autophagy mechanisms: lessons from yeast. *Nature reviews Molecular c* 、
Nakato_{
autopha
biology
Wan H*,* $\frac{1}{2}$ 20. Nakatogawa M, Suzuki M, Suzuki M, Suzuki M, Suzuki K, Nature reviews Molecular composition and diversity in the biology 10, 458-467 (2009).
21. Wan H, et al. WDR45 contributes to neurodegeneration through regulation ER
- $\frac{1}{2}$
-
- essential function. The Journal of *Biological chemistry 203, 23972-23980*
(2008).
Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y. Dynamics and diversity in
autophagy mechanisms: lessons from yeast. *Nature reviews Molecular c* biology 10, 458-467 (2009).

Wan H, *et al.* WDR45 contributes to neurodegeneration through regulation

ER homeostasis and neuronal death. Autophagy, 1-17 (2019).

Seibler P, *et al.* Iron overload is accompanied by mitoch biology 10, 458-467 (2005).
Wan H, *et al.* WDR45 contril
ER homeostasis and neuron
Seibler P, *et al.* Iron overload
dysfunction in WDR45 muta
Fusaki N, Ban H, Nishiyama ,
transgene-free human pluri_l
virus, an RNA virus ER homeostasis and neuronal death. Autophagy, 1-17 (2019).

22. Seibler P, et al. Iron overload is accompanied by mitochondrial and lysosomal

dysfunction in WDR45 mutant cells. *Brain*, (2018).

23. Fusaki N, Ban H, Nish Seibler P, *et al.* Iron overload is accompanied by mitochondria
dysfunction in WDR45 mutant cells. *Brain*, (2018).
Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M. Efficient i
transgene-free human pluripotent stem cell $\frac{1}{2}$ dysfunction in WDR45 mutant cells. *Brain*, (2018).

23. Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M. Efficient induction of

transgene-free human pluripotent stem cells using a vector based on Sendai

virus, an RNA Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M
transgene-free human pluripotent stem cells using
virus, an RNA virus that does not integrate into the
of the Japan Academy Series B, Physical and biologi
(2009).
Gasteiger $\frac{1}{2}$ 23. Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M. Efficient induction of
transgene-free human pluripotent stem cells using a vector based on Sendai
virus, an RNA virus that does not integrate into the host genome. *Pr* virus, an RNA virus that does not integrate into the host genome. *Proceedings*
of t*he Japan Academy Series B, Physical and biological sciences* **85**, 348-362
(2009).
Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel R
- Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A. ExPASy: The proteomics server for in-depth protein knowledge and analysis. *Nucleic acids research* **31**, 3784-3788 (2003).
Lenz M*, et al.* Epigenetic bi $\frac{1}{2}$ proteomics server for in-depth protein knowledge and analysis. Nucleic acids
research 31, 3784-3788 (2003).
25. Lenz M, et al. Epigenetic biomarker to support classification into pluripotent
and non-pluripotent cells. Scie
-
- of the Japan Academy Series B, Physical and biological sciences **85**, 348-362
(2009).
Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A. ExPASy: The
proteomics server for in-depth protein knowledge and ana of the Japan Academy Series B, Physicar and biological sciences 85, 348-362
(2009).
Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A. ExPASy: Ti
proteomics server for in-depth protein knowledge and analys research 31, 3784-3788 (2003).
Lenz M, et al. Epigenetic biomarker to support classification into pluripotent
and non-pluripotent cells. *Scientific reports* 5, 8973 (2015).
Ng J, et al. Gene therapy restores dopamine tran research 31, 3784-3788 (2003).
Lenz M, *et al.* Epigenetic biomar
and non-pluripotent cells. *Scien*
Ng J, *et al.* Gene therapy restore
ameliorates pathology in iPSC a
Science translational medicine 1 $\frac{1}{2}$ 26. And the pluripotent cells. Scientific reports 5, 8973 (2015).

26. Alg J, et al. Gene therapy restores dopamine transporter expression and

26. Alg J, et al. Gene therapy restores dopamine transporter expression and

2 and non-pluripotent cens. Scientific reports 3, 8973 (2015).
Ng J, et al. Gene therapy restores dopamine transporter expansionates pathology in iPSC and mouse models of infantil
Science translational medicine 13, (2021). ameliorates pathology in iPSC and mouse models of infantile parkinsonis
Science translational medicine 13, (2021).
Therefore, expression and the parkinsonis Science translational medicine $\mathbf{13}$, (2021). Science translational medicine 13, (2021).
-
- functional neurons from human embryonic stem cells under defined
conditions. *Cell reports* **1**, 703-714 (2012).
Tomoda K, *et al.* Derivation conditions impact X-inactivation status in female
human induced pluripotent ste
- $\frac{1}{2}$
- $\frac{1}{2}$ $\frac{1}{2}$
- 27. Kirkeby A, et al. Derivation original membryonic stem cells under defined
28. Tomoda K, et al. Derivation conditions impact X-inactivation status in fema
28. Tomoda K, et al. Derivation conditions impact X-inactivation conditions. Cell reports 1, 703-714 (2012).
Tomoda K, *et al.* Derivation conditions imp
human induced pluripotent stem cells. *Cel.*
Tchieu J, *et al.* Female human iPSCs retain
Stem Cell 7, 329-342 (2010).
Bar S, Seaton 29. Totieu J, *et al.* Female human iPSCs retain an inactive X chromosome. *Cell*
29. Totieu J, *et al.* Female human iPSCs retain an inactive X chromosome. *Cell*
29. Totieu J, *et al.* Female human iPSCs retain an inacti numan madeed plan potent stem cens. Centrative Marin Centricity, 17-55 (2012).
Tchieu J, et al. Female human iPSCs retain an inactive X chromosome. (
Stem Cell 7, 329-342 (2010).
Bar S, Seaton LR, Weissbein U, Eldar-Geva T 29. Stem Cell 7, 329-342 (2010).

29. Bar S, Seaton LR, Weissbein U, Eldar-Geva T, Benvenisty N. Global

Characterization of X Chromosome Inactivation in Human Pluripotent Sten

Cells. Cell reports 27, 20-29.e23 (2019).

2 Bar S, Seaton LR, Weissbein I
Bar S, Seaton LR, Weissbein I
Characterization of X Chrome
Cells. *Cell reports* **27**, 20-29.e
Mekhoubad S, Bock C, de Bo
dosage compensation impac
10, 595-609 (2012).
Comertpay S*, et al.* 31. Bar S, Seaton of X Chromosome Inactivation in Human Pluripot
Cells. *Cell reports* 27, 20-29.e23 (2019).
31. Mekhoubad S, Bock C, de Boer AS, Kiskinis E, Meissner A, Eggan K.
dosage compensation impacts human iPSC dise Characterization of X Chromosome Inactivation in Human Pluripotent Stem
Cells. *Cell reports* **27**, 20-29.e23 (2019).
Mekhoubad S, Bock C, de Boer AS, Kiskinis E, Meissner A, Eggan K. Erosion of
dosage compensation impacts Cellis. Cell reports 27, 20-29.223 (2019).

Mekhoubad S, Bock C, de Boer AS, Kiskii

dosage compensation impacts human if

10, 595-609 (2012).

Comertpay S, *et al.* Evaluation of clonal

Transl Med 12, 301 (2014).

Love M $\ddot{\ddot{\phi}}$ 32. Comertpay S, et al. Evaluation of clonal origin of malignant mesothelioma. J
32. Comertpay S, et al. Evaluation of clonal origin of malignant mesothelioma. J
33. Love ML Huber W. Anders S. Moderated estimation of fold
- Comertpay S*, et al.* Evaluation of clonal origin of malignant mesothelioma. *J*
Transl Med 12, 301 (2014).
Love MI, Huber W, Anders S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. *Geno* istoria de la construcción de la c
Construcción de la construcción de
-
- 10, 595-609 (2012).

Comertpay S, *et al.* Evaluation of clonal origin of malignant mesothelioma. *J*

Transl Med 12, 301 (2014).

Love MI, Huber W, Anders S. Moderated estimation of fold change and

dispersion for RNA-seq Transl Med 12, 301 (2014).

33. Love MI, Huber W, Anders S. Moderated estimation of fold change and

dispersion for RNA-seq data with DESeq2. *Genome biology* 15, 550 (2014).

34. Mi H, Muruganujan A, Thomas PD. PANTHER in $\frac{1}{2}$ 33. Love MI, Huber W, Anders S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. *Genome biology* **15**, 550 (2014).
34. Mi H, Muruganujan A, Thomas PD. PANTHER in 2013: modeling the evolutio Mi H, Muruganujan A, Thomas PD. PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. *Nucleic acids research* 41, D377-386 (2013).
The Gene Ontology res ここ こここ of gene function, and other gene attributes, in the context of phylogenetic
trees. Nucleic acids research 41, D377-386 (2013).
35. The Gene Ontology resource: enriching a GOId mine. Nucleic acids research
49, D325-d334 (20
- The Gene Ontology resource: enriching a GOld mine. *Nucleic acids research*
49, D325-d334 (2021).
Ashburner M*, et al.* Gene ontology: tool for the unification of biology. The
Gene Ontology Consortium. *Nature genetics* 25 $\frac{1}{2}$ $\frac{1}{2}$
-
- Transi Med 12, 301 (2014).
Love MI, Huber W, Anders S
dispersion for RNA-seq data
Mi H, Muruganujan A, Thon
of gene function, and other
trees. *Nucleic acids researci*
The Gene Ontology resourc
49, D325-d334 (2021).
Ashbur the Gene Ontology resource: enriching a GOld min
49, D325-d334 (2021).
Ashburner M, *et al.* Gene ontology: tool for the un
Gene Ontology Consortium. *Nature genetics* 25, 25
Kanehisa M, Furumichi M, Tanabe M, Sato Y, Mori 45, D325-d334 (2021).
Ashburner M*, et al.* Gel
Gene Ontology Consori
Kanehisa M, Furumichi
perspectives on genom $\frac{1}{2}$ Sene Ontology Consortium: Nuture genetics 23, 25-25 (2000).

Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEC

perspectives on genomes, pathways, diseases and drugs. Nucle

research 45, D353-d361 (2017).

Kanehi ここ こここ
- perspectives on genomes, pathways, diseases and drugs. Nucleic acids
research 45, D353-d361 (2017).
38. Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M. KEGG for
representation and analysis of molecular networks invo ここ こここ
- **49**, D325-d334 (2021).

36. Ashburner M, *et al.* Gene ontology: tool for the unification of biology. The

Gene Ontology Consortium. *Nature genetics* **25**, 25-29 (2000).

37. Kanehisa M, Furumichi M, Tanabe M, Sato Y, M Some Ontology Consortium. *Nature genetics* 25, 25-29 (2000).

37. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new

perspectives on genomes, pathways, diseases and drugs. *Nucleic acids*

research 45, D35 research 45, D353-d361 (2017).

Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M. KEGG for

representation and analysis of molecular networks involving diseases a

drugs. *Nucleic acids research* 38, D355-360 (2010).
 research 45, B353-d361 (2017).
Kanehisa M, Goto S, Furumichi M
representation and analysis of m
drugs. *Nucleic acids research* 38,
Kanehisa M, Sato Y, Kawashima
reference resource for gene and
D457-462 (2016).
Jiao X, *et* representation and analysis of molecular networks involving disease:
drugs. Nucleic acids research **38**, D355-360 (2010).
S9. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as
reference resource for gene and representation and analysis of 38, D355-360 (2010).
drugs. *Nucleic acids research* 38, D355-360 (2010).
Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a
reference resource for gene and protein annotation. drugs. *Nucleic acids research* 38, D355-360 (2010).
Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tareference resource for gene and protein annotation
D457-462 (2016).
Jiao X, *et al.* DAVID-WS: a stateful web service to $\frac{1}{2}$ reference resource for gene and protein annotation. Nucleic acids resed
D457-462 (2016).
40. Jiao X, *et al.* DAVID-WS: a stateful web service to facilitate gene/proteir
analysis. *Bioinformatics* **28**, 1805-1806 (2012).
- reference resource for gene and protein annotation. Nucleic acids research 44,
D457-462 (2016).
Jiao X, *et al.* DAVID-WS: a stateful web service to facilitate gene/protein list
analysis. *Bioinformatics* **28**, 1805-1806 (D457-462 (2016).
Jiao X*, et al*. DAVID-WS: a stateful web service to facilitate gene/protein list
analysis. *Bioinformatics* **28**, 1805-1806 (2012). \overline{a} analysis. *Bioinformatics* **28**, 1805-1806 (2012). analysis. Biomformatics $20, 1805$ -1806 (2012).
-
- 41. Mitre M, Mariga A, Chao MV. Neurotrophin signalling: novel insights into
mechanisms and pathophysiology. *Clin Sci (Lond)* **131**, 13-23 (2017).
42. Chen X, Yu C, Kang R, Tang D. Iron Metabolism in Ferroptosis. *Front C*
- $\begin{array}{c}\n1 \\
2\n\end{array}$
- $\frac{1}{2}$ 44. De Wolf V, *et al.* A complex Xp11.22 deletion in a patient with syndromic
autism: exploration of FAM120C as a positional candidate gene for autism.
American journal of medical genetics Part A **164a**, 3035-3041 (2014). $\frac{1}{2}$
- Nishimoto S, Kusakabe M, Nishida E. Requirement of the MEK5-ERK5 pathway
for neural differentiation in Xenopus embryonic development. *EMBO Rep* **6**,
1064-1069 (2005). $\frac{1}{2}$
- mechanisms and pathophysiology. Can'ser (Lond) 131, 13-23 (2017).
Chen X, Yu C, Kang R, Tang D. Iron Metabolism in Ferroptosis. *Front (Biol* **8**, 590226 (2020).
Wu Q, Maniatis T. A striking organization of a large family 32. **Example 12.** Chen X, S90226 (2020).

43. Wu Q, Maniatis T. A striking organization of a large family of human neural

cadherin-like cell adhesion genes. *Cell* 97, 779-790 (1999).

44. De Wolf V, *et al.* A complex X Biolog, 330220 (2020).
Wu Q, Maniatis T. A st
cadherin-like cell adhe
De Wolf V, *et al*. A com
autism: exploration of
American journal of m
Nishimoto S, Kusakabe
for neural differentiati
1064-1069 (2005).
Zou J, *et al*. cadific marke cell adhesion genes. Cell 91, 779-750 (1995).
De Wolf V, *et al.* A complex Xp11.22 deletion in a patient w
autism: exploration of FAM120C as a positional candidate *(American journal of medical genetics Part* autism: exploration of FAM120C as a positional candidate gene for autism

American journal of medical genetics Part A 164a, 3035-3041 (2014).

15. Nishimoto S, Kusakabe M, Nishida E. Requirement of the MEK5-ERK5 patt

for Mishimoto S, Kusakabe M, Nishida E. Requirement of the MEKS-ERKS
for neural differentiation in Xenopus embryonic development. *EMBO*
1064-1069 (2005).
Zou J, *et al.* Targeted deletion of ERKS MAP kinase in the developing 46. The mural differentiation in Xenopus embryonic development. *EMBO Rep 6*,
1064-1069 (2005).
46. Zou J, *et al.* Targeted deletion of ERK5 MAP kinase in the developing nervous
system impairs development of GABAergic int for neural differentiation in Xenopus embryonic development. EMBO Rep 6,
2001, *et al.* Targeted deletion of ERK5 MAP kinase in the developing nervous
system impairs development of GABAergic interneurons in the main olfact Zou J, *et al.* Targeted deletion of ERK5 MAP kinase in the developing nervous
system impairs development of GABAergic interneurons in the main olfactory
bulb and behavioral discrimination between structurally similar odor $\frac{1}{2}$ 46. Experiment States and Cell Fate Control of SABAergic interneurons in the main offsactory

5. Durand of neuroscience : the official journal of the Society for Neuroscience 32

4118-4132 (2012).

4118-4132 (2012).

4118-Journal of neuroscience : the official journal of the Society for Neuroscience **32**,
4118-4132 (2012).
Hetz C, Papa FR. The Unfolded Protein Response and Cell Fate Control.
Molecular cell **69**, 169-181 (2018).
-
- *Journal of neuroscience : the official journal of the Society for Neuroscience* **32**,
4118-4132 (2012).
Hetz C, Papa FR. The Unfolded Protein Response and Cell Fate Control.
Molecular cell **69**, 169-181 (2018).
Brunetti Journal of neuroscience : the official protein Response and Cell Fate Control.
Hetz C, Papa FR. The Unfolded Protein Response and Cell Fate Control.
Molecular cell 69, 169-181 (2018).
Brunetti-Pierri N, Scaglia F. GM1 gang Hetz C, Papa FR. The Unfolded Protein Response and Cell Fate Control.
Molecular cell **69**, 169-181 (2018).
Brunetti-Pierri N, Scaglia F. GM1 gangliosidosis: review of clinical, molecular,
and therapeutic aspects. *Molecu* $\frac{1}{2}$ Molecular cell 69, 169-181 (2018).
48. Brunetti-Pierri N, Scaglia F. GM1 gangliosidosis: review of clinical, molecular and therapeutic aspects. Molecular genetics and metabolism 94, 391-3
(2008). Molecular cell **69**, 109-161 (2016).
Brunetti-Pierri N, Scaglia F. GM1 ga
and therapeutic aspects. *Molecula*.
(2008).
Mohammad SS, *et al.* Magnetic res
childhood bilateral basal ganglia di
Regier DS, *et al.* MRI/MRS as $\frac{1}{2}$ and therapeutic aspects. Molecular genetics and metabolism 94, 391-396

(2008).

Mohammad SS, *et al.* Magnetic resonance imaging pattern recognition in

childhood bilateral basal ganglia disorders. *Brain Commun* 2, fcaa1
-
- Mohammad SS, *et al.* Magnetic resonance imaging pattern recognition in
childhood bilateral basal ganglia disorders. *Brain Commun* **2**, fcaa178 (2020).
Regier DS, *et al.* MRI/MRS as a surrogate marker for clinical progre $\frac{1}{2}$ i
C
C
- Kukkonen JP. Orexin/Hypocretin Signaling. *Curr Top Behav Neurosci* 33, 17-50
(2017).
Wilson JL*, et al.* Consensus clinical management guideline for beta-propeller
protein-associated neurodegeneration. *Developmental medi*
- and therapeutic aspects. Molecular genetics and metabolism 94, 391-396
(2008).
Mohammad SS, *et al.* Magnetic resonance imaging pattern recognition in
childhood bilateral basal ganglia disorders. *Brain Commun 2*, fcaa178 49. Mohammad Schemmad Schemmat (2016).

49. Mohammad Schemmad Schemmad of medical genetics Part A 170, 634

49. Mohammad Schemmad Sc childhood bilateral basal ganglia disorders. *Brain Commun 2*, itcastro (2020).
Regier DS, *et al.* MRI/MRS as a surrogate marker for clinical progression in
GM1 gangliosidosis. *American journal of medical genetics Part A* 51. Kukkonen JP. Orexin/Hypocretin Signaling. Curr Top Behav Neurosci 33, 17

51. Kukkonen JP. Orexin/Hypocretin Signaling. Curr Top Behav Neurosci 33, 17

52. Wilson JL, *et al.* Consensus clinical management guideline fo GM1 gangliositiosis. American journal of medical genetics Part A 170, 634-644
(2016).
Kukkonen JP. Orexin/Hypocretin Signaling. Curr Top Behav Neurosci 33, 17-50
(2017).
Wilson JL, *et al.* Consensus clinical management gu i
C
C
C S1. Kukhonen J. Orexhi, Hypocretin Signaling. Carr Top Behav Neuroscr 33, 17-50

(2017).

52. Wilson JL, *et al.* Consensus clinical management guideline for beta-propeller

protein-associated neurodegeneration. *Developme* i
C
C
C protein-associated neurodegeneration. *Developmental medicine and child neurology*, (2021).

53. Lee JR. Protein tyrosine phosphatase PTPRT as a regulator of synaptic

formation and neuronal development. *BMB Rep* 48, 249-
- neurology, (2021).
Lee JR. Protein tyrosine phosphatase PTPRT as a regulator of synaptic
formation and neuronal development. *BMB Rep* **48**, 249-255 (2015). Eee JR. Protein tyro
formation and neur
Nam J, Mah W, Kim
cell adhesion moled ister
Desember
Desember
- proteinal protein-associated neurodegeneration

Lee JR. Protein tyrosine phosphatase PTPRT as a regulator of synaptic

formation and neuronal development. *BMB Rep* 48, 249-255 (2015).

Nam J, Mah W, Kim E. The SALM/Lrfn f 53. Lee JR. Protein tyrosine phosphatase PTPRT as a regulator of synaptic
formation and neuronal development. *BMB Rep* **48**, 249-255 (2015).
54. Nam J, Mah W, Kim E. The SALM/Lrfn family of leucine-rich repeat-containing
 formation and neuronal development. *BMB* Rep 48, 243-255 (2015).
Nam J, Mah W, Kim E. The SALM/Lrfn family of leucine-rich repeat-co
cell adhesion molecules. *Semin Cell Dev Biol* 22, 492-498 (2011). 54. Nam J, Mah W, Mah D, Mah Wallah, 2001, 2001, 2001, 2003.
Cell adhesion molecules. *Semin Cell Dev Biol* 22, 492-498 (2011). cell adhesion molecules. Semin Cell Dev Biol 22, 492-498 (2011).
-
- Fragile X Syndrome. The Journal of neuroscience: the official journal of the
Society for Neuroscience 40, 1355-1365 (2020).

56. Fernandez RF, et al. Acyl-CoA synthetase 6 enriches the neuroprotective

omega-3 fatty acid D Society for Neuroscience **40**, 1355-1365 (2020).
Fernandez RF, et al. Acyl-CoA synthetase 6 enriches the neuroprotective
omega-3 fatty acid DHA in the brain. *Proceedings of the National Academy*
Sciences of the United Sta i
C
C
-
- י בין
היינו היינו הי
היינו היינו הי measurements: all fluxed up. Circ Res 116, 504-514 (2015).
58. Yoshii SR, Mizushima N. Monitoring and Measuring Autophagy.
59. Mauthe M, et al. Chloroquine inhibits autophagic flux by decrea
59. Mauthe M, et al. Chloroquin !
!
|
-
- Society for Mearoscience 40, 1333-1303 (2020).
Fernandez RF, et al. Acyl-CoA synthetase 6 enric
omega-3 fatty acid DHA in the brain. *Proceeding
Sciences of the United States of America* 115, 12
Gottlieb RA, Andres AM, Sin omega-3 fatty acid DHA in the brain. *Proceedings of the National Academ*

Sciences of the United States of America 115, 12525-12530 (2018).

57. Gottlieb RA, Andres AM, Sin J, Taylor DP. Untangling autophagy

measurements Sciences of the United States of America 115, 12525-12530 (2018).

Gottlieb RA, Andres AM, Sin J, Taylor DP. Untangling autophagy

measurements: all fluxed up. *Circ Res* 116, 504-514 (2015).

Yoshii SR, Mizushima N. Monit Soelheles of the United States of America 115, 12525-12530 (2016).

Gottlieb RA, Andres AM, Sin J, Taylor DP. Untangling autophagy

Measurements: all fluxed up. *Circ Res* 116, 504-514 (2015).

Yoshii SR, Mizushima N. Moni Moshii SR, Mizushima N. Monitoring and Measuring Autophic SR, Mizushima N. Monitoring and Measuring Autophic side to the M, et al. Chloroquine inhibits autophagic flux by de autophagosome-lysosome fusion. Autophagy 14, 143 Journal of molecular sciences 18, (2017).
Mauthe M, *et al.* Chloroquine inhibits aut
autophagosome-lysosome fusion. Autoph
Pelz O, Gilsdorf M, Boutros M. web cellHT
analysis of high-throughput screening dat
(2010).
Waguri !
(autophagosome-lysosome fusion. Autophagy 14, 1435-1455 (2018).

59. Pelz O, Gilsdorf M, Boutros M. web cellHTS2: a web-application for tl

59. analysis of high-throughput screening data. *BMC Bioinformatics* 11, 2

59. Wag autophagosome-rysosome-rasion: Autophagy 14, 1435-1435 (2018).
Pelz O, Gilsdorf M, Boutros M. web cellHTS2: a web-application for tlanalysis of high-throughput screening data. *BMC Bioinformatics* 11, 1
(2010).
Waguri S, K (
(analysis of high-throughput screening data. *BMC Bioinformatics* 11, 185
(2010).
61. Waguri S, Komatsu M. Biochemical and morphological detection of included
bodies in autophagy-deficient mice. *Methods Enzymol* 453, 181-1
-
- Frame of molecular sciences **18**, (2017).

59. Mauthe M, *et al.* Chloroquine inhibits autophagic flux by decreasing

autophagosome-lysosome fusion. Autophagy **14**, 1435-1455 (2018).

60. Pelz O, Gilsdorf M, Boutros M. web '
Waguri
bodies i
Kraja Al
Variants (
(62. Kraja AT, *et al.* Associations of Mitochondrial and Nuclear Mitochondrial
62. Kraja AT, *et al.* Associations of Mitochondrial and Nuclear Mitochondrial
63 Liang C *et al.* Autophagic and tumour suppressor activity of (
(
-
- analysis of high-throughput screening data. BMC Bioinformatics 11, 155
(2010).
Waguri S, Komatsu M. Biochemical and morphological detection of inclu
bodies in autophagy-deficient mice. *Methods Enzymol* **453**, 181-196 (200 Variants and Genes with Seven Metabolic Traits. American journal of hun
genetics **104**, 112-138 (2019).
63. Liang C, et al. Autophagic and tumour suppressor activity of a novel Becli
binding protein UVRAG. Nature cell biol genetics 104, 112-138 (2015).
Liang C, *et al.* Autophagic and
binding protein UVRAG. Natur
Agrotis A, Pengo N, Burden JJ,
protease isoforms in autophag
cells. Autophagy 15, 976-997 (
Barral S, Kurian MA. Utility of I
Trea $rac{1}{2}$ binding protein UVRAG. Mathe Cell biology 6, 688-699 (2006).
Agrotis A, Pengo N, Burden JJ, Ketteler R. Redundancy of huma
protease isoforms in autophagy and LC3/GABARAP processing
cells. Autophagy 15, 976-997 (2019).
Barr (
(
- Bodies in autophagy-deneem mice. *Methods Enzymor* 453, 181-156 (2005).

Kraja AT, *et al.* Associations of Mitochondrial and Nuclear Mitochondrial

Variants and Genes with Seven Metabolic Traits. *American journal of huma* genetics 104, 112-138 (2019).
Liang C, et al. Autophagic and tumour suppressor activity of a novel Beclin1-
binding protein UVRAG. Nature cell biology 8, 688-699 (2006).
Agrotis A, Pengo N, Burden JJ, Ketteler R. Redundanc binding protein UVRAG. Nature cell biology 8, 688-699 (2006).

64. Agrotis A, Pengo N, Burden JJ, Ketteler R. Redundancy of human ATG4

protease isoforms in autophagy and LC3/GABARAP processing revealed in

cells. Autophag Frame System Proteins in autophagy and LC3/GABARAP processing revealed
cells. Autophagy 15, 976-997 (2019).
65. Barral S, Kurian MA. Utility of Induced Pluripotent Stem Cells for the St
Treatment of Genetic Diseases: Focus protease isoforms in autophagy and LC3/GABARAP processing revealed in
cells. Autophagy 15, 976-997 (2019).
Barral S, Kurian MA. Utility of Induced Pluripotent Stem Cells for the Study and
Treatment of Genetic Diseases: Foc Earral S, Kurian MA. Utility of Induced Treatment of Genetic Diseases: Focus
Freatment of Genetic Diseases: Focus
Frontiers in molecular neuroscience 9
Xiong Q, et al. WDR45 Mutation Impart
Transferrin Receptor and Promote (
(
- Freatment of Genetic Diseases: Focus on Childhood Neurological Disorders.
Frontiers in molecular neuroscience 9, 78 (2016).
66. Xiong Q, et al. WDR45 Mutation Impairs the Autophagic Degradation of
Transferrin Receptor and Transferrin Receptor and Promotes Ferroptosis. *Front Mol Biosci* **8**, 645831
(2021).
Fu XH*, et al*. COL1A1 affects apoptosis by regulating oxidative stress and Frontiers in molecular neuroscience 9, 78 (2010).
Xiong Q, *et al.* WDR45 Mutation Impairs the Auto
Transferrin Receptor and Promotes Ferroptosis. *F*
(2021).
Fu XH, *et al.* COL1A1 affects apoptosis by regulatiautophagy i (
(Fransferrin Receptor and Promotes Ferroptosis. *Front Mol Biosci* 8, 6458 (2021).

Fu XH, *et al.* COL1A1 affects apoptosis by regulating oxidative stress and autophagy in bovine cumulus cells. *Theriogenology* 139, 81-89
- Transferrin Receptor and Tromotes Ferroptosis. Front Morbboscr**c**, 045831
(2021).
Fu XH, *et al.* COL1A1 affects apoptosis by regulating oxidative stress and
autophagy in bovine cumulus cells. *Theriogenology* **139**, 81-89 $rac{1}{2}$
- autophagy in bovine cumulus cells. *Theriogenology* 139, 81-89 (2019).
Paiva I*, et al.* Alpha-synuclein deregulates the expression of COL4A2 and
impairs ER-Golgi function. *Neurobiology of disease* 119, 121-135 (2018). autophagy in bovine cumulus cells. *Theriogenology* 139, 81-89 (2019).

Faiva I, *et al.* Alpha-synuclein deregulates the expression of COL4A2 and

impairs ER-Golgi function. *Neurobiology of disease* 119, 121-135 (2018). autophagy in bovine cumulus cells. Theriogenology 133, 81-83 (2013).
Paiva I, *et al.* Alpha-synuclein deregulates the expression of COL4A2 ar
impairs ER-Golgi function. *Neurobiology of disease* 119, 121-135 (2018 $\ddot{}$ impairs ER-Golgi function. Neurobiology of disease 119, 121-135 (2018).

Francisco Colean de expression of COL4A2 and COL4A impairs ER-Golgi function. Neurobiology of disease 119, 121-135 (2018).

-
- $\frac{1}{2}$
- Examples associated with APOE/TOMM40 variants and preclinical dementia. No
associated with APOE/TOMM40 variants and preclinical dementia. No
Genetics 6, e508 (2020).
To. Cescon M, Chen P, Castagnaro S, Gregorio I, Bonaldo Genetics 6, e508 (2020).
Cescon M, Chen P, Castagnaro S, Gregorio I, Bonaldo P. Lack of collagen VI
promotes neurodegeneration by impairing autophagy and inducing apoptosis
during aging. Aging (Albany NY) 8, 1083-1101 (201 Cescon M, Chen P, Casta
promotes neurodegener;
during aging. Ag*ing (Alba*
Stanga D, Zhao Q, Milev I
TRAPPC11 functions in at
preautophagosomal mer
(2019).
Chang CY, *et al.* Induced
Neurodegenerative Dise;
Screening. *Mol* Frame Presentation by impairing autophagy and inducing apopto
during aging. Aging (Albany NY) 8, 1083-1101 (2016).
71. Stanga D, Zhao Q, Milev MP, Saint-Dic D, Jimenez-Mallebrera C, Sacher M.
TRAPPC11 functions in autophag promotes neurologicalisms, mapping and programmently apoptonum during aging. Aging (Albany NY) **8**, 1083-1101 (2016).
Stanga D, Zhao Q, Milev MP, Saint-Dic D, Jimenez-Mallebrera C, Sacher M.
TRAPPC11 functions in autophagy during aging: Aging (Albany WY) 0, 1083-1101 (2016).
Stanga D, Zhao Q, Milev MP, Saint-Dic D, Jimenez-Mal
TRAPPC11 functions in autophagy by recruiting ATG2E
preautophagosomal membranes. *Traffic (Copenhager*
(2019).
Chang $\frac{1}{2}$ TRAPPC11 functions in autophagy by recruiting ATG2B-WIPI4/WDR45 to
preautophagosomal membranes. *Traffic (Copenhagen, Denmark)* 20, 325-3
(2019).
T2. Chang CY, *et al.* Induced Pluripotent Stem Cell (iPSC)-Based
Neurodegen
- preautophagosomal membranes. *Traffic (Copenhagen, Denmark)* 20, 325
(2019).
Chang CY*, et al.* Induced Pluripotent Stem Cell (iPSC)-Based
Neurodegenerative Disease Models for Phenotype Recapitulation and Dr
Screening. *Mo* (2019).
Chang CY*, et al.* Induced Pluripotent Stem Cell (iPSC)-Based
Neurodegenerative Disease Models for Phenotype Recapitulation and Drug
Screening. *Molecules* **25**, (2020).
Garcia-Leon JA, Vitorica J, Gutierrez A. Use $\frac{1}{2}$
- preautophagosomarmembranes. Traffic (Copenhagen, Denmark) 20, 325-343
Chang CY, *et al.* Induced Pluripotent Stem Cell (iPSC)-Based
Neurodegenerative Disease Models for Phenotype Recapitulation and Drug
Screening. Molecule Neurodegenerative Disease Models for Phenotype Recapitu

Screening. *Molecules* 25, (2020).

73. Garcia-Leon JA, Vitorica J, Gutierrez A. Use of human pluripoterived cells for neurodegenerative disease modeling and d

plat Garcia-Leon JA, Vitorica J, Gutierrez A. Use of human pluripotent stem cell-
derived cells for neurodegenerative disease modeling and drug screening
platform. *Future Med Chem* 11, 1305-1322 (2019).
Little D, Ketteler R, G Screening. Molecules 25, (2020).
Garcia-Leon JA, Vitorica J, Gutiern
derived cells for neurodegeneratiⁿ
platform. Future Med Chem **11**, 1:
Little D, Ketteler R, Gissen P, Devi
drug screening for neurological di
Papandreo $\frac{1}{2}$
- platform. *Future Med Chem* 11, 1305-1322 (2019).
Little D, Ketteler R, Gissen P, Devine MJ. Using stem cell-derived neurons i
drug screening for neurological diseases. *Neurobiol Aging 78*, 130-141 (20
Papandreou A, Luft
- 75. Papandreou A, Luft C, Barral S, Kriston-Vizi J, Kurian MA, Ketteler R. $\frac{1}{2}$ drug screening for neurological diseases. *Neurobiol Aging* **78**, 130-141 (2019)

75. Papandreou A, Luft C, Barral S, Kriston-Vizi J, Kurian MA, Ketteler R.

Automated high-content imaging in iPSC-derived neuronal progenit $\frac{1}{2}$
- Automated high-content imaging in iPSC-derived neuronal progenitors. SLAS
Discov 28, 42-51 (2023).
76. Celsi F, *et al.* Mitochondria, calcium and cell death: a deadly triad in
1787, 335-344 (2009).
77. Guo T, Zhang D, Zen
- plationii: *Future Med Chem 11, 1305-1322 (2013)*.
Little D, Ketteler R, Gissen P, Devine MJ. Using stem
drug screening for neurological diseases. *Neurobiol*
Papandreou A, Luft C, Barral S, Kriston-Vizi J, Kuriar
Automate Papandreou A, Luft C, Barral S, Kriston-Vizi J, Kurian MA, Ketteler R.
Papandreou A, Luft C, Barral S, Kriston-Vizi J, Kurian MA, Ketteler R.
Automated high-content imaging in iPSC-derived neuronal progenitors. SLAS
Discov Discov 28, 42-51 (2023).

Celsi F, *et al.* Mitochondria, calcium and cell death: a deadly triad in

neurodegeneration. *Biochimica et biophysica acta* 1787, 335-344 (2009).

Guo T, Zhang D, Zeng Y, Huang TY, Xu H, Zhao Y. Discov 20, 42-51 (2023).
Celsi F, *et al.* Mitochondr
neurodegeneration. *Bioc*
Guo T, Zhang D, Zeng Y, I
mechanisms underlying t
neurodegeneration **15**, 4
Moore DJ, West AB, Daw
Parkinson's disease. Ann
Hansen TE, Johanse neurodegeneration. *Biochimica et biophysica acta* 1787, 335-344 (21

77. Guo T, Zhang D, Zeng Y, Huang TY, Xu H, Zhao Y. Molecular and cellu

mechanisms underlying the pathogenesis of Alzheimer's disease. *Menerodegenerat* neurodegeneration. Biochimica et biophysica acta 1787, 333-344 (2003).
Guo T, Zhang D, Zeng Y, Huang TY, Xu H, Zhao Y. Molecular and cellular
mechanisms underlying the pathogenesis of Alzheimer's disease. Molecul
neurodege $\frac{1}{2}$ mechanisms underlying the pathogenesis of Alzheimer's disease. Molec

neurodegeneration 15, 40 (2020).

78. Moore DJ, West AB, Dawson VL, Dawson TM. Molecular pathophysiolog

Parkinson's disease. Annual review of neuroscie
- $\frac{1}{2}$
- Parkinson's disease. Annual review of neuroscience 28, 57-87 (2005).

79. Hansen TE, Johansen T. Following autophagy step by step. *BMC Biol* 9, 39

(2011).

80. Hundeshagen P, Hamacher-Brady A, Eils R, Brady NR. Concurren
- mechanisms underlying the pathogenesis of Alzheimer's disease. *Molecular*
neurodegeneration 15, 40 (2020).
Moore DJ, West AB, Dawson VL, Dawson TM. Molecular pathophysiology of
Parkinson's disease. *Annual review of neuro* neurodegeneration 15, 40 (2020).
Moore DJ, West AB, Dawson VL, D
Parkinson's disease. *Annual review*
Hansen TE, Johansen T. Following
(2011).
Hundeshagen P, Hamacher-Brady
autolysosome formation and lysos
high-content scr Parkinson's disease. *Annual review of neuroscience* 28, 57-87 (2005).
Hansen TE, Johansen T. Following autophagy step by step. *BMC Biol* 9
(2011).
Hundeshagen P, Hamacher-Brady A, Eils R, Brady NR. Concurrent det
autolys $\frac{1}{2}$ 79. Hansen T. Following autophagy step by step. Dive Biol 9, 39
(2011).
80. Hundeshagen P, Hamacher-Brady A, Eils R, Brady NR. Concurrent detection
autolysosome formation and lysosomal degradation by flow cytometry in
high (2011).
Hundeshagen P, Hamacher-Brady A, Eils R, Brady NR. Concurrent detection of
autolysosome formation and lysosomal degradation by flow cytometry in a
high-content screen for inducers of autophagy. *BMC Biol* 9, 38 (20 {
} autolysosome formation and lysosomal degradation by flow cytometry in a
high-content screen for inducers of autophagy. *BMC Biol* 9, 38 (2011).
81. Liu Y, Levine B. Autosis and autophagic cell death: the dark side of autop
- high-content screen for inducers of autophagy. *BMC Biol* **9**, 38 (2011).
Liu Y, Levine B. Autosis and autophagic cell death: the dark side of autophag
Cell Death Differ 22, 367-376 (2015). high-content screen for inducers of autophagy. *BMC Biol 9*, 38 (2011).
Liu Y, Levine B. Autosis and autophagic cell death: the dark side of auto
Cell Death Differ 22, 367-376 (2015). Expertise of the contract of t $\emph{Cell Death Differ 22, 367-376 (2015).}$ Cen Death Differ 22, 367-376 (2015).
-
- 92. Umang Cardiac fields in the United States *Cell Biol* 44, 1813-1824 (2012).

83. Dunn DE, He DN, Yang P, Johansen M, Newman RA, Lo DC. In vitro and in vive-

neuroprotective activity of the cardiac glycoside oleandrin Cell Biol 44, 1813-1824 (2012).

Dunn DE, He DN, Yang P, Johansen M, Newman RA, Lo DC. In vitro and in vivo

neuroprotective activity of the cardiac glycoside oleandrin from Nerium

oleander in brain slice-based stroke mod Cell Biol 44, 1813-1824 (2012).
Dunn DE, He DN, Yang P, Johan
neuroprotective activity of the
oleander in brain slice-based st
(2011).
Wang JKT, *et al.* Cardiac glycosi
stroke: discovery by a brain slic
Proceedings of th {
} Entertainment of the Cardiac glycoside oleandrin from Nerium
oleander in brain slice-based stroke models. *J Neurochem* 119, 805-814
(2011).
84. Wang JKT, *et al.* Cardiac glycosides provide neuroprotection against ischemi
- neuroprotective activity of the cardiac glycoside oleandrin from Nerium
oleander in brain slice-based stroke models. *J Neurochem* **119**, 805-814
(2011).
Wang JKT, *et al*. Cardiac glycosides provide neuroprotection agains oleander in brain slice-based stroke inodels. J Neurochem 119, 000-014
(2011).
Wang JKT, *et al.* Cardiac glycosides provide neuroprotection against isch
stroke: discovery by a brain slice-based compound screening platform stroke: discovery by a brain slice-based compound screening platform. {
} Stroke: discovery by a brain slice-based compound screening platform.

Proceedings of the National Academy of Sciences of the United States of

America 103, 10461-10466 (2006).

85. Elmaci İ, Alturfan EE, Cengiz S, Ozpinar
- Elmaci İ, Alturfan EE, Cengiz S, Ozpinar A, Altinoz MA. Neuroprotective and
tumoricidal activities of cardiac glycosides. Could oleandrin be a new weap
against stroke and glioblastoma? Int J Neurosci **128**, 865-877 (2018). America 103, 10461-10466 (2006).
Elmaci İ, Alturfan EE, Cengiz S, Ozpinar A, Altinoz MA. Neuroprotective aitumoricidal activities of cardiac glycosides. Could oleandrin be a new we
against stroke and glioblastoma? *Int J N* America 103, 10401-10400 (2000).
Elmaci İ, Alturfan EE, Cengiz S, Ozpi
tumoricidal activities of cardiac glycognital activities of cardiac glycognitals and glioblastoma? In
Rossignoli G, et al. Aromatic l-amino
derived neu {
} 85. Elmaci İ, Alturfan EE, Cengiz S, Ozpinar A, Altinoz MA. Neuroprotective and
tumoricidal activities of cardiac glycosides. Could oleandrin be a new weapon
against stroke and glioblastoma? *Int J Neurosci* **128**, 865-877
-
- derived neuronal model for precision therapies. *Brain* **144**, 2443-2456 (2021).
Kirkeby A, Nelander J, Parmar M. Generating regionalized neuronal cells from
pluripotency, a step-by-step protocol. *Frontiers in cellular ne* {
} {
}
- against stroke and ghoblastoma? *Int 3 Neurosci 128, 865-877* (2016).
Rossignoli G, *et al.* Aromatic l-amino acid decarboxylase deficiency: a
derived neuronal model for precision therapies. *Brain* **144**, 2443-245
Kirkeby pluripotency, a step-by-step protocol. Frontiers in cellular neuroscience 6, 64
(2012).
B8. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of
large gene lists using DAVID bioinformatics resources. (11)
Huang c
large ge
57 (200
Mi H*, et*
classific E
E
E 88. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of
large gene lists using DAVID bioinformatics resources. *Nature protocols* **4**, 44-
57 (2009).
Mi H, *et al.* PANTHER version 16: a revised fam
- $rac{1}{2}$
- 188. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of
large gene lists using DAVID bioinformatics resources. Nature protocols 4, 44-
57 (2009).
Mi H, et al. PANTHER version 16: a revised family c Rirkeby A, Nelander J, Parmar M. Generating regionalized neuronal cells from
pluripotency, a step-by-step protocol. *Frontiers in cellular neuroscience* 6, 64
(2012).
Huang da W, Sherman BT, Lempicki RA. Systematic and int pluripotency, a step-by-step protocol. From the simular ineuroscience 6, 64

(2012).

Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of

large gene lists using DAVID bioinformatics resources. Nat **49**, D394-d403 (2021).
Bindea G*, et al*. ClueGO: a Cytoscape plug-in to decipher functionally group
gene ontology and pathway annotation networks. *Bioinformatics* **25**, 1091-Bindea G*, et al*. ClueGO: a Cytoscape plug-in to decipher functionally grouped
gene ontology and pathway annotation networks. *Bioinformatics* **25**, 1091-
1093 (2009). $\frac{1}{1}$

Supplementary Table 10. ATG differential gene expression in Day 65 mDA Patient 02 cultures after CRISPR correction and compound treatments.

Genes marked in blue show consistent under- or over-expression when comparing the Patient 02 untreated mDA line profiles with the corresponding CRISPR-corrected and compound-treated ones. Many known ATGs were interrogated. P-value and fold change cut-offs were not applied for this analysis; however, some genes have significant p- and fold change values in different conditions. ATG= autophagy-related gene, FC= fold change.

E

A

