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eMethods 
 
Preregistration 
 
These analyses were not preregistered.   
 
 
Healthy aging, longevity, and epigenetic age acceleration background  
 
Aging is a complex, multi-faceted process influenced by many factors.1,2  Hallmarks of aging 
include the diminished maintenance of homeostatic mechanisms, resulting in age-related 
diseases, and death;3 however, there exists substantial variability in aging,3 that is not captured 
by conventional single-phenotype approaches to studying aging.4  Additionally, while there has 
been an increase in overall lifespans, there has not been a corresponding increase in healthspan 
(considered the length of time considered free of chronic illness5), resulting in a growing 
healthspan-lifespan gap6 that has, in part, motivated the general shift in the field of geroscience 
from a focus on increasing survival to incorporating complementary measures of age-related 
outcomes4 with the goal of improving healthy aging (i.e., the maintenance of well-being in old 
age that includes both the absence of disease and also happiness, satisfaction, and fulfillment7).  
Given the complex relationship between healthspan (considered the length of time considered 
free of chronic illness5) and total lifespan, including the growing healthspan-lifespan gap,6 we 
aimed to use an aging outcome that shared genetics underlying both healthspan and lifespan, to 
provide a broad genetic phenotype related to healthy aging processes.   
 
To complement our primary healthy aging-related endpoint, we also evaluated the relationships 
of psychiatric disorders, substance use behaviors, and epigenetic age acceleration (EAA) as 
measured by epigenetic DNA methylation – epigenetic clocks (see refs.8,9 for detailed 
description of epigenetic clocks).  Briefly, epigenetic clocks are biomarkers used to estimate an 
individual’s biological age based on chemical modifications to DNA (known as epigenetic 
changes).  These clocks are derived from patterns of DNA methylation at specific sites across the 
genome and the underlying theory is that these epigenetic changes accumulate over time and can 
be used as a measure of aging, which may differ from chronological age, which is considered 
EAA.8,9  Epigenetic clocks have shown promise in various fields of aging research and are used 
to study factors influencing aging, disease progression, and overall health outcomes.  We 
included EAA because EAA has been found to be increased in psychiatric populations3 and 
substance use behaviors,10 and also because EAA has been shown to be reversible,11 
underscoring its potential as an endpoint to target for therapeutic development and measurable 
marker of potential prevention and intervention strategies, aimed, for example, at reducing aging 
and poor health in psychiatric populations due to smoking.    
 
Data sources 
 
Alcohol consumption exposure information.  We obtained data from weekly alcohol consumption 
from the recent data from the GWAS & Sequencing Consortium of Alcohol and Nicotine use 
(GSCAN) meta-analysis (N=665 346), which adjusted for sex, age, age squared and genetic 
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principal components.12  For problematic alcohol use (PAU), we used the Zhou et al. meta-
analysis of AUD cases in the Million Veterans Program13 and Psychiatric Genomics 
Consortium14 with Alcohol Use Disorders Identification Test (AUDIT) Problem drinking 
questions (AUDIT-P, questions 7-10) derived from participants in the UK Biobank (N=435 
563).15  The PAU GWAS was adjusted for age, sex, and principal components.13 
 
Multivariate aging outcome.  We used a multivariate GWAS summary statistics from Timmers et 
al.3 that was constructed to identify the genetics shared across derived from three univariate 
GWASs of European ancestry cohorts on healthspan (N=300 477),5 parental lifespan (N=512 
047 and 500 196 maternal and paternal lifespans, respectively),1 and exceptional longevity 
(N=36 745).16  See Timmers et al. for detailed information regarding the multivariate GWAS 
construction3 and the original univariate GWAS manuscripts for additional details regarding the 
individual univariate GWASs.  Briefly, the healthspan GWAS (N=300 477, UKB participants) 
was defined as the incidence of the 8 most common diseases in the UKB.5  Cox-Gompertz 
survival models were calculated with clinical events in seven disease categories – cancer, 
cardiovascular disease, diabetes, stroke, and dementia – to determine length of healthspan.  UKB 
participants reporting one or more of these events were considered to have completed 
healthspans.  84 949 UKB participants experienced an event, which completed their healthspans 
over the timeframe considered in the study.5  The parental lifespan GWAS represented 512 047 
and 500 196 maternal and paternal lifespans (also including UKB participants).5  Across the 
meta-analyzed cohorts, Cox survival models for mothers and fathers were fitted and Martingale 
residuals of corresponding survival models were regressed against subject gene dosages to 
calculate the lifespan GWAS.  We used summary statistics from Deelen et al. assessing the 
genetic underpinnings of exceptional old age using 11 262 unrelated participants reaching ≥90th 
survival percentile and performed a GWAS comparing this extreme longevity group to 25 483 
participants whose age at death was ≤60th survival percentile.16  Survival percentiles were based 
upon country-specific cohort life tables (e.g., the 90th survival percentile for the United States 
1920 birth cohort is 89 years of age for men and 95 years of age for women and the 60th 
percentile is 75 and 83, respectively).16   
 
Mendelian randomization instrumentation 
 
Single variable Mendelian randomization (MR) instruments.  For SVMR analyses, we included all 
exposure SNVs associated at conventional genome-wide significance (GWS) P-values<5×10−8 
for all psychiatric and substance use-related exposures.  All instrument SNVs were clumped at 
LD R2 = 0.001 using reference samples comprised of participants of European ancestry.17  See 
eTables S2-S4 for all SVMR instruments, including the longevity instruments used in the bi-
directional MR assessing whether the genetic predisposition for healthy aging and EAA impacts 
the risk for psychiatric disorders or impacts substance use behaviors.  F-statistics for the 
unconditional instruments on average > 10 (Tables S2-S4), indicating minimal bias from weak 
instruments, which supports the plausibility of the first core MR assumption (i.e., the relevance 
assumption).18,19 
 
Multivariable MR (MVMR) instruments.  For the MVMR analyses, we concatenated independent 
instrument sets for psychiatric disorders, alcohol consumption, and lifetime smoking (clumping 
the resulting MV instrument sets to exclude intercorrelated SNVs with pairwise LD R2>0.001, 
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physical distance 10,000 kb).  We created overall MVMR instruments comprised of each 
psychiatric disorder, smoking, and one of the alcohol use behaviors.  Given the strong genetic 
correlation between PAU and DPW (Figure 1c), we did not incorporate those exposures into the 
same MVMR instrument and created separate MVMR instruments using smoking + DPW + the 
psychiatric disorders (not including PAU); and smoking + PAU + the psychiatric disorders.  We 
also constructed MVMR instruments assessing each of the psychiatric disorders and alcohol use 
behaviors, in turn, with smoking behavior (e.g., smoking + SCZ, smoking + MDD, smoking + 
BD, etc.).  We were unable to calculate conditional F-statistics to assess the strength of the 
multivariable instrument sets; SVMR statistical methods recently extended to two sample 
MVMR are only appropriate for non-overlapping exposure summary level data sources.  When 
overlapping, the requisite pairwise covariances between SNV associations are only determinable 
using individual level data.20  MVMR instruments are presented in eTables 5-7. 
 
Additional MVMR models testing the robustness of smoking findings.  We aimed to evaluate the 
robustness of the main smoking-related findings by including additional MVMR models 
accounting for cardiometabolic risk factors: obesity, coronary heart disease (CAD), and Type 2 
Diabetes (T2D), which have each been previously associated with both smoking and longevity21-

23 and may, therefore, mediate the relationship of smoking and longevity.  For obesity, we used 
three GWASs from GIANT (Genetic Investigation of ANthropometric Traits)24; for CAD 
genetics, we used the CARDIoGRAMplusC4D-UK Biobank CAD, Coronary ARtery DIsease 
Genome wide Replication and Meta-analysis (CARDIoGRAM), plus The Coronary Artery 
Disease (C4D) Genetics GWAS meta-analysis.25  T2D data came from a recent meta-analysis of 
three T2D studies: DIAbetes Genetics Replication and Meta-analysis (DIAGRAM), Genetic 
Epidemiology Research on Aging (GERA), and the full cohort release of UKB.26  MVMR 
instruments concatenating obesity, CAD and T2D with smoking were constructed by excluding 
intercorrelated SNVs with pairwise LD R2>0.001 (physical distance 10 000 kb) (eTable 7).  
 
Replication with psychiatric disorder diagnoses in the FinnGen cohort.  We also included 
replication analyses with the latest public release from the FinnGen cohort27 (Release 10, N=412 
181; 230 310 females and 181 871 males).  See the original publication for comprehensive 
cohort information,27 but briefly, the FinnGen project is a collaborative research initiative that 
merges imputed genotype data from new and existing samples from Finnish biobanks with 
digital health records from national health registries in Finland (with details provided at 
https://www.finngen.fi/en).27  FinnGen uses data sources from a comprehensive, nationwide 
health registry with health information of all residents in Finland since 1969.  FinnGen Release 
10 (made public on December 18, 2023) analyzes 2 408 electronic-health record related 
endpoints and its GWAS data has 21 311 942 SNVs for analysis.   
 
This data was not included in the psychiatric disorder GWAS meta-analyses that were used as 
the primary exposures in this study.  Therefore, we performed replication analyses using 
FinnGen cohort GWASs of ICD-based diagnoses of schizophrenia (6 708 cases; 398 386 
controls), bipolar disorder (7 569 cases; 359 290 controls), major depression (47 696 cases; 359 
290 controls), and AUD (17 197 cases; 394 984 controls) (eTable 1).  We instrumented these 
exposures as described above except for these exposures we used a P-value threshold of 5×10-6 
due to there being only few genome-wide significant SNVs.  We ensured sufficient instrument 
strength and only included SNVs with F-statistics exceeding the conventional threshold of 10.  

https://www.finngen.fi/en
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As the FinnGen data is based upon electronic health records, it does not have outcomes related to 
lifetime smoking behavior or weekly alcohol consumption.  Therefore, we were unable to 
perform replication of these exposures.   
 
We performed SVMR and MVMR using these FinnGen exposures.  In addition to assessing the 
robustness of the SVMR and MVMR of the, the FinnGen data was also used to assess potential 
issues related to the sample construction of the primary exposures derived from the psychiatric 
disorder GWAS meta-analyses, including the inclusion of retrospective case-cohorts, selection 
bias, and the same population assumption for two-sample MR analyses (each described in the 
MR statistical and analyses section below).     
 
Instrumentation of the CHRNA5-CHRNA3-CHRNB4 gene cluster.  In addition to evaluating the 
relationships of lifetime smoking behavior on healthy aging and epigenetic clocks using 
complementary MR to assess the MR assumptions,19 we also performed MR28 analyses using 
variants located within or near the CHRNA5-CHRNA3-CHRNB4 gene cluster on chromosome 15 
(78,857,862—79,020,096) that encode the nicotinic acetylcholine receptors (nAChRs) and have 
been shown to impact smoking behaviors, including smoking heaviness and smoking 
dependence.29 Given the cis-acting nature of these variants and the well-known impact of 
CHRNA5-CHRNA3-CHRNB4 gene cluster on the physiological effects of nicotine (i.e., nicotine 
produces its effects by binding to nAChRs30) and smoking behaviors, these MR analyses using 
variants within a locus of known biological function are unlikely to be influenced by common 
confounders.29  Further, as there are challenges regarding MR instrumentation in studies 
investigating neuropsychiatric disorders and behaviors because the mechanisms through which 
the variants impact the exposures are frequently unknown31,32 (i.e., versus biomarkers such as 
circulating lipids).  Therefore, performing MR analysis of smoking on aging-related outcomes 
using variants located within or near the CHRNA5-CHRNA3-CHRNB4 gene cluster provides 
additional support for the primary two-sample MR analyses using the polygenic smoking 
instrument comprised of variants located throughout the genome.  We used conventional 
instrumentation methods and extracted variants (with lifetime smoking association statistic P-
values<5×10-8, LD R2 <0.1) located within 100 kilobases of the CHRNA5-CHRNA3-CHRNB4 
gene cluster and identified 5 cis-variants for harmonization with the aging related outcomes.   
 
Cis-instrument MR for proteomic screen of potential smoking-cessation drug targets.  We used 
protein quantitative trait loci (pQTL) data derived from the three cortical regions (dorsolateral 
prefrontal cortex, orbitofrontal cortex, and parahippocampal gyrus)  of 722 participants of 
European descent included in the ROSMAP cohort33 to generate SNV-protein instruments 
necessary for MR analysis. pQTL data was filtered for GWS SNVs at P < 5×10-8. Cis-
instruments were created for each protein using variants within 100 kilobases of the protein’s 
encoding gene, giving 1,909 SNV-protein instruments. We filtered variants using the 1000 
Genomes Project Phase 3 European reference panel34 and clumped the variants at LD) R2 <0.1 
(10,000 kb window).  F-statistics used assess the MR relevance assumption by evaluating 
instrument strength.  We only included variants with F-statistics ≥10, the conventional cutoff for 
determining the variant is sufficiently strong and will be unlikely to be subject to weak 
instrument bias.18  Instrument SNVs were extracted from the smoking GWAS summary statistics 
and association directions between exposure and outcome where matched to the same allele. 
pQTL instrument data are presented in eTable 9.   
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MR statistical and sensitivity analyses 
 
MR analyses were carried out using TwoSampleMR, version 0.5.5,31 MendelianRandomization, 
version 0.5.0,35 in the R environment, version 4.0.2. 
 
MR assumptions.  Two-sample MR uses common SNVs derived from GWAS data as 
instrumental variables to evaluate associations between the genetic liability for an exposures-
outcome pairs of interest.36-38  MR analyses are subject to the core MR assumptions: (1) 
relevance, (2) independence, and (3) exclusion restriction.39  The relevance assumption assumes 
that genetic variants used as instruments are strongly associated with the exposure.  The 
independence assumption necessitates that these variants are independent of confounders of the 
exposure-outcome relationship.  Finally, the exclusion restriction criterion assumption ensures 
that the variants affect the outcome solely through the exposure.39  By employing a 
comprehensive suite of MR methods, each with assumptions and strengths, our analysis aims to 
provide a robust and nuanced understanding of the causal relationships between genetic 
liabilities for the psychiatric and substance use risk factors and longevity-related outcomes.  This 
multifaceted approach allows us to account for and evaluate the influence of potential violations 
of MR assumptions on our findings. 
 
We tested the relevance assumption by calculating the variance explained by the instrument (R2) 
and F-statistics for each SNV comprising the exposures instruments.  By convention, if SNVs 
with F-statistics >10 are used for instrument construction, the resultant instruments are unlikely 
to be subject to weak instrument bias, which may occur when the variants comprising the MR 
instrument explain only a small proportion of the exposure resulting in reduced statistical power 
to reject the null hypothesis.40  As detailed in the Results section in the main manuscript, our 
psychiatric and substance use instruments, estimated F-statistics for the unconditional 
instruments generally exceeded 20 (F-statistic = 10 being the conventional threshold designating 
weak and strong MR SNV instruments40), which provides evidence that the psychiatric and 
substance use instruments are unlikely to be subject to bias from weak instruments.41  
 
We used inverse-variance weighted MR (IVW) as the main estimates for the SVMR and 
MVMR.  To assess the sensitivity of our analyses to potential violations of these IV assumptions 
and to validate the robustness of our results, we supplemented IVW with several complementary 
and robust techniques: MR-Egger, weighted median, penalized weighted median, and weighted 
mode methods.  MR-Egger allows for the detection and correction of pleiotropic effects, where 
genetic variants might affect the outcome through pathways other than the exposure.  The 
weighted median and mode methods offer consistent causal estimates under weaker assumptions, 
providing resilience against invalid instruments.  Consistency of results across methods 
strengthens an inference of causality.31  In the following paragraphs, we describe in more detail 
these complementary MR methods.   
 
MR Egger extends the MR IVW method, allowing for the net horizontal pleiotropic MR estimate 
across all SNVs to be unbalanced or directional, i.e., some SNVs may be acting on the outcome 
via one or more pathways other than through the exposure by not fixing the intercept to the 
origin.42,43  Put another way, MR Egger complements the MR IVW method by allowing for the 
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net horizontal pleiotropic MR estimate across all SNVs to exhibit an unbalanced or directional 
nature.  The relaxed assumption of MR Egger, referred to as the "Instrument Strength 
Independent of Direct Effect" (InSIDE) assumption, offers flexibility compared to the strict MR 
assumption of no pleiotropy (it may be considered a less strict version of the exclusion restriction 
MR assumption), which means that the magnitude of the pleiotropic effects is not correlated with 
the SNV-exposure associations for the genetic variants comprising the instrument of the 
exposure.42,43  For more information on the InSIDE assumption we refer the interested reader to 
refs.42,43  MR Egger provides unbiased MR estimates even when the MR assumption of no 
horizontal pleiotropy is violated for all SNVs.  However, it is important to note that the precision 
of these estimates may be significantly lower compared to MR IVW: while the precision of the 
IVW estimate is influenced by the proportion of variance in the exposure explained by the 
genetic instruments (R2), MR Egger's precision is contingent on the variability observed in the 
SNV-exposure associations.42,43       
 
The weighted median MR method utilizes the median associations of all available instrumental 
SNVs, making it necessary for only half of the SNVs to qualify as valid instruments.  Valid 
instruments are defined as variants that exhibit no horizontal pleiotropy, have no associations 
with confounding factors, and demonstrate a strong association with the exposure.  This 
approach ensures an unbiased MR estimate.44  Additionally, in the weighted median MR method, 
the influence of stronger SNVs on the estimate is greater, and each SNV's contribution is 
weighted by the inverse variance of its association with the outcome.44   
 
The weighted mode-based MR method groups SNVs based on the similarity of their MR 
associations and calculates the MR estimate based on the cluster with the largest number of 
SNVs.  In this method, the MR estimate remains unbiased as long as the SNVs within the largest 
cluster are valid instruments.31  It assumes that the most common relationship is consistent with 
the true underlying relationship45 and assigns weights to each variant for clustering based on the 
inverse variance of its association with the outcome.  Assuming that the most common MR 
estimate is consistent, this approach ensures an overall unbiased MR relationship, even when all 
other instruments are invalid.45    
 
While the conventional MR IVW method can yield biased results if even a minority of the 
instruments are invalid, the penalized weighted median method addresses a key challenge in MR 
studies: inference given the presence of invalid IVs, which are SNVs that violate MR 
assumptions, often due to pleiotropy.44  The penalized weighted median enhances this weighted 
median method by incorporating a penalty for invalid IVs, effectively downweighting their 
influence in the MR analysis.44  This penalization is usually based on a measure of heterogeneity 
or pleiotropy among the genetic instruments, and by applying this penalty, the method aims to 
minimize the impact of potentially invalid instruments on the final causal estimate.44  The 
penalized weighted median method is particularly useful in scenarios where there may be invalid 
instrument SNVs, or the increased potential for pleiotropy (as may be suspected in genetic 
instruments for psychiatric outcomes); and by accounting for and mitigating the influence of 
pleiotropic SNVs, it represents an important method to include in the robustness and reliability 
of MR analyses.44  The penalized weighted median estimator downweights genetic variants with 
heterogeneous estimates, reducing their impact on the analysis using Cochran's Q statistic, which 
measures heterogeneity between estimates.  SNVs that significantly deviate from the group 
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(indicated by a high Q value) are penalized more heavily.  The penalization involves multiplying 
the variant's weight by a factor determined by its P-value: if the P-value is low (indicating high 
heterogeneity), the weight is significantly reduced.  This approach ensures that most variants 
remain unaffected unless they show significant heterogeneity, in which case their influence on 
the estimate is substantially diminished.44 
 
The weighted mode MR method clusters SNVs comprising the genetic instruments based on the 
similarity of their MR associations.46  After clustering SNVs, it calculates the MR estimate by 
considering the cluster that contains the largest number of SNVs.  This approach provides a 
robust MR estimate, unbiased as long as the SNVs within the largest cluster are valid 
instruments.  Weighting for clustering is determined by the inverse variance of each variant's 
association with the outcome, ensuring a reliable MR relationship even when other instruments 
may be invalid.46 
 
Heterogeneity and directionality tests.  We used the MR Egger intercept test,47 Cochran Q 
heterogeneity test,48 and multivariable extensions thereof, to evaluate heterogeneity in instrument 
effects: heterogeneity may indicate violations of MR assumptions.47,49,50  The MR Egger 
intercept test facilitates detection of pleiotropy, where genetic variants affect the outcome 
through pathways other than the exposure of interest: pleiotropy can bias MR estimates.  The 
Cochran Q test assesses the variability in effect sizes across different genetic instruments, 
identifying potential outliers or inconsistent instruments that might violate the IV assumptions. 
 
Additionally, we employed the SVMR Steiger directionality test17 to test the causal direction 
between selected exposure and outcomes to help determine whether the genetic associations of 
the instrument SNVs are more likely to reflect the impact of the exposure on the outcome, rather 
than the reverse.17  We removed SNVs from the exposure instruments failing the Steiger 
directionality test, which establishes the correct direction of causation for the exposure-outcome 
pairing, strengthening the validity of the MR findings. 
 
MR LASSO.  For both SVMR and MVMR analyses, the MR LASSO method51 was utilized to 
enhance the robustness and validity of our causal estimates.  MR LASSO applies lasso-type 
penalization to the direct effects of the exposure instruments on the outcome under analysis; this 
penalization is effective in refining the selection of genetic instruments, which facilitates 
addressing the IV relevance assumption.51  MR LASSO attenuates the influence of weaker 
instruments that might not have a strong association with the exposure, or might be invalid due 
to pleiotropic effects; by focusing on stronger and more valid instruments, the MR LASSO 
method reduces the risk of bias in the causal estimates.51  The “post-lasso” estimate, obtained by 
IVW using only those SNVs identified as valid, represents a more refined causal estimate, 
important in studies using genetic instruments, where the risk of including invalid instruments is 
increased.28  However, a Cochran Q test indicating heterogeneity (Cochran’s Q P-value < 0.05), 
notwithstanding, the MR LASSO may not identify outlier SNVs, in which case, the post-lasso 
MR estimate is identical to the initial IVW estimate.  
 
For additional information regarding the MR LASSO method, we refer the interested reader to 
ref.51  MR LASSO modifies the IVW model by incorporating an intercept term for each genetic 
variant; these intercepts signify the direct associations between the genetic variants and the 
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outcome, independent of the risk factor.  MR estimates are obtained through weighted linear 
regression, applying lasso-type penalization to the intercept terms: this penalization generally 
reduces the intercepts of valid instruments to zero, which is effective in refining the selection of 
genetic instruments, which facilitates addressing the IV relevance assumption.51  The extent of 
this penalization is governed by a tuning parameter that determines the level of sparsity: a 
heterogeneity stopping rule is the default setting for this parameter.  Genetic variants are 
reoriented so that all associations with the risk factor are positive; the signs of associations with 
the outcome are adjusted to maintain this consistent orientation, which is automatically handled 
by MR LASSO.51  MR LASSO proceeds in two stages: first, fitting a regularized regression 
model to identify valid genetic instruments, and then estimating the causal effect using IVW with 
these valid instruments, generating the post-lasso estimate. 
 
MVMR analysis.  In MVMR analyses, we used multivariable extensions of the IVW, MR Egger, 
and MR median methods49,52 to evaluate the direct effects of each psychiatric and substance use 
risk factor on longevity outcomes, simultaneously considering multiple exposures, thereby 
accounting for potential confounding among the exposures. 
 
MVMR assumptions.  MVMR is a method used in genetic epidemiology to understand the causal 
relationships between multiple exposures (e.g., lifestyle factors, environmental exposures) and an 
outcome.53,54  This approach relies on the use of genetic variants, typically SNVs as instrumental 
variables (IVs).  For MVMR to be valid, it is important that these SNVs are associated with the 
exposure variables but do not influence the outcome directly, except through these variables.  
Like single-variable MR, MVMR utilizes SNVs to evaluate the exposure variables, and these 
predictions are then used in a multivariable regression analysis to estimate the effects of the 
exposures on the outcome.  MVMR is based on three core IV assumptions:53 
 

1. MVMR Assumption 1:  IVs must predict the exposures, conditioned on other exposures 
in the model (so as to preclude multicollinearity and weak instrument bias). 

 
2. MVMR Assumption 2:  IVs must be independent of the outcome, given all the 

exposures in the model, i.e., SNVs should influence the outcome only through their effect 
on the exposures, and not directly. 

 
3. MVMR Assumption 3:  IVs should be independent of any confounders of the 

relationship between exposures and outcome (so as to ensure that estimated effects are 
not biased due to confounding factors). 

 
MVMR allows for the inclusion of SNVs that affect multiple phenotypes (pleiotropy), as long as 
those phenotypes are included as exposures in the analysis.53,54  Thus MVMR is less restrictive 
than univariable MR.  However, heterogeneity in SNV-outcome associations is still evaluated to 
detect potential unaccounted pleiotropy; the multivariable extensions of the Cochran Q statistic is 
used to assess for pleiotropy, and the multivariable extension of MR Egger, to assess directional 
pleiotropy.54 
 
Homogeneity assumption.  As long as the three core MR assumptions are satisfied, i.e., (1) 
relevance, (2) independence, and (3) exclusion restriction, MR can be used to test the sharp null 
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hypothesis that the exposure does not have an impact on the outcome for any individual in the 
population.19,39  However, an additional assumption – homogeneity – is required for point 
estimation of the average causal effect (ACE) in MR analyses.19,55,56  Homogeneity implies that 
the causal relationship of the exposure on the outcome is constant across different levels of an 
unmeasured confounder.  If this homogeneity assumption does not hold, while not likely to lead 
to the inappropriate causal inference from the MR analyses (or inflated type 1 error rates),57 the 
estimated average causal effect may not accurately reflect the true causal effect in the general 
population.55  For instance, in the context of the MR analyses in this study, the neuropsychiatric 
disorders and longevity, factors like chronic diseases or socioeconomic status could vary in their 
influence on different individuals, which would violate the homogeneity assumption.   
 
To assess the plausibility of the homogeneity assumption, we used a sensitivity analysis 
suggested by Matthew et al. (2022): for each exposure, SNVs are ranked by instrument-exposure 
variance, then revised instrument sets (with reduced potential for heterogeneous effects) are 
constructed removing, in turn, 5%, 10%, 25%, 50%, and 75% of the total instrument SNVs.58   
We ensured that the average F-statistic of the revised instrument sets were still strong,   
and repeated the SVMR analyses on longevity and the epigenetic clock outcome for each of 
these revised instrument sets, so as to assess whether the MR estimates were robust across and 
directionally consistent the primary and revised instrument sets, providing evidence against 
violations of the homogeneity assumption.58    
 
Specific application to the CHRNA5-CHRNA3-CHRNB gene cluster.  As described above in the 
subsection “Instrumentation of the CHRNA5-CHRNA3-CHRNB4 gene cluster”, we performed 
sensitivity analyses using a cis-instrument MR approach28 to further address the MR assumption 
of no pleiotropy.  In examining the CHRNA5-CHRNA3-CHRNB4 gene cluster, we applied the 
IVW and complementary MR methods (described above), ensuring a consistent approach across 
MR analyses. 
 
Additional sensitivity to assess the MR exclusion restriction assumption.  In addition to using MR 
methods that identify pleiotropic SNVs, we also performed sensitivity analyses with genetic 
instruments that have been screened to identify SNV associations with other GWAS traits (which 
SNPv may violate the core MR exclusion restriction assumption, i.e., the “no pleiotropy” 
assumption).19  Using Phenoscanner V259 (a curated database of publicly available GWAS 
results (>65 billion SNV-phenotype associations for >150 million SNVs), we screened SNVs 
instrumenting the psychiatric disorders and substance use behaviors to evaluate whether selected 
SNVs included in each genetic risk score had been associated with traits (other than the exposure 
of interest) in previous GWASs to minimize the potential for pleiotropic effects that could 
confound our results.  We removed any SNVs from the instruments if the SNVs demonstrated 
genome-wide significant associations (P-value < 5×10-8) with other GWASs in the 
Phenoscanner V2 database and repeated the SVMR analyses on the multivariate longevity and 
epigenetic aging outcomes.   
 
In addition, we conducted additional MVMR analyses that included adjustment for educational 
attainment, body mass index, sleep duration, physical activity, and systolic blood pressure from 
GWASs of European ancestry (see eTable 1 for data source information) to further assess 
evidence of pleiotropy.  These MVMR models were constructed using the methods described 
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above and simultaneously evaluated the impact of the psychiatric disorders, substance use 
behaviors, and additional covariates on the multivariate longevity outcome of biological aging.   
 
Sample independence.  A comprehensive overview of the cohorts included in the GWAS is 
presented in eTable 10.  The percent overlap, calculated for purposes of providing insight into 
potential bias, was calculated according to the methodology outlined by Burgess et al.,18 i.e., 
ratio of maximum potential overlap to the larger of the exposure or outcome GWAS.  For DPW-
epigenetic aging, 1.1% overlap was observed; drinks per week-multivariate longevity exhibits a 
5.72% for diverse non-UK Biobank (UKB) cohorts, and for the UKB cohort, 51.1% overlap.  
Similarly, bipolar disorder-multivariate longevity displays 1.08% overlap for non-UKB cohorts, 
and 8.39% UKB cohort overlap.  Major depression-multivariate longevity shows 5.83% overlap 
for non-UKB cohorts and 50.9% UKB cohort overlap.  Lifetime smoking- multivariate longevity 
demonstrates a 65.2% overlap of the UKB cohort. 
 
In two-sample MR, sample overlap between exposure and outcome datasets produce may bias 
IVW estimates.60  It may also impact two other sources of potential bias in MR IVW estimates, 
namely weak instrument bias and winner’s curse.61  Winner’s curse may occur when the same 
sample used to select the instruments is used as the exposure dataset.61  It has been shown in 
simulation studies that sample overlap bias is minimal when the variants comprising the MR 
instruments are strong (i.e., the variants have large F-statistics [F-statistics >10]60), and when 
overlapping samples come from large biobanks (i.e., the UKB),62 suggesting that our results are 
minimally affected by this source of bias.  Therefore, given that the potential overlap between 
the exposures and outcomes are primarily from data sourced in the UKB and the instruments 
comprising the substance use and neuropsychiatric exposures are strong, we do not expect 
sample overlap to bias these analyses.   
 
For the primary psychiatric disorder and substance use behavior exposures, we use the MRLap 
method recently developed to account for sample overlap between exposures and outcomes in 
two-sample MR analyses and shown to robust in settings when the exact overlap percentage is 
unknown.61  Assuming a “spike-and-slab” genetic architecture of the exposures, MRLap 
leverages cross-trait LD-score regression and calculates approximate sample overlap to provide 
an IVW estimate corrected for sample overlap.63  MRLap also assesses weak instrument bias and 
winner’s curse.61  We performed MRLap for all of the exposure-outcome analyses in the single-
variable MR, and per the developer guidelines, we use MRLap as a sensitivity analysis and 
report the MRLap-corrected estimate if it was different than the single variable IVW estimate.  
 
For schizophrenia, bipolar disorder, major depression, and alcohol use disorder, we also repeated 
the main analyses with independent, non-overlapping GWAS data (i.e., GWAS data that were 
not included in the meta-analyses for the main psychiatric disorder exposures did not overlap 
with multivariate longevity outcomes or epigenetic clock GWASs) from the FinnGen release 10 
(described in the above sections).  FinnGen does not have outcomes related to weekly alcohol 
consumption or smoking behavior, and therefore, these exposures were not included in the 
replication.   
 
Selection bias for MR analyses.  Large-scale GWAS analyses frequently uncover minor yet 
significant correlations with various common genetic variants using patient or volunteer-based 
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cohorts, leading to the development of polygenic risk scores (PRS) amalgamating these 
associations into weighted summary scores.64  Despite these advancements, all genetics based 
studies, including in the field of psychiatry, face important methodological challenges, including 
the potential for  selection bias in the GWAS samples.64  Selection bias occurs in genetic studies 
when participants included in the study are not representative of the general population, which 
may happen if the method of participant selection is biased or if certain groups are over- or 
under-represented.64  For example, if a genetic study on a particular disease only includes 
hospital patients, it might miss genetic variants that are relevant in the general population or 
overestimate the association between certain variants and the disease because hospital patients 
might have more severe forms of the disease.64   

It has been shown that the UK Biobank is subject to selection bias (in particular a “healthy-
volunteer bias”) among its participants: only 5.5% of the approximately 9 million UK adults 
invited to participate enrolled in the prospective cohorts study,65 and the participants have been 
shown to be more educated and have healthier lifestyles than the general UK population.66 
Similarly, the MVP is a cohort of US military veterans in the Veterans Health Administration 
healthcare system,67 which by its design is subject to selection bias.  
 
We performed a series of sensitivity analyses to assess evidence for selection bias in this study.  
First, we conducted extended MVMR with variables that may predict selection, including 
educational attainment, which has been recommended as one approach to assess evidence of 
selection bias,68 and performed repeated analyses using independent psychiatric exposure data 
from the FinnGen cohort.  We also performed negative control analyses where the assumption is 
made that the exposure(s) of interest cannot impact the outcome, which analyses has been 
previously recommended to evaluate selection bias in observational and two-sample MR 
studies.68,69  Here, we performed SVMR for the psychiatric disorders and substance use 
behaviors on self-reported tanning ability and also skin color; tanning ability and hair color have 
been used previously as example outcomes to detect population stratification in two-sample MR 
and suggested as a sensitivity analysis for selection bias (as discussed by Sanderson et al.70, 
while selection bias and population stratification are different, their resulting biases for two-
sample MR analyses are similar70) because the traits are determined at birth and not expected to 
be truly affected by any of the psychiatric disorders or substance use behaviors evaluated in this 
study.70  We performed negative control analyses using the Open GWAS Project GWAS of self-
reported ease of tanning and skin color among UK Biobank participants of European ancestry (N 
(tanning) = 453 065, N (skin color) = 456 692).71  We considered any MR IVW estimate with P-
value < 0.05 as evidence of an association between the exposure and self-reported tanning ability 
and/or skin color, which would suggest the exposure is subject to selection bias, and P-values > 
0.05 as evidence against the presence of selection bias.   
 
Additional two-sample MR assumptions.  Two-sample MR has several additional assumptions 
beyond the three main IV assumptions discussed above.  These assumptions include that the 
association between the genetic IV and exposure (here psychiatric disorders and substance use 
behaviors) and the association between the genetic IV and outcome (here longevity and 
biological age acceleration, are derived from comparable underlying populations.72  This issue is 
particularly evident in settings such as those testing the Developmental Origins of Health and 
Disease (DOHaD) hypothesis,72 using a sex-combined exposure GWAS (e.g., GWAS of 
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circulating lipids which assumes that the genetic instrument-exposure relationship is consistent 
across both males and females) performed against sex-specific outcome (e.g., the genetic liability 
for breast cancer in women), or performing trans-ancestral MR using exposures and outcome 
GWASs of non-matching ancestries.72    
 
While our current study uses only data from participants of European ancestry and performs no 
sex-stratified analyses (both due to limited availability of either exposure or outcome data, or 
both), we have included analyses from participants of European ancestry that are taken from 
cohorts with different sample demographics, e.g., analyses of the multivariate longevity outcome 
predominantly derived from the UK Biobank cohort (a large prospective study with ~500 000 
participants aged 40–69 years at the age of recruitment)73 with the PAU GWAS (exposure) data, 
derived from both UK Biobank and also the Million Veteran Program (MVP) cohorts, the latter 
being a cohort (predominantly male) of US military veterans using the US Veterans Health 
Administration healthcare system.67  While age and sex were included, along with population 
principal components, as covariates in the linear models for the GWASs, there may still be 
remaining impact on the MR estimates as a result of potentially violating the two-sample MR 
assumption that the instrument-exposure and instrument-outcome associations are derived from 
comparable underlying populations.72   
 
To address this potential source of bias, we performed several sensitivity analyses.  First, for the 
psychiatric exposures, we performed replication analyses using the FinnGen cohort (described 
above).  Additionally, for the PAU exposure using the MVP data, we evaluated whether the trait 
was genetically related to the other UK Biobank-derived alcohol consumption exposure traits, 
which would suggest a similar underlying genetic architecture (eFigure 3).    
 
Additional details necessary for interpreting study findings 
 
In the following subsections we discuss additional MR assumptions and related aspects of the 
analyses that are important for interpreting the study findings.  
 
Consistency assumption.  Another assumption for MR studies is the gene-environmental 
equivalence assumption (the “consistency assumption”),74 i.e., the genetically-mimicked levels 
of the exposure represent the changes observed if there were direct interventions on the 
exposure.75,76  Only the first IV assumption (the relevance assumption) in MR is fully 
empirically testable, while both the other two IV assumptions (independence and exclusion 
restriction), each rely upon all possible confounders of the exposure-outcome association (both 
measured and unmeasured) making it not possible to empirically validate the assumptions;  
however, it is possible to empirically assess the plausibility of these assumptions with 
complementary MR methods, sensitivity tests, e.g., negative controls, MVMR, and screening for 
pleiotropic variants.  It is not currently possible to empirically assess the plausibility of the 
consistency assumption.  More specifically, for this study the psychiatric disorders like 
schizophrenia, bipolar disorder, and major depression are complex and multifactorial,77 with 
different potential interventions (e.g., pharmaceutical, behavioral, environmental) that might 
either induce or prevent these disorders could have varying impacts on longevity and biological 
aging.  Given that the broad genetic liabilities underlying these disorders are not able to 
distinguish intervention-specific differences, there may be deviations of the MR results due to 
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the consistency assumption.  Further, these genetic liabilities likely do not capture the 
complexity and variability of treatments and outcomes in actual clinical settings, suggesting that 
the estimated effect might not align with the effect of any specific, real-world intervention.  As 
there are currently no sufficiently well-powered GWAS data that would enable an intervention-
specific analysis for these psychiatric outcomes due to trait complexity, and given the primary 
goal of this study to use the results from the SVMR and MVMR to guide further multi-omics 
analyses, we underscore interpretation of these analyses following the current recommended 
guidelines by Burgess et al.74: the genetic instruments for the psychiatric disorders do not reflect 
specific interventions but instead are used to find the set of genetic instruments that plausibly 
satisfy the instrumental variable assumptions (to the extent possible with the collection of 
complementary MR methods, sensitivity analyses, and MVMR models) and evaluate their 
relationships with longevity and biological aging using the largest available datasets.74 
 
Case-control cohorts.  It has been shown that MR using data from retrospective case-control 
studies may generate estimates subject to ascertainment bias (where the retrospective cohort is 
ascertained upon disease status).78  While the GWAS data sourced for this study were derived 
primarily from large meta-analyses with the majority of the included cohorts coming from 
prospective large biobank data (i.e., UK Biobank, MVP, and FinnGen), several of the smaller 
studies contributing to these meta-analyses were derived from retrospective case-control analyses 
(e.g., the Collaborative Study on the Genetics of Alcoholism [COGA] study79 included in the 
PAU meta-analysis by Zhou et al.15 and ~6 000 of the ~25 400 comprising the exceptional 
longevity GWAS80 included in the larger multivariate longevity outcome [N=709 709]).   
 
We sourced these GWAS meta-analyses as the largest-available GWASs for the traits.  However, 
we have incorporated several sensitivity analyses aimed at addressing potential biases related to 
inclusion of the retrospective case-control studies in the GWAS meta-analyses, including 
replication of the analyses using GWAS that do not include retrospective case-control cohorts 
(i.e., the FinnGen Release 10 diagnoses of schizophrenia, bipolar disorder, major depression, and 
alcohol use disorder), and comparing the main multivariate longevity estimates with analyses 
assessing the impact of the exposures on the univariate GWAS of lifespan, which does not 
include case-control cohorts.   
 
Assessing potential collider bias due to heritable covariate adjustment for the included GWASs.   
Adjusting for heritable covariates (e.g., body mass index) in GWAS construction may bias MR 
studies if the heritable covariate is a collider for the trait under evaluation.81  For example, 
Hartwig et al.81 demonstrated in simulations that covariate adjustment in the source GWAS data 
for two-sample MR studies may eliminate bias from horizontal pleiotropy, but also result in bias 
when there is residual confounding.81  The GWAS summary statistics sourced for this study only 
adjusted for age, sex, and principal components, which are the conventional covariates in GWAS 
analysis82 and did not include additional heritable covariates in their construction, which 
suggests minimal potential for this source of bias in these analyses.  See eTable 1 for additional 
details regarding covariate adjustment for the included GWASs.   
 
Time-varying exposures in MR studies.  In MR, SNVs comprising the exposure instruments are 
generally assumed to be consistently related to the exposure throughout an individual's life. 
However, in reality, the influence of these genetic variants on behaviors or conditions like 
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substance use or psychiatric disorders can fluctuate over time, resulting in potentially biased MR 
estimates if the genetic instruments' relationship to the exposures changes over time.83  
Additionally, while the use of MVMR allows for the consideration of multiple exposures 
simultaneously, it does not inherently correct for this issue, and MVMR may also produce biased 
estimates if the gene-exposure relationships are not constant over time or if the exposures 
interact with each other.84,85  This complexity further complicates the interpretation of MR 
findings in the context of time-varying exposures like psychiatric disorders or substance use 
behaviors.  Therefore, we underscore the importance of interpreting the estimates for these MR 
analyses as reflecting the genetic liability (and lifelong risk associated with them) for the 
analyzed psychiatric disorders and substance use behaviors rather than the effect of the 
exposures themselves.  Put another way, we emphasize that these MR exposures reflect the 
innate genetic predisposition to their respective psychiatric disorders and substance use 
behaviors, rather than their direct impact, and estimating the impact of these genetic liabilities 
differs from estimating the impact of the exposure itself: the former relates to an individual's 
inherent risk, while the latter pertains to the actual impact of the behavior or condition.83,85   
 
Interpretation of MVMR results.  In our final MVMR models simultaneously adjusting for 
multiple variables such as the genetic liabilities for smoking, major depression, schizophrenia, 
bipolar disorder, and weekly alcohol consumption, each variable included serves as a covariate 
to account for potential confounding effects.  The primary aim of including these variables in the 
fully adjusted models is to control for potential confounding factors.54  Adjusting for these 
variables, we aim to isolate the specific causal relationship between the exposures (e.g., a genetic 
variant associated with a particular trait) and outcomes, minimizing the influence of other factors 
that could independently affect the outcome.54 
 
Importantly, when adjusting for multiple traits, it is essential to consider pleiotropy (i.e., a single 
genetic variant affecting multiple traits).47  In MVMR, the inclusion of multiple traits as 
covariates facilitates identification and accounts for pleiotropic effects, which improves 
inferences that the estimated causal effect is specific to the exposure of interest.54  Therefore, the 
MVMR estimates associated with the exposure variables in the MVMR model may be 
interpreted as the direct causal role after accounting for the specified covariates.54  In other 
words, these coefficients represent the estimated causal impact of the genetic variants on the 
longevity outcomes, independent of the potential confounding effects of the other exposures 
included in the MVMR models, e.g., the role of genetically predisposed smoking, independent of 
major depression, schizophrenia, bipolar disorder, and alcohol consumption. 
 
Additional methods information for the cis-instrument MR screen of cortical proteins  
 
Colocalization for proteins identified by cis-instrument MR screen.  We used colocalization 
implemented in the coloc package86 (using default priors) to assess whether the genes identified 
in the cis-instrument MR stage share one or more causal variants with the respective alcohol 
consumption behavior.  We performed colocalization analysis testing for evidence of a single 
causal variant between the brain protein level and smoking behavior at the cis genomic locus of 
the respective encoding gene.  We included all SNVs, i.e., no P-value or LD filtering, within the 
cis locus (that is, all SNVs within ±100 kb of the gene’s genomic start- and end positions).  We 
considered a posterior probability >0.8 as suggestive that the cortical proteins or cell-type genes 
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and the respective alcohol consumption behavior share one or more causal variants in the gene 
region.  We took the cortical proteins with cis-MR estimates (either IVW or Wald ratio 
depending upon the number of instrument SNVs) and also demonstrating evidence of a shared 
causal variant between the brain protein level and smoking behavior at the cis genomic locus of 
the encoding gene forward for further characterization (described below).   
 
Replication in whole blood gene expression data.  The cortical brain protein QTL data are derived 
from postmortem tissues from 3 major brain banks (ROS/MAP, Banner Health, and Mt. Sinai 
Brain Bank).33  As outlined in several reviews and discussed in the eDiscussion (described 
below in the subsection with extended information on study limitations), postmortem brain tissue 
may be impacted by several sources of bias and other experimental factors that impact estimates 
derived from this type of data source.87-89  Therefore, we aimed to replicate the cortical proteins 
from the initial cis-MR screen with QTL data derived from living donors.  To our knowledge, 
there is currently no brain expression or protein QTL data derived from living donors.90  
Therefore, we used expression QTL derived from ~31 000 individuals in studies comprising the 
eQTLGen Consortium (described previously).91  Using the same cis-instrumentation methods as 
for the initial cis-MR screen (SNVs within ±100 kb of the locus; P-values of association < 5×10-

8; LD R2 < 0.1), we were able to cis-instrument 18 of the 27 brain proteins and performed cis-MR 
using the same methods as described in the above eMethods subsection (“MR statistical and 
sensitivity analyses”).   
 
Phenome-wide MR to assess potential side-effect profiles of cortical proteins associated with 
smoking behavior.  Due to the role that adverse side effects play in the failure of therapeutics 
during drug development,92 we aimed to enhance our understanding of the therapeutic potential 
of the 27 cortical proteins associated with smoking behavior (surpassing correction for multiple 
comparisons in the cis-instrument MR screen and demonstrating evidence of colocalization, i.e., 
posterior probability of a shared causal variant >0.8).  To achieve this, we conducted a phenome-
wide MR study involving 368 diseases and biomarkers (eTable 1).  Inclusion criteria comprised 
studies conducted in cohorts of European ancestry, sample sizes of at least 1 000 participants, 
with a minimum of 100 cases for binary variables, and availability of summary statistics (betas, 
standard errors, effect alleles) for 100 000 SNVs.  Cis-instrument MR analysis, as outlined in the 
preceding sections, was used.  We used a Bonferroni-corrected P-value threshold of 1.36×10-4 
(0.05/368 outcomes) to determine associations of the with biomarkers or diseases, and compared 
the directions of the cis-instrument MR estimates with the indicated direction of the cis-
instrument MR estimate that would be therapeutically indicated for reducing smoking behavior.   
 
Transcriptomic imputation statistical methods 
We were next interested in evaluating the transcriptomic underpinnings of the smoking-longevity 
relationships identified in the SVMR and MVMR analyses performed in the first part of the 
study.  Because available eQTL data are from cross-sectional studies, like the Genotype-Tissue 
Expression (GTEx) Project and The Cancer Genome Atlas (TCGA), and does not reflect changes 
in gene expression over time, there are inherent challenges in determining the directionality of 
the observed associations for all transcriptomic imputation studies.   
 
Because there are no longitudinal smoking behavior GWAS data available, to address the 
complexities arising from the temporal variability of both gene expression and smoking 
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behavior, we employed a lifetime smoking behavior index as our main endpoint for tobacco 
smoking assessment.93  It is a comprehensive measure designed to reflect an individual's 
smoking behavior over their life course, rather than solely focusing on aspects of current 
smoking behavior (e.g., current smoking status) (see ref.93 for information on the construction of 
the lifetime smoking index GWAS).    
 
We prepared each GWAS summary-level data file for transcriptomic imputation using the 
munge_sumstats.py script in LD Score Regression.94  We performed transcriptomic imputation 
using the TWAS FUSION method following the FUSION protocol default settings on autosomal 
chromosomes.95  The primary FUSION pipeline constitutes three steps: (1) identify gene 
expression features that are cis-heritable; (2) construct a linear predictor for each cis-heritable 
gene, i.e., a SNV-based prediction weight of the gene feature; and (3) calculate both TWAS test-
statistics incorporating these SNV-based prediction weights and summary-level GWAS Z-
scores.96  FUSION uses several penalized linear regression and Bayesian sparse linear mixed 
models (e.g., GBLUP, LASSO, Elastic Net, BLSMM) and computes an out-of-sample R2 

statistics to identify the best model via a cross-validation of each model.95  A cross-panel 
Bonferroni corrected P-value threshold of 8.31×10-7 [0.05/60 114 total tests across the panels]) 
was used to assess genes associated with lifetime smoking behavior.     
 
For all genes surpassing Bonferroni correction for multiple comparisons, we assessed whether 
they were captured by the genetic signature of lifetime smoking (as represented by the lifetime 
smoking behavior genomic loci, i.e., the lead independent variants comprising the smoking 
instrument).  We constructed 1 Megabase (Mb) windows around these lead variants (1 Mb 
upstream and 1 Mb downstream) and compared the TWAS-identified genes with these 2 Mb 
windows.  If the TWAS-identified gene was located within these windows, then we considered it 
to be captured by the smoking GWAS signature, and if it was located > 1Mb from any smoking 
loci, then it was considered a novel association with smoking not captured by the input smoking 
GWAS.   
 
Next, colocalization analysis statistics were generated for functional features whose TWAS P-
value surpassed Bonferroni correction for multiple comparisons.  PP.H4 measurements indicate 
the posterior probability that the functional feature and the GWAS share the same causal 
variant,97 and were used to further screen the smoking-associated genes.  Of the functional 
features eligible for colocalization analysis, only the features whose colocalization analysis 
against smoking exceeded a PP4 index of 0.6 were prioritized for further analysis. 
 
Comparison of smoking-associated genes with aging phenotypes  
As we aimed to provide gene-level resolution of the smoking-aging relationships identified in the 
polygenic SVMR and MVMR analyses, we took forward the colocalized smoking-associated 
genes and performed transcriptomic imputation of these features (gene-tissue pairs) in the 
multivariate longevity, GrimAge, and PhenoAge outcomes.  We compared the FUSION Z scores 
(the primary association statistics of the FUSION method) between smoking and the aging-
related outcomes for these genes and looked for Z scores that were consistent with the observed 
smoking SVMR and MVMR estimate, i.e., we looked for features that had opposing Z scores 
between smoking and multivariate longevity and concordant Z scores between smoking and 
EAA.  In addition to comparing individual gene-tissue features, we also assess the tissue-level 
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transcriptome-wide correlations between smoking and the aging-related traits using the full 
TWAS summary statistics.   
 
Bio-annotation of the smoking-associated genes 
We performed bio-annotation of the high-confidence, colocalized genes associated with smoking 
to provide further biological characterization.    
 
Gene ontology and pathway analysis:  We used EnrichR98 to perform gene ontology and pathway 
enrichment analyses using the high confidence TWAS genes associated with smoking behavior.  
We analyzed the smoking-associated genes for all tissues together and used the Gene Ontology 
(GO),99 Reactome,100 and KEGG101 gene sets.  201 of the 241 genes were found in the gene sets 
and used for analysis.  We report all gene sets with EnrichR enrichment P-values < 0.05.   
 
Open Genes lookup of prioritized smoking-associated genes.  The Open Genes database was 
developed to facilitate the cross-disciplinary integration of evidence supporting the involvement 
potential gene targets in aging-related processes.102  The developers collected data for 2 402 
genes with evidence of associations with aging and provided a comprehensive annotation of the 
genes relating to the strength of existing evidence for their involvement in lifespan-extending 
interventions, age-related changes, longevity associations, gene evolution, associations with 
diseases and hallmarks of aging, and functions of gene products.102  We screened the genes using 
the Open Genes database scoring system regarding the strength of the evidence for their 
relationships with aging (i.e., high, moderate, low, lowest).102    
 
Cell-type enrichment.  We next aimed to identify cell-type enrichment of the colocalized 
smoking-associated genes.  We took a tissue-agnostic approach and aimed to screen as many 
cell-types as possible for enrichment.  Therefore, we used the WebCSEA package,103 which has 
curated more than 5.5 million cells across 111 human tissue panels as well as 1 355 tissue-cell 
types from 61 human adult and fetal tissues comprising 12 organ systems.103  190 of the 202 
unique (i.e., we removed duplicated genes across FUSION tissue weights) smoking-associated 
colocalized genes were available in WebCSEA for enrichment analysis and we used P-values to 
assess cell-type enrichment.   
 
GTEx aging signatures for genes with associations with smoking and aging-related outcomes. For 
smoking-associated genes demonstrating FUSION Z that were directionally consistent with the 
MR analyses (e.g., increased smoking and decreased longevity/increased EAA), we aimed to see 
if there was evidence that these genes were differentially expressed with age.  Therefore, we 
performed a differential expression analyses with these genes using the PrismEXP method 
(https://appyters.maayanlab.cloud/#/PrismEXP) (Prediction of gene Insights from Stratified 
Mammalian gene co-EXPression), implemented in its Python package104 that is available as part 
of a suite of Appyters developed by the Ma’ayan Laboratory.  PrismEXP uses the ARCHS4 gene 
expression resource105 to calculate predicted gene functions from gene set data available as part 
of its catalog.98,105,106  We investigated each gene individually using the GTEx transcriptomic 
aging signatures for the GTEx tissues from a recent study that looked for up- or down-regulated 
genes between the old and young donors in the GTEx data,107 and defined statistical significance 
using the PrismEXP adjustment for P-values.   
 

https://appyters.maayanlab.cloud/#/PrismEXP
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eRESULTS  
 
Cross-trait genetic correlation analyses suggest strong shared genetics across psychiatric 
disorders and substance use behaviors  
We first performed cross-trait genetic correlation analysis to assess the genetic relationships 
among the psychiatric disorder and substance use behaviors used as exposures for the subsequent 
MR.  Broadly, we found strong genetic correlations linking the psychiatric disorders and 
substance use behaviors.  Full results are presented in eTable 11 and eFigure 3.  Bipolar 
disorder exhibited a substantial positive genetic correlation with schizophrenia (rg = 0.70, 
standard error [SE] = 0.03, P-value = 8.87×10-147), emphasizing shared genetic factors. 
Additionally, bipolar disorder demonstrated a modest positive correlation with smoking (rg = 
0.17, SE = 0.02, P-value = 1.89×10-14), suggesting a potential genetic link.  DPW and PAU 
exhibited a robust positive genetic correlation (rg = 0.78, SE = 0.04, P-value = 4.89×10-87), 
indicating shared genetic factors.  DPW also showed a positive genetic correlation with smoking 
(rg = 0.34, SE = 0.02, P-value = 6.59×10-63).  Moreover, major depression displayed positive 
genetic correlations with smoking (rg = 0.31, SE = 0.03, P-value = 9.64×10-31) and other 
psychiatric disorders.  These results illustrate the complex genetic architecture underlying the 
connections between psychiatric disorders, alcohol use, and smoking, providing valuable insights 
into their shared genetic influences. 
 
Transcriptomic imputation prioritizes gene-level mediators of the genetic liability for smoking 
behavior 
Full results for the TWAS on lifetimes smoking behavior are presented in eFigures 6-10, 
eTables 26-30.  470 gene-tissue features (representing 249 unique genes) surpassed Bonferroni 
correction for multiple comparisons (eTable 31).  Of these features, 46 were found to be novel 
(representing 37 genes), i.e., located more than 1 Mb from the genomic loci comprising the 
lifetime smoking genetic signature.  Further, we found evidence of shared causal variants 
(posterior probability [PP.H4] > 0.8) between the respective genes and lifetime smoking 
behavior in 241 of the 470 gene-tissue features (150 of the 249 unique genes) (eTable 32).  This 
indicates that the same genetic variants are driving the associations with the tissue-level genes 
expression and with smoking behaviors and suggests that these genes are transcriptome-levels 
mediators of the genetic liability for lifetime smoking behavior.  Excitingly, 27 of the 37 novel 
genes were also among the high-confidence genes, including SHC1 (SHC adaptor protein 1), 
COQ5 (Coenzyme Q5 methyltransferase), ARL17B (ADP Ribosylation factor Like GTPase 
17B), and TOP2B (DNA Topoisomerase 2 Beta).  The high-confidence genes were implicated in 
a range of biological processes, including DNA repair, chromatin remodeling, and telomere 
assembly/maintenance (eTable 33).  GO molecular function gene sets and Reactome pathways 
corroborated the involvement in chromatin and telomere functioning (e.g., Reactome: Chromatin 
Modifying Enzymes R-HSA-3247509 and Telomere Extension by Telomerase R-HSA-171319).  
 
Our screen of more than 1 355 cell types in 12 human organ systems to assess the single cell 
landscape of the high-confidence genes found strong evidence of enrichment (defined here as 
enrichment P-values surpassing Bonferroni correction for all cells tested) in several white blood 
cell types (i.e., classical monocytes, bone marrow erythroid progenitors, and natural killer T-
cells) and also cardiac muscle cells (eFigures 11-12, eTable 34).  Notably, there was no 
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evidence of enrichment for the smoking-associated genes among fetal organ systems, suggesting 
an age-dependent enrichment relationship.  There was some evidence for enrichment in 
pulmonary microvascular endothelial cells (P-value=0.0018); however, it did not surpass 
correction for multiple testing.   
 
Look-up of the high-confidence smoking-associated genes for involvement in aging processes.  
To further characterize gene targets that may link smoking with aging, we screened the 
colocalized, smoking-associated genes in the Open Genes database.  21 of the 150 colocalized 
genes were found in the Open Genes database curated gene list (2 402 total genes) and available 
for analysis.  Three of the 21 genes demonstrated moderate or high levels of confidence for their 
involvement with aging processes: the novel smoking-associated gene SHC1 ((high confidence); 
XRCC6 (X-ray repair complementing defective repair in Chinese hamster cells 6) (moderate 
confidence); and DGKZ (diacylglycerol kinase zeta) (moderate confidence), supporting their 
potential link between smoking and aging processes (eTable 35).   
 
Colocalized genes are shared between smoking and longevity 
145 of the 150 high-confidence genes were available for comparison with our primary 
multivariate longevity outcome and the two epigenetic clocks that demonstrated relationships 
with smoking in the SVMR and MVMR analyses (GrimAge and PhenoAge) (eTable 36).  31 of 
these genes demonstrated TWAS P-values with either the longevity or EAA outcomes surpassing 
correction for the total number of colocalized smoking features (241 total features) with TWAS 
Z scores that were directionally consistent with the smoking-longevity MR estimates (e.g., if the 
gene demonstrated a positive relationship with smoking [TWAS Z score >0], then it also 
demonstrated an adverse relationship with longevity [TWAS Z scores <0]).  For example, 
increased PRMT6 expression in lung, whole blood, and squamous cell lung carcinoma with 
lower smoking behavior (TWAS Z scores for smoking = ~-5.5 for all tissues) and positively 
associated with longevity in these tissues (TWAS Z scores for longevity = ~4.95 for all tissues).  
These genes were taken forward to assess whether they demonstrate evidence of differential 
expression related to aging in the GTEx tissues.107  Four of the 31 genes were not found in the 
GTEx aging signature data (C14orf153, ATP5G1, ATP5J2, and FAM150B).  25 of the 27 genes 
available for analysis demonstrated evidence for aging-related changes in expression (eTable 
37).  These genes were differentially expressed across several tissues, including whole blood, 
muscle, brain, heart, and adipose tissue, and several of the age-related differences in expression 
aligned with the TWAS direction of associations for smoking and longevity.  For example, the 
TWAS analysis found that lower PRMT6 (Protein Arginine N-Methyltransferase 6) was 
associated with increased smoking behavior and reduced longevity.  Correspondingly, PRMT6 
expression was lower in older individuals in 3 tissues (muscle, blood, and stomach).  Other genes 
had different aging-related expression patterns, e.g., increased XRCC3 (X-ray repair 
complementing defective repair in Chinese hamster cells 3 – not to be confused with XRCC6, 
also a high-confidence smoking behavior gene) was associated with increased smoking behavior 
in lung tissue and reduced longevity and also was lower in older individuals in muscle, blood, 
and stomach tissues.  There were also 46 high-confidence genes related to smoking behavior that 
also had directionally consistent relationships with longevity-related outcomes with TWAS P-
values < 0.05 that did not surpass correction for multiple comparisons (e.g., PSMA4, TOP2B, 
and ADD1) (Figure 4b in the main manuscript, eFigure 10, eTable 36 ).   
 



© 2024 Rosoff DB et al. JAMA Psychiatry. 

eDISCUSSION 
 
Discussion of the lack of adverse schizophrenia and bipolar disorder associations with longevity 
The lack of adverse genetics-based associations of SCZ and BD on longevity-related outcomes 
raises intriguing questions regarding the interplay between mental health disorders and overall 
well-being.  One explanation for these null findings could be survival bias, wherein individuals 
who carry genetic predispositions for SCZ and BD but do not manifest the disorders may 
comprise a subset of resilient individuals.  It is plausible that the genetic factors associated with 
SCZ and BD may exert complex effects on cognitive and emotional regulation, potentially 
fostering adaptive mechanisms that contribute to enhanced resilience and overall health.  For  
example, previous work found that BD genes are associated with increased intelligence,108 which 
may offset the shared genetics with smoking behavior (eFigure 3, eTable 11), resulting in an 
overall neutral association.  Another explanation may be selection bias, wherein individuals with 
more severe SCZ and BD may be underrepresented in the GWAS source cohorts.  Relatedly, it is 
possible that different symptoms within the spectrum of SCZ and BD may have varying impacts 
on aging and longevity, with certain aspects of these disorders more closely linked to negative 
health outcomes, and other aspects, less influential.  Given the strong genetic correlation of SCZ 
and BD with smoking behavior, it is also possible that the strong genetic signature of smoking 
(i.e., more genetic variants than either SCZ or BD) captures part of the symptomology 
attributable to reduced longevity related to these disorders.  Nevertheless, these findings 
emphasize future research is essential to unravel the intricate relationships between mental 
health, genetics, and longevity and inform the nuanced mechanisms that underlie these complex 
interactions. 
 
Discussion of high-confidence genes associated with smoking behavior and longevity  
We also extend the discussion for several of the prioritized smoking-associated genes from the 
TWAS and colocalization analyses.   
 
First, XRCC3 (X-ray repair complementing defective repair in Chinese hamster cells 3) is an 
important enzyme involved in the homologous recombination repair pathway, and plays a crucial 
role in maintaining genomic integrity.109  As cells age, DNA damage accumulates, leading to 
increased susceptibility to diseases and impaired cellular function, and DNA repair genes like 
XRCC3 may have important roles in protecting individuals from aging and disease-causing 
agents, such as smoking.110  Several human-based studies have linked XRCC3 and other XRCC 
members (XRCC4 and XRCC6 – also one of the high-confidence genes associated with smoking 
in our TWAS and colocalization screen) with smoking and several cancer types111-113 (e.g., lung 
cancer in the Han Chinese population112), including finding that XRCC3 polymorphisms may act 
as modifiers of the effects smoking on pancreatic cancer113 and bladder cancer.111  More broadly, 
there is a DNA damage theory of aging114 and investigating the therapeutic potential of XRCC3 
in the context of aging could unveil novel strategies to mitigate age-related genomic instability 
and promote healthier aging.  By enhancing the efficiency of DNA repair through XRCC3 
modulation and other DNA repair agents, it may be possible to counteract the detrimental effects 
of accumulated DNA damage, potentially slowing down the aging process and reducing the risk 
of age-related diseases.114  
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PRMT6 is an enzyme that belongs to the PRMT family and is involved in post-translational 
modification by catalyzing the methylation of arginine residues in proteins; previous work has 
shown that PRMT6 promotes cell growth and prevents senescence, and its expression levels are 
elevated in cancer patients, suggesting it as a promising cancer drug target.80  This role in 
epigenetic regulation and chromatin remodeling suggests potential implications in age-related 
changes in gene expression as epigenetic modifications, such as arginine methylation, contribute 
to the regulation of cellular functions and may influence the aging process.115  In addition, 
PRMT6 was found to mediate inflammation (by the NF-κB/p65 pathway) caused by cigarette 
smoking in a mouse model of emphysema.116  Exploring how PRMT6 activity is modulated 
during aging and its specific targets in the context of age-related cellular changes could provide 
valuable insights into the molecular mechanisms underlying aging. 
 
In addition to the high-confidence genes associated with smoking behaviors with corresponding 
estimates surpassing the stringent correction for multiple comparisons with the longevity-related 
outcomes, there were 46 high-confidence genes related to smoking behavior that also had 
directionally consistent relationships with longevity-related outcomes, with TWAS P-values < 
0.05 that did not surpass the correction for multiple comparisons (adjusted P-value threshold = 
0.000207).  Among these potential targets, we will highlight TOP2B (DNA Topoisomerase 2 
Beta) given its role in maintaining genomic stability,117 which is considered a main causal factor 
for aging.118  TOP2B is involved in DNA replication, repair, and recombination, crucial 
mechanisms for maintaining the integrity of the genome.  As cells age, the cumulative effects of 
environmental exposures, such as cigarette smoke, can impact DNA integrity and repair 
mechanisms.117,118  As cells age, the cumulative effects of environmental exposures, such as 
cigarette smoke, can impact DNA integrity and repair mechanisms.117,118  TOP2B is widely-
expressed, and considered an anti-cancer target,117 and cells treated with TOP2B inhibitors die 
with chromosomal alterations.119  The associations of TOP2B with smoking behavior and 
longevity that we found suggests a potential link between exposure to tobacco and alterations in 
genomic stability mediated by this enzyme.  
 
We also highlight several of the novel smoking-associated genes.  First, SHC1, which our TWAS 
and colocalization screen identified as a novel, high-confidence smoking-related gene, is an 
important target in aging-related research120 based upon early mice studies finding that 
knockouts improved oxidative stress response and extended lifespans.121  SHC1 encodes a 
multifaceted signaling adaptor protein, which holds significant promise in both aging-related 
research.122  In the context of aging, SHC1 is known to play a crucial role in cellular pathways 
influencing proliferation, survival, and responses to stress.122  More recently, it has been shown 
that increased SHC1 and the dysregulation of the epigenetic signature within the SHC1 locus 
promotes lung cancer metastasis.123,124  Further, a genome-wide DNA methylation study looking 
at the epigenetic impact of smoking identified SHC1 as one of the differentially methylated 
genes, providing a potential mechanistic link (and therapeutic target) between smoking and 
SHC1.125  As cells age, dysregulation of these pathways can contribute to cellular senescence and 
the development of age-related diseases.  By understanding how SHC1 modulates these 
processes, researchers aim to uncover potential therapeutic strategies to mitigate age-associated 
cellular dysfunction and enhance stress resistance, ultimately promoting healthier aging. 
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Finally, we discuss the novel smoking target, ARL17B, that also demonstrated directionally 
consistent TWAS associations with longevity and differential expression with age in the GTEx 
tissues.  ARL17B is a member of the ADP-ribosylation factor-like (ARL) family, which plays a 
role in intracellular vesicle trafficking and cellular signaling pathways.126  Intracellular vesicle 
trafficking plays an important role in various cellular functions, such as protein and lipid 
transport, organelle dynamics, and signal transduction, which are critical for maintaining cellular 
homeostasis126 – a hallmark of aging.127  Smoking impairs cellular homeostasis, potentially 
though inflammation and increased oxidative stress,128 which suggests that ARL17B and other 
homeostatic response genes may be viable targets to reduce the impact of smoking.   
 
Discussion of the potential pathways modeled by MVMR 
Strengths of this study include the use of complementary SVMR and MVMR methods, each 
relying on related assumptions that assess the validity of the MR framework, providing 
confidence in the robustness of the results and strengthening causal inference.129  Another 
strength is the use of MVMR, facilitating the simultaneous evaluation of both psychiatric 
disorders and substance use behaviors.52,130 
 
Prior genetics-based analyses using SVMR to separately investigate the impact of substance use 
behaviors or psychiatric disorders on longevity outcomes8 are limited in interpretation due to 
potential pleiotropy from related confounders,52,130 i.e. vertical pleiotropy, present if the SNVs 
instrumenting their respective psychiatric disorder (or substance use behavior) impact longevity 
first via their impact on substance use behaviors, which would, in turn, impact longevity 
(eFigure 17a); or horizontal pleiotropy, present if SNV instruments for psychiatric disorders 
directly impact longevity by a corresponding role in substance use behaviors without mediation, 
violating also the third core assumption of MR (eFigure 17b).31  Alternatively, psychiatric SNV 
instruments would potentially be subject to confounding bias if they impact the genetic 
propensity for psychiatric disorders and various substance use behaviors, but do not impact 
substance use behaviors on longevity (eFigure 17c).  In these cases, MVMR more accurately 
models potential comorbidity between psychiatric disorders and substance use behaviors and 
provides unconfounded estimates of their impact on longevity, needed to guide comprehensive 
and targeted treatment programs aimed at treating the causal risk factors for reduced longevity in 
these populations.    
 
Extended discussion of strengths & limitations  
 
Strengths & limitations of the longevity-related outcomes.  Here we expand upon the strengths 
and limitations of the longevity-relate outcomes discussed in the main manuscript.  As this study 
aimed to assess the relationships of psychiatric disorders and aging related to chronic disease, 
and our multivariate aging outcome incorporates the genetics related to healthspan and lifespan, 
these results may capture a broad healthy aging liability that is important to inform potential 
prevention and intervention strategies aimed at improving healthy aging.  However, despite the 
incorporation of data related to exceptional longevity, our results should not be interpreted 
through the lens of lifespan extension and instead with an emphasis of reduced burden of chronic 
illness.  There are additional considerations important for study interpretation regarding the 
univariate input GWAS data comprising the multivariate aging outcome.  For example, the 
univariate GWAS of healthspan incorporated into the multivariate aging outcome is dependent 
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upon the sample composition and selection protocols in the UKB.  Because the UKB is 
comprised of adults between 40-69 years, and is enriched in cardiovascular disease and cancer, 
but has relatively few cases of Alzheimer’s disease,66 there may be important genetic signals 
related to healthspan that are missed in this dataset.  However, as cardiovascular disease is the 
leading cause of globally,131 this cardiovascular disease enrichment in the UKB may have 
important implications for the generalizability of the healthspan outcome.  Similarly, because 
risk factors and leading causes of death change over time,132 the parental lifespan data may 
reflect the pattens of the causes of death in the United Kingdom from several decades ago, which 
may not fully approximate the current demographic characteristics among the UKB participants.  
Nevertheless, as healthy aging relates to the burden of chronic illness among psychiatric 
populations, addressing healthy aging in these populations and the healthspan-lifespan gap in 
these populations is particularly important.133  For example, efforts to promote smoking cessation 
and improve mental health outcomes would complement interventions aimed at extending the 
period of healthy aging.  This includes tailored approaches that address the unique challenges 
faced by individuals with psychiatric disorders, such as integrated care models that 
simultaneously target smoking cessation and mental well-being.  
 
Outlined in the original GWAS by Zenin et al.,5 the healthspan GWAS was constructed using 
Cox proportional hazards models for one of the 8 most common disease outcomes, including 
death, in the UKB.  Zenin et al.,5 found strong genetic relationships between the healthspan and 
lifespan GWAS data (rg=0.82), and were concerned about whether this relationship was driven 
by death events in the healthspan definition.  Therefore, they performed a sensitivity analyses 
removing death from their healthspan definition and re-analyzed the relationship with lifepan, 
finding the relationships to be robust (rg=0.80), which suggests little impact of death being 
included in the definition of healthspan.5 
 
More broadly, in study designs using Cox proportional hazards models, there is the potential for 
bias related to censoring by death, often termed competing events, where an participant may die 
before developing the disease or trait outcome of interest that they might otherwise have 
developed had they not died.134  For example, studies of survival evaluating the risk for dementia 
or death by dementia may be susceptible to this type of bias as individuals who die by other 
chronic diseases (e.g., cardiovascular disease or cancer) would be unable to develop or die by 
dementia, which would bias the dementia-focused analyses.134  While the broadly defined 
healthspan outcome may also be susceptible to this form of bias, because it is constructed of the 
8 most common diseases in the UK Biobank, it may be more robust to competing event bias than 
a more narrow definition with only one or two age-related disease categories, or one that does 
not include death in its construction.  For example, unlike a survival analysis focused solely on 
dementia that will misclassify participants if they die by cardiovascular disease or cancer prior to 
being diagnosed with dementia, these participants would, under the definition of healthspan in 
the GWAS constructed by Zenin et al., still be correctly identified as having a completed 
healthspan because these disease categories were included in its definition.   
 
Nevertheless, despite the definition of healthspan encompassing the 8 most common diseases, 
there may still be some residual bias related to competing events.  However, we also performed 
sensitivity analyses using the lifespan GWAS univariate GWAS data, one of the component 
longevity-related GWASs comprising the multivariate longevity outcome.  These analyses were 
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consistent with the main MR findings for the multivariate longevity outcome, suggesting robust 
estimates for the psychiatric disorders and substance use behaviors.   
 
Regarding the epigenetic clocks, we emphasize that the epigenetic clocks from whole blood may 
not capture tissue-specific aging patterns.  Different tissues in the body can age at different rates 
due to variations in cellular turnover, exposure to environmental factors, and the presence of 
tissue-specific epigenetic marks.133  Whole blood epigenetic clocks provide a systemic overview 
of aging processes but may not accurately reflect the aging dynamics of specific tissues or 
organs.8,9  Consequently, findings derived from whole blood epigenetic clocks may not fully 
represent the aging trajectories of particular tissues relevant to certain diseases or conditions, 
which highlights the need for follow up studies incorporating tissue-specific epigenetic data or 
developing specialized clocks for specific tissues when the data becomes available.  
Nevertheless, as they may reflect an overall system-level assessment of aging8,9 and given the 
relative ease in obtaining blood samples from participants in clinical studies, they offer an 
exciting clinical endpoint to easily and accurately measure possible changes in biological age 
related to the interventions of interest (e.g., a hypothetical clinical trial evaluating the impact of 
smoking cessation on EAA among substance use disorder patients).   
 
Finally, our findings do not directly investigate the potential for reduced longevity in psychiatric 
populations via suicide completions.  Because of high mortality rates in psychiatric populations 
due to increased risk for chronic physical health conditions,135,136 the aim of our study was to 
disentangle the impact of major psychiatric disorders and substance use behaviors on longevity 
outcomes related to chronic and age-related diseases and evaluate whether or not the genetic 
predisposition for psychiatric disorders is directly related to reduced aspects of longevity from 
chronic and age-related diseases.  Risk for suicide ideation and completion is increased among 
those with psychiatric disorders relative to the general population.137,138  Suicide accounts for 
~800 000 annual worldwide deaths,139 representing a cause of mortality in psychiatric 
populations not directly linked to chronic health and age-related diseases.  Future studies are 
needed to further investigate the biological pathways linking psychiatric disorders and 
suicidality.   
 
Extended discussion of genetic liability for time varying exposures including psychiatric disorders 
and substance use behaviors.  As outlined in the eMethods, these genetics-based findings should 
be interpreted as the genetic liabilities for the psychiatric disorders and substance use behaviors 
and not the impact of the exposures themselves due to their time-varying nature.140-143  For 
example, in the SVMR and MVMR models, we identified strong associations for the role of 
inherent genetic factors in predisposing individuals to smoking and its associations with 
longevity and epigenetic aging.  These may be important to inform the preventive strategies 
targeting those with a higher genetic risk for smoking.  The distinction between genetic liability 
and actual exposure interpretations is critical for both understanding the results and informing 
public health interventions.  If the results suggest that genetic liability for smoking reduces 
longevity, it highlights the role of inherent genetic factors in predisposing individuals to smoking 
and its associated health risks.  This knowledge can guide preventive strategies targeting those 
with a higher genetic risk in the context of this stable, lifelong genetic liability.   
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By contrast, if the focus is on actual smoking exposure, interventions might be more directed 
towards smoking cessation and controlling environmental and social factors that influence 
smoking behavior, which may vary over time (e.g., patterns of smoking initiation, intensity, 
cessation, and relapse differing significantly among individuals).  This variability would then 
profoundly affect the health outcomes associated with smoking, including longevity.140   
 
For example, a population-based prospective study of ~68 000 Japanese adults found that among 
those who continued to smoke throughout the duration of the study, the overall mortality was 
more than doubled in both men and women (rate ratios versus never smokers: men 2.21, 95% 
confidence interval [CI], 1.97-2.48), women 2.61 (95% CI 1.98-3.44)) and that life expectancy 
was reduced by 8 years among men and 10 years among women,144 suggesting a substantial 
reduction in mortality and morbidity for smoking cessation.  However, the study also found that 
the benefit of smoking on mortality and morbidity was greater among those who stopped before 
age 35 (avoided all excess risk), which contrasted to those who stopped smoking with the next 
decade (before age 45): these individuals still reduced much of the excess risk, but slightly less 
than their counterparts who stopped earlier in life.144  Similar results were observed by Jha et al. 
who analyzed ~200 000 adults in the United States National Health Interview Survey and found 
that an approximate 10 year reduction in life expectancy among the current smokers (versus 
never smokers), and also that smoking cessation led to life expectancy gains that differed some 
by age of smoking cessations: quitting smoking at ages 25 to 34, 35 to 44, or 45 to 54 resulted in 
10, 9, and 6 years of life, respectively (versus adults who continued smoking).145   
 
Importantly, as Jha et al. noted, these life expectancy gains from smoking cessation should not be 
interpreted as it being safe to smoke until ~25-40 years of age.145  Among adults in the United 
States National Health Interview Surveys, they showed that there remains a substantial excess 
risk of (~20%), which is interpreted that among former smokers who die before the age of 80, 
one in six would have survived if they had experienced death rates similar to people of the same 
educational background, body fat, and alcohol usage who had never smoked.145  This 
underscores the importance of considering both genetic predispositions and actual behavioral 
patterns in public health strategies aimed at reducing smoking-related mortality and morbidity.   
 
Limitations related to homogeneity assumption.  While the estimates for the psychiatric disorders 
and substance use behaviors were robust in both MVMR models accounting for socioeconomic 
factors and risk factors, and sensitivity analyses performed aimed at assessing the validity of the 
homogeneity assumption for the exposures suggested that the results are not biased by violations 
of the homogeneity assumption, we still cannot rule out that there may be violations of the 
homogeneity assumption (that the impact on the exposure resulting from changes in the level of 
the instrumental variable should be consistent in direction across all individuals),19,39 that would 
bias the results; however, it is unclear in which direction the biases would impact the estimates.   
 
Limitations related to selection bias.  While MR estimates for the psychiatric disorder and 
substance use behaviors were consistent in MVMR models adjusting for potential predictors of 
selection (i.e., educational attainment), the psychiatric disorder estimates were robust across 
repeated analyses with the FinnGen cohort, and negative control analyses with self-reported 
tanning ability were null, altogether suggesting that results were not biased by potential 
predictors of selection, we are still unable to fully rule out that selection bias may be present, 
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which would impact these results.  As discussed by Gkatsionis et al., selection bias may impact 
MR studies, but its potential impact may be less than that of other bias sources, including 
pleiotropy and population stratification.146  Importantly, results from the negative control 
analyses used to assess population stratification70 and also from the sensitivity analyses used to 
assess the plausibility of the core MR assumptions (i.e., complementary MR methods, screening 
for pleiotropic variants, MVMR, etc.) suggest minimal impact of these sources of biases in these 
analyses.  However, along the lines of the limitation that the analyses were performed in 
participants of only European ancestry, we still emphasize that caution is warranted before 
generalization to other populations. 
 
Retrospective case-control cohorts.  Another potential limitation of the study is the inclusion of 
retrospective case-control cohorts as part of some of the GWAS meta-analyses used in this study.  
As discussed in the eMethods, it has been shown that MR using data from retrospective case-
control studies may produce estimates subjected to ascertainment bias (where the retrospective 
cohort is ascertained upon disease status).78  Fortunately, the case-control cohorts only comprised 
small percentages of the much larger meta-analyses, and we performed sensitivity analyses to 
assess potential biases that may be related to these cohorts being in the larger GWAS data, 
including leveraging exposure and outcome datasets that did not include retrospective case-
control cohorts in their overall sample.  Importantly, in this study, MR estimates derived using 
these meta-analyses were consistent with other analyses that did not have retrospective case-
cohort studies among the included cohorts.  For example, the multivariate longevity estimates 
were consistent with both the estimates from the epigenetic clocks and also sensitivity analyses 
using only the lifespan GWAS data from the UK Biobank.1  Similarly, MR estimates for PAU 
aligned with the alcoholic drinks per week variable, which did not include a retrospective case-
control cohort.  We were also able to replicate the analyses of the main psychiatric disorders, 
including alcohol use disorder using clinical diagnoses from the FinnGen cohort,27 a prospective 
population-based study.  This replication was particularly important since the analyses using 
psychiatric disorder exposures comprised, in part, of retrospective case-control study data, which 
provides further support that the MR-based relationships were not artifacts of the case-control 
studies included in several of the large GWAS meta-analyses.  Further, the GWASs themselves 
constructed using these case-control cohorts performed sensitivity tests as part of the GWAS 
analysis pipeline to assess the suitability of integrating these cohorts into the larger meta-
analyses (e.g., comparing frequencies of each genetic variant are compared between cases and 
controls and testing to determine whether any specific SNVs are found more frequently in 
individuals with the disease compared to those without147,148).  More broadly, we emphasize that 
all genomics-based studies are subject to forms of ascertainment bias (unless the entire genome 
of every individual in a population is sequenced) because common SNV-phenotype relationships 
are more likely to be captured in small samples than rare SNV-phenotype relationships.148  
 
Potential bias due to additional two-sample MR assumptions.  There may also be bias related to 
demographic differences for several of the exposure-outcome pairs (i.e., the MVP cohort and UK 
Biobank cohort), which may not fully meet the same sample assumption for two-sample MR 
studies.72  Importantly, for the MVP data, which was used for the PAU exposure, Zhou et al. 
found strong genetic correlation between AUD diagnoses in the MVP cohort and AUDIT-P 
scores in the UK Biobank (the two traits and cohorts used for their PAU GWAS meta-analysis), 
and we found that the MVP PAU diagnoses has a strong genetic correlation with weekly alcohol 
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consumption in the UK Biobank (eFigure 3), suggesting overlapping genetic architectures of 
these traits in these two cohorts.  The MR estimates for PAU were in line with those from the 
weekly alcohol drinks consumed outcome derived from the UK Biobank.  Additionally, 
replication analyses using diagnoses of alcohol use disorder (AUD) from electronic health 
records in the FinnGen cohort (latest release, N=412 181).  Results using these FinnGen 
exposures aligned with the primary exposure datasets, suggesting robust relationships of AUD, 
schizophrenia, and bipolar disorder, which together suggests that any bias here may be minimal.   
 
Comment about postmortem brain data.  We would also like to acknowledge the potential 
limitations regarding the use of QTL data reflecting the genetic component of brain cortex 
proteins33 used in this study to perform the cis-MR analyses to identify brain protein signatures 
of smoking behavior and potential therapeutic targets for future investigation.   
 
Necessarily, these data are derived from postmortem tissues from 3 major brain banks 
(ROS/MAP, Banner Health, and Mt. Sinai Brain Bank).33  As outlined in several reviews, 
postmortem brain tissue (versus, for example, biopsy tissue from living donors, which is only 
available under exceptional circumstances/conditions that require neurosurgical interventions87), 
which is an integral data source for neuropsychiatric research because the brain is the 
etiologically most important tissue,87-89 may be impacted by several sources of bias and 
confounders.  For example, there may be selection bias of the postmortem tissue88 due to the 
non-random nature of the sample collection process.  Individuals whose tissues are available for 
postmortem studies often have specific characteristics or conditions that led to their death and 
subsequent inclusion in the study.  For instance, these individuals might have had certain 
neurological or psychiatric conditions, leading to an overrepresentation of these conditions in the 
sample.  As a result, the genetic associations observed in postmortem QTL data may not 
accurately reflect the general population or other subpopulations.87-89  We underscore that this is 
an important limitation of both the current cis-MR analyses presented in this study, and also the 
growing body of neuropsychiatric literature linking genomics with transcriptomic and proteomic 
levels in the brains, including several previously reported studies using these cortical protein data 
sources,33,149-151 as well as the large body of literature leveraging the rich GTEx datasource.152 
 
Another experimental factor important to consider postmortem brain tissue issue (and more 
generally any tissue type collected postmortem) is the series of complex changes the body 
undergoes at death, e.g., upon death the tissue will be subject to a wide range of biological 
changes, such as fluid shifts in both the intracellular and extracellular matrices, biomolecule 
degradation, intracellular vacuolization, apoptosis, and necrosis88 (see Krassner et al. for a 
comprehensive review of cellular changes in brain-related tissue88).   
 
Because there are currently brain QTL data sources not derived from postmortem samples, we 
attempted to replicate and validate our brain QTL findings using QTLs derived from living 
donors.  We were able to successfully cis-instrument 18 of the 27 cortical proteins associated 
with smoking behavior from the initial screen.  We found strong replication of the targets (10 of 
18) in the whole blood, suggesting robust associations with smoking behavior.  Notably, despite 
previous work finding that peripheral tissues are less suited for target discovery than brain 
tissue,89 expression between whole blood and brain has been shown to be correlated,153,154 and in 
the context as replication analyses/sensitivity tests using samples from living donors, these 
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findings, when combined with the initial screen of brain proteins in relevant tissue for the 
predisposition for smoking behavior,155-157 provide important support for these targets.  
Nevertheless, we underscore the importance of interpreting the cis-instrument MR analyses and 
findings through the lens of the experimental factors present in the underlying data and cohort 
composition.   
 
Comment regarding diversity in genetics-based research 
As discussed in the main manuscript, this study uses genetics-based data from participants of 
European ancestry, and therefore, we emphasize caution in generalizing the findings to non-
European populations and also the need for replication of these findings in non-European cohorts 
when outcomes related to longevity (e.g., lifespan, healthspan, and exceptional longevity) 
become available.  More generally, there exists a need to improve race/ancestry representation in 
genetics-based studies across all clinical disciplines.158-164  As outlined by Fatumo et al.,161 the 
imperative for increased genetic diversity in genomic studies is underscored by the prevailing 
imbalance, where the majority of data comes from individuals of European ancestry, leaving 
other populations underrepresented.161  This European-centric bias not only raises ethical 
concerns but also results in missed scientific opportunities and health disparities.161  For 
example, inadequate representation impedes the identification of population-specific variants 
and, in the application of Mendelian randomization studies, potential ancestry-specific 
differences in the causal roles of important risk factors and biomarkers in disease risk.  It also 
limits the accuracy of polygenic risk scores for diverse populations, and overlooks clinically 
important variants discovered exclusively in underrepresented groups.161  Addressing the 
inequalities in genomic studies requires a concerted global effort to implement a roadmap for 
increased diversity.161  These initiatives should leverage existing research infrastructure, 
capacity, expertise, and leadership within local institutions.  Further, overcoming historical 
injustices, building trust, and considering ethical, legal, and social implications in study design 
are essential for engaging diverse populations in genomic research.158-164  Ultimately, fostering 
genetic diversity is not only an ethical imperative but also crucial for advancing scientific 
understanding, reducing health disparities, and ensuring the applicability of genetic insights 
across a broad spectrum of populations.   
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eFIGURES 
 

eFigure 1.  Mendelian Randomization Model and Assumptions.  𝛽𝛽2 is the genetic association 
of interest, estimated by 𝛽𝛽2= 𝛽𝛽1/ 𝛽𝛽3. 𝛽𝛽1 and 𝛽𝛽3 are the associations of the genetic variants with the 
exposure and the outcome.  MR assumes that the genetic variants comprising the instrument for 
the exposure only impact the outcome of interest via the exposure and not directly, or via 
confounders (dotted lines).19   

 
 

 



© 2024 Rosoff DB et al. JAMA Psychiatry. 

 

eFigure 2.  Mendelian Randomization (MR) Model and Assumptions applied to CHRNA5-
CHRNA3-CHRNB4 gene cluster.  As with conventional polygenic MR, 𝛽𝛽2 is the genetic 
association of interest, estimated by 𝛽𝛽2= 𝛽𝛽1/ 𝛽𝛽3. 𝛽𝛽1 and 𝛽𝛽3 are the associations of the genetic 
variants with the exposure and the outcome.  In this cis-instrument MR application, we 
constructed a genetic instrument for lifetime smoking using variants only located within or near 
(within 100 kilobases) of the CHRNA5-CHRNA3-CHRNB4 gene cluster which encodes nicotinic 
acetylcholine receptors.  We then performed cis-instrument MR analysis assessing the impact of 
smoking on aging outcomes (healthy aging and epigenetic aging).  Because cis-instrument MR 
variants are located within the locus of genes with well-known effects on the exposure of interest 
(here mediating the effects of nicotine), they are less prone to pleiotropy and provide important 
addition support of the polygenic MR analyses.    
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eFigure 3.  Cross-trait genetic correlations between the psychiatric disorders and substance 
use behaviors used as Mendelian randomization exposures.  All genetic correlations were 
positive (e.g., increased SCZ was genetically correlated to increased smoking, etc.).  

Abbreviations: SCZ: schizophrenia, BD: bipolar disorder: MDD: major depression; PAU: 
problematic alcohol use; DPW: drinks per week.   
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eFigure 4.  SNV-SNV plot for Mendelian Randomization (MR) results assessing the 
relationship of smoking on GrimAge using the smoking instrument comprised of variants in 
the CHRNA5-CHRNA3-CHRNB4 gene cluster.  Points plotted are the associations statistics for 
the 5 variants comprising the CHRNA5-CHRNA3-CHRNB4 gene cluster smoking instrument (x-
axis are the SNV-smoking association statistics; y-axis are the corresponding SNV-aging 
association statistics form the multivariate longevity data).  The regression lines correspond to 
the main inverse variance weighted and complementary MR methods.  
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eFigure 5.  FUSION transcriptome-wide association study (TWAS) of lifetime smoking 
using the sparse canonical correlation GTEx weights.  Plotted are TWAS Z-scores.  
Highlighted genes surpass correction for multiple comparisons.  Highlighted genes surpass 
correction for multiple comparisons for genes analyzed in the individual tissue (37 917 genes 
analyzed in the sparse canonical correlation GTEx weights).   
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eFigure 6.  FUSION transcriptome-wide association study (TWAS) of lifetime smoking 
using weights from GTEx lung tissue.  TWAS Z-scores are plotted.  Highlighted genes surpass 
correction for multiple comparisons for genes analyzed in the individual tissue (8,573 genes 
analyzed in the GTEx lung tissue).   
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eFigure 7.  FUSION transcriptome-wide association study (TWAS) of lifetime smoking 
using whole blood gene expression (from GTEx).  TWAS Z-scores are plotted.  Highlighted 
genes surpass correction for multiple comparisons for genes analyzed in the individual tissue (7 
981 genes analyzed in the GTEx whole blood).   
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eFigure 8.  FUSION transcriptome-wide association study (TWAS) of lifetime smoking 
using The Cancer Genome Atlas (TCGA) lung adenocarcinoma tissue.  TWAS Z-scores are 
plotted.  Highlighted genes surpass correction for multiple comparisons for genes analyzed in the 
individual tissue (2 948 genes analyzed in the TGCA lung adenocarcinoma tissue).   
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eFigure 9.  FUSION transcriptome-wide association study (TWAS) of lifetime smoking 
using The Cancer Genome Atlas (TCGA) lung squamous cell carcinoma tissue.  TWAS Z-
scores are plotted.  Highlighted genes surpass correction for multiple comparisons for genes 
analyzed in the individual tissue (2 515 genes analyzed in the TGCA lung squamous cell 
carcinoma tissue).   
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eFigure 10.  Gene set enrichment results for smoking-associated genes.  Presented are bar 
plots (-log10[P-values] for enrichment) of the Gene Ontology (GO) and pathway enrichment 
results for the top five ontologies or pathways of the high-confidence genes associated with 
smoking behavior.  The KEGG pathway only had four gene-sets with enrichment P < 0.05, and 
therefore, only four KEGG pathways were plotted.  They x-axis is the -log10(P-value) for the 
enrichment test.  
 
Abbreviations: BP: biological processes; CC: cellular component; MF: molecular function  
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eFigure 11.  Adult organ system cell-type enrichment of the high-confidence genes 
associated with smoking behavior.  Manhattan plot presents the -log10(P-values) for the 
enrichment of the gene-level signatures for smoking behavior (TWAS genes that surpassed 
correction for multiple comparisons and also demonstrated evidence of a shared causal variant in 
the gene locus).  Labeled cell types surpass Bonferroni correction for multiple comparisons.   
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eFigure 12.  Fetal organ system cell-type enrichment of the high-confidence genes 
associated with smoking behavior.  Manhattan plot presents the -log10(P-values) for the 
enrichment of the gene-level signatures for smoking behavior (TWAS genes that surpassed 
correction for multiple comparisons and also demonstrated evidence of a shared causal variant in 
the gene locus.  
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eFigure 13.  Transcriptomic imputation comparison of the smoking-associated genes with epigenetic age acceleration. Plotted is 
the comparison of the high-confidence smoking-associated TWAS features (gene-tissue combinations) with the second-generation 
EAA clocks (GrimAge and PhenoAge) that were directionally consistent with the Mendelian randomization analyses (e.g., both 
increased smoking and EAA or vice versa) and also had TWAS P-values < 0.05 for the EAA models (eMethods).  The y-axis is the 
TWAS Z-scores for smoking behavior and EAA for each gene-tissue feature analyzed. 
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eFigure 14.  Correlations of the transciptomic imputation results for smoking, multivariate longevity, GrimAge, and 
PhenoAge.  Each panel presents correlations between the primary association statistics for the FUSION method (Z scores) for the full 
FUSION TWAS results using the FUSION gene expression weights derived from the Genotype-Tissue Expression project (GTEx) 
cross-tissue weights.   



 49 
 



 50 

eFigure 15.  Correlations of the transciptomic imputation results for smoking, multivariate longevity, GrimAge, and 
PhenoAge.  Each panel presents correlations between the primary association statistics for the FUSION method (Z scores) for the full 
FUSION TWAS results using the FUSION gene expression weights derived from the The Cancer Genome Atlas (TGCA) squamus-
cell carcinoma (LUSC) and adenocarcinoma (LUAD).       
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eFigure 16.  Correlations of the transciptomic imputation results for smoking, multivariate longevity, GrimAge, and 
PhenoAge.  Each panel presents correlations between the primary association statistics for the FUSION method (Z scores) for the full 
FUSION TWAS results using the FUSION gene expression weights derived from the Genotype-Tissue Expression project (GTEx) 
lung and whole blood tissues.  
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eFigure 17.  Potential models explaining SNV associations for neuropsychiatric disorders, 
substance use behaviors, and longevity endpoints.  (A) depicts potential vertical pleiotropy for 
two possible single variable MR study scenarios.  Here SNVs (single nucleotide polymorphisms) 
act as instruments for genetic propensity for either neuropsychiatric disorders (i.e., Schizophrenia 
(SCZ), Major depressive disorder (MDD), etc.) or substance use behaviors (i.e., smoking and 
alcohol consumption); they would demonstrate vertical pleiotropy if all the genetic effects of 
their respective outcomes are mediated subsequently by their corresponding downstream impact 
(i.e., SCZ SNV instruments impacting smoking, which, in turn, impacts longevity).  (B) depicts 
potential horizontal pleiotropy where SNVs have an impact on longevity via their associations 
with neuropsychiatric disorders and substance use behaviors lacking any downstream mediation.  
Confounding pleiotropy is depicted in (C): SNVs may be associated with longevity due to their 
impact on neuropsychiatric disorders and substance use behaviors; however, the genetic 
propensity for substance use behaviors has no corresponding direct impact on longevity. 
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