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Reviewers' Comments: 

Reviewer #1: 

Remarks to the Author: 

In this article, the authors developed a machine-learning approach for HIV-1 bnab prediction. 

Briefly, the authors used a dataset of HIV-1 bnabs as well as healthy control data to delineate a 

classifier for HIV-1 bnab prediction. 

While this study is of interest and the question is certainly interesting, I have a several comments 

regarding the approach and the claims made. 

Major comments 

- The authors claim that their ML approach predicts HIV-1 bnab. I am not so sure about that. As 

shown by the authors, the bnab seqs are very different from normal antibodies in terms of SHM 

amount, for example. For me to believe the authors, they would have to show that their algorithm 

is not only specific versus healthy controls but also versus other infections. For example, if the 

authors applied their approach to influenza data, their approach should not find any HIV-1 bnabs, 

although there might be influenza bnabs in the data. In other words, I don’t think their approach 

has learned what a HIV-1 bnab is. Their approach has probably only learned what a very strange 

looking antibody sequence vs normal control antibodies looks like. Can the authors comment on 

that? 

- I don’t understand why the authors need to use 4 different classifiers? what do they each add? 

and what features are the most important for classifying bnab vs non-bnab? 

- how similar are train and test data sequence-wise? 

- How similar are bnab and control data sequence-wise? 

- The catnap dataset is quite small, yet the accuracy is quite high (which is again another 

indication that the ML approach just learns the stark differences between bnab and control data 

but not what a hiv-1 bnab is). How many sequences are needed to achieve this accuracy (e.g., if 

you trained only with half of the catnap data, what would the accuracy be?)? 

- What’s the sequence similarity within the catnap data? 

Is there a correlation between the number of examples in the training and the accuracy on the 

test? So, for example, if there are only a few mper bnab in the database, is prediction accuracy on 

mper when in the test the worst? 

Reviewer #2: 

Remarks to the Author: 

Foglierini et al. present a machine learning-based approach for the identification of HIV-1 broadly 

neutralizing antibodies from immune repertoire analyses. The authors use a combination of 

machine learning techniques trained on data from the CATNAP database to predict whether a 

particular antibody sequence, converted to relevant features, is a bnAb of a specific set of bnAb 

classes. The algorithm is used to identify and screen potential bnAbs experimentally in a set of 

BCR sequences isolated from HIV-1 infected individuals. A single VRC01 class CD4 binding site 

bnAb was identified, and its binding mode was determined using cryo-EM. The paper is well written 

and the results are likely to interest a wide audience. My comments/concerns are as follows: 

The test set validation description needs additional information. How similar is the training set to 

the test set? If the training sets contain entries with features that are highly similar to those of the 

test set, the accuracy of the model could be artificially high. It would be helpful to understand the 

feature distributions in the training vs. the test. 

The experimental validation is interesting but does not support the model's reliability for non-



VRC01 class CD4 binding site antibodies. Several non-CD4 binding site antibodies were identified 

in the predictions but were not made. Further, of the three CD4 binding site antibodies tested, only 

one showed breadth. This suggests the model may struggle when identifying novel bnAbs. Could 

sequence alignment alone have identified these antibodies? The authors should provide sequence 

identity/similarity distributions to VRC01 in the dataset to compare. 

The appearance of a single Fab bound trimer population mixed with a large number of unbound 

trimer particles in the cryo-EM results is unusual for a CD4 binding site bnAb at six-fold molar 

excess Fab relative to the trimer. This is especially unusual, considering the measured apparent 

affinity is 0.4 nM. Avidity could mask a faster off rate. The authors should measure Fab binding 

affinities to determine whether an off rate sufficient to lead to a single protomer bound trimer in 

the cryo-EM is reasonable. If not, an alternative explanation is needed. 

The clash score and percentage of poor rotamers in the cryo-EM model are quite high. Additional 

refinement is recommended. 

Measurement and, ideally, replicate measure errors should be reported for the BLI affinity reports. 

Model fits should be shown in a supplemental figure. 

Lines 346-347: This sentence appears to be incomplete. 

Line 380: “have” should be “has” 

Line 384: Should P43 be F43 (Phe43)? 

Reviewer #3: 

Remarks to the Author: 

THe manuscript is interesting considering that it arrives at AI based identification of HIV-1 specific 

broadly neutralizing antibodies and experimentally confirms binding with reasonably affinity to 

CD4-binding site of the envelop glycoprotein of HIV-1, as well as it shows neutralization capability 

in case of wide range of clades tested. Further, cryo-EM structure of the Fab fragment of one of the 

antibodies to CD4 binding domain trimer of the GP120 at 3.7A resolution is being reported. The 

work has been carried out competently. It is good to observe that atleast in case of (bNAb4251) 

antibody a very high affinity binding was achieved and it was also the same antibody which 

showed 80 % of the tested virus clades neutralized. Also, it is the same high affinity antibody for 

which the Cryo-EM structure has been determined. My only concern is that considering the 

relatively low resolution of the structure, some interpretations at atomic resolutions appear 

overinterpreted. At 3.7A resolution, one can discuss about protein surface regions where the two 

molecules interact. But to describe specific hydrogens bonds, require resolution better than 3 A. 

Overall, the language also needs to be improved in the tentire manuscript. 
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Foglierini et al: “RAIN: a Machine Learning-based identification for HIV-1 bNAbs”. We 

would like to thank the reviewers for their time reading the manuscript and for providing helpful 

comments and suggestions. In the revised manuscript, changes in the text appear in green. We 

provide point-by-point responses below, where the reviewers' comments are in italics followed 

by our responses. 

Responses to Reviewers  
Please note that the Reviewer comments are in black, quoted exactly as provided, and our 

responses are in blue.  

 

Reviewer #1 (Remarks to the Author) 

In this article, the authors developed a machine-learning approach for HIV-1 bnab 

prediction. Briefly, the authors used a dataset of HIV-1 bnabs as well as healthy control data 

to delineate a classifier for HIV-1 bnab prediction. While this study is of interest and the 

question is certainly interesting, I have a several comments regarding the approach and the 

claims made.  

 

We thank the reviewer for finding our study of interest.  

 

Major comments 

- The authors claim that their ML approach predicts HIV-1 bnab. I am not so sure about that. 

As shown by the authors, the bnab seqs are very different from normal antibodies in terms of 

SHM amount, for example. For me to believe the authors, they would have to show that their 

algorithm is not only specific versus healthy controls but also versus other infections. For 

example, if the authors applied their approach to influenza data, their approach should not 

find any HIV-1 bnabs, although there might be influenza bnabs in the data. In other words, I 

don’t think their approach has learned what a HIV-1 bnab is. Their approach has probably 

only learned what a very strange looking antibody sequence vs normal control antibodies 

looks like. Can the authors comment on that? 

Response: We thank the Reviewer for his/her suggestion. First, it is important to mention that 

the variables we define are specific to HIV bNAbs, as not all neutralizing antibodies share 

similar characteristics. To demonstrate the specificity of our approach, we tested our pipeline 

on Influenza specific repertoires. We used scBCR data obtained from Influenza vaccinated 

donor at days 7 and 9 post vaccination (Horns et al., 2020). We processed three sequencing runs 

containing 4’691, 8’222 and 8’052 paired BCRs sequences, respectively. It’s worth noting that 
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these repertoires contain Influenza bNAbs belonging to the lineage clone L3. However, our 

models did not detect them. Furthermore, no HIV bNAbs was detected by the shared algorithms. 

These additional data are now present in new Supplementary Figure 7. 

 

- I don’t understand why the authors need to use 4 different classifiers? what do they each add? 

and what features are the most important for classifying bnab vs non-bnab? 

 

Response: We decided to use 4 different classifiers to increase robustness and increase 

confidence in the derived predictions. Indeed, the aim of RAIN is to limit the experimental 

work of the user. To emphasize it, we have added the following sentence at line 237 of the 

revised manuscript: “we decided to use different machine learning approaches to increase 

robustness and decrease the likelihood of false predictions”. 

Concerning the choice of the algorithms, the following statements are now present in the revised 

version of the manuscript.  

Line 245: “An anomaly detection (AD) algorithm has been used in the specific case of a binary 

classification task, where one group appears as an outlier (Steinwart et al., 2005). Given the 

scarcity of reported HIV-1 bNAbs compared to the quantity of mAb, we first opted for the AD 

algorithm to automatically identify bNAbs”. 

We next mention that a category of bNAbs is not clearly identified by the AD approach, and the 

precision scores were very low. Therefore, we prompt the usage of other models. 

Line 255-258: “However, bNAbs targeting the V3 glycan were poorly identified, with an AUC 

of 0.64. Moreover, a high number of false positives was obtained, indicating a low precision 

with the AD (Figure 4a). To increase recall and precision of our detection method, we used 

both Decision Tree (DT) and random forest (RF) algorithms.” 

Decision Trees have the advantage to be intuitive and easy to interpret, while Random forests 

offer high accuracy and robustness by combining multiple decision trees. Random forests have 

the advantage of scoring features by their importance, thus highlighting the differences between 

the various antigenic sites targeted by the bNAbs. Finally, Super Learner combines multiple 

base learners by automatically selecting the best combination of models, making it highly 

adaptable and effective across various datasets and tasks. 

The most important features for classifying HIV bNAbs are presented in Figure 4e and further 

discussed in lines 288-297.  

 

- how similar are train and test data sequence-wise? 
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Response: To answer this question, it is important to mention that training and test datasets 

should ideally represent the same underlying population. Still, they are not required to be similar 

in terms of specific instances or characteristics. In fact, test dataset diversity can enhance the 

model's robustness and generalizability across scenarios. Nevertheless, to address the sequence-

wise similarity between the two sets of data, we generated similarity matrices for the complete 

VH and the CDRH3 only (Figure R1). Interestingly, for the complete VH sequences the highest 

variability between training and test sets is found for the anti-V1V2 and CD4bs bNAbs. While 

higher level of similarity can be observed for the others other antigenic sites. As expected, when 

the CDRH3 sequences are compared, high diversity can be observed and thus for all antigenic 

sites (Figure R1).  

 
Figure R1. Sequence similarity matrices for training and test datasets. Similarity matrices 
of training versus test sequences with entire VH (left) and CDRH3 only (right). In the heatmaps, 
sequences are ranked based on their V and J genes. In both cases, matrices were created using 
ANARCI, and the similarity scores ranging from 0 to 1 indicate the degree of similarity between 
sequences, with higher scores representing lower Levenshtein distances. The mAbs sequences 
were down sampled to 100 for the training set and 50 for the test set. Datasets used for each 
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antigenic site model are represented in the different panels: CD4bs (a), MPER (b), V1V2 apex 
(c), V3 glycan (d) and Interface (e). 
 

- How similar are bnab and control data sequence-wise?  

 

Response: We thank the Reviewer for this question, and to address it, we generated additional 

similarity matrices, now present in the manuscript as new Figure (Figure 2). We observed some 

level of similarity between bNAbs and mAbs. The similarity is driven by the framework region 

(Figure R2b). This result was expected since immunoglobulin framework derives from the 

recombination of a define gene numbers. Moreover, we observed that the highest variance can 

be attributed to the length of the CDRH3 between anti-V1V2 bNAbs and mAbs.   

 
 

Figure R2 (Fig. 2 in the modified version of the manuscript). Sequence similarity matrices 
of HIV-1 bNAbs and control mAbs. (a) Similarity matrices for 255 bNAbs grouped by 
antigenic site for the entire VH (left) or the CDRH3 only (right). (b) Similarity matrices of 
bNAbs versus mAbs with entire VH (left) and CDRH3 only (right). In the heatmaps, sequences 
are ranked based on their V and J genes. In both cases, matrices were created using ANARCI, 
and the similarity scores ranging from 0 to 1 indicate the degree of similarity between 
sequences, with higher scores representing lower Levenshtein distances. For panel b, mAbs 
sequences were down sampled to 500 to enable display.  
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- The catnap dataset is quite small, yet the accuracy is quite high (which is again another 

indication that the ML approach just learns the stark differences between bnab and control data 

but not what a hiv-1 bnab is).  

 

Response: We respectfully disagree with the Reviewer and attribute the high accuracy to the 

class imbalance between bNAbs and mAbs (Thölke et al., 2023). To demonstrate it, we 

measured together with the accuracy, the AUC, the precision, and the recall scores to gain a 

more comprehensive understanding of the performance across our various approaches (Figure 
4a and Supplementary Figure 6). 

 
How many sequences are needed to achieve this accuracy (e.g., if you trained only with half of 

the catnap data, what would the accuracy be?)? 

 

Response: All models were trained with 60% of the CATNAP sequences retrieved. This 

corresponds to the following number of bNAbs: 15 MPER, 18 Interface, 26 CD4bs, 34 V3 and 

64 V1V2. It is also interesting to note that there is no direct correlation between the number of 

bNAbs in the training set and AUC or precision scores (Figure R3). Of note, anomaly detection 

is not represented in the plot because there are no bNAbs in the training dataset; only non-

anomaly data (i.e. mAbs) are used to train the model. 

 

 

 
Figure R3. Impact of bNAbs number on AUC and precision scores. The linear regression 
plot illustrates the relationship between the number of bNAbs in the training dataset and the 
AUC score (a) or the precision score (b). 
 

- What’s the sequence similarity within the catnap data?  



6 
 

 

Response: To answer this point, we generated an additional similarity matrix shown in Figure 
R2a (also added to the revised manuscript). The similarity matrix reveals low level of similarity 

for the full VH and CDRH3, only the anti-V1V2 share homology.  

 

Is there a correlation between the number of examples in the training and the accuracy on the 

test? So, for example, if there are only a few mper bnab in the database, is prediction accuracy 

on mper when in the test the worst?  

 

Response:  As shown in Figure R3 there is no clear relationship between the precision score or 

the AUC score and the number of bNAbs in the training dataset. 

 

Reviewer #2 (Remarks to the Author) 

Foglierini et al. present a machine learning-based approach for the identification of HIV-1 

broadly neutralizing antibodies from immune repertoire analyses. The authors use a 

combination of machine learning techniques trained on data from the CATNAP database to 

predict whether a particular antibody sequence, converted to relevant features, is a bnAb of a 

specific set of bnAb classes. The algorithm is used to identify and screen potential bnAbs 

experimentally in a set of BCR sequences isolated from HIV-1 infected individuals. A single 

VRC01 class CD4 binding site bnAb was identified, and its binding mode was determined 

using cryo-EM. The paper is well written and the results are likely to interest a wide audience. 

My comments/concerns are as follows: 

 

We thank the Reviewer for the positive evaluation of our manuscript. 

 

The test set validation description needs additional information. 

 

Response: We added additional information regarding the test set validation lines 275-281, and 

we have included a new Supplementary Table 3, which provides descriptions and performance 

scores (AUC, accuracy, recall, and precision) for the AD, DT, and RF algorithms on the 

validation set. Of note, the SL algorithm was trained using 10-fold cross-validation.  
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Supplementary table 3. Performance metrics of the three algorithms using the validation 

dataset. 

Algo Ag site bNAbs 
number TP FP TN FN AUC Accuracy Recall Precision 

AD CD4bs 15 12 22 2966 3 0.90 0.99 0.80 0.35 
DT CD4bs 15 7 4 2984 8 0.73 1.00 0.47 0.64 
RF CD4bs 15 7 0 2988 8 0.90 1.00 0.47 1.00 
AD MPER 3 1 38 2956 2 0.66 0.99 0.33 0.03 
DT MPER 3 2 4 2990 1 0.83 1.00 0.67 0.33 
RF MPER 3 2 0 2994 1 0.83 1.00 0.67 1.00 
AD V1V2 apex 25 19 55 2932 6 0.87 0.98 0.76 0.26 
DT V1V2 apex 25 23 12 2975 2 0.96 1.00 0.92 0.66 
RF V1V2 apex 25 19 0 2987 6 1.00 1.00 0.76 1.00 
AD V3 glycan 9 5 57 2938 4 0.77 0.98 0.56 0.08 
DT V3 glycan 9 6 8 2987 3 0.83 1.00 0.67 0.43 
RF V3 glycan 9 2 0 2995 7 1.00 1.00 0.22 1.00 
AD Interface 3 1 31 2964 2 0.66 0.99 0.33 0.03 
DT Interface 3 3 4 2991 0 1.00 1.00 1.00 0.43 
RF Interface 3 2 0 2995 1 1.00 1.00 0.67 1.00 

 

 

How similar is the training set to the test set?  

 

Response: We provided the same response to the third question of Reviewer 1; we simply 

copied our previous answer. We agree that training and test datasets should ideally represent 

the same underlying population. Still, they are not required to be similar in terms of specific 

instances or characteristics. In fact, test dataset diversity can enhance the model's robustness 

and generalizability across scenarios. To address the sequence-wise similarity between the 

two sets of data, we generated similarity matrices for the complete VH and the CDRH3 only 

(Figure R1). Interestingly, for the complete VH sequences the highest variability between 

training and test sets is found for the anti-V1V2 and CD4bs bNAbs. While higher level of 

similarity can be observed for the others other antigenic sites. As expected, when the CDRH3 

sequences are compared, high diversity can be observed and thus for all antigenic sites 

(Figure R1). 

 

If the training sets contain entries with features that are highly similar to those of the test set, 

the accuracy of the model could be artificially high. It would be helpful to understand the 

feature distributions in the training vs. the test. 
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Response: This is an important point, the distribution of features may not always be identical 

between the training and test sets, as illustrated in the Figure R4 (a-e). We also assessed the 

AUC score of twenty different data split (Figure R4 f) using random seed numbers. Due to the 

small sample size of bNAbs, we observe some variability in the AUC performance evaluation. 

However, the median remains above 0.75 for the majority of the models. We have highlighted 

in red the split used in the publication. Even though we did not have the split with the highest 

AUC performance for the CD4bs, we were able to identify three anti-CD4bs bNAbs. 

 

 
Figure R4. Distribution of features within the bNAbs training and test datasets. (a-e) 

Comparison of features distribution of training and test set and (f) assessment of AUC using 

twenty different data splits. Each point represents a different split, red points represent the split 

used in the publication. 
 

The experimental validation is interesting but does not support the model's reliability for non-

VRC01 class CD4 binding site antibodies. Several non-CD4 binding site antibodies were 

identified in the predictions but were not made. Further, of the three CD4 binding site antibodies 

tested, only one showed breadth. This suggests the model may struggle when identifying novel 
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bnAbs. Could sequence alignment alone have identified these antibodies? The authors should 

provide sequence identity/similarity distributions to VRC01 in the dataset to compare. 

See figure below. 

 

Response:  We generated all the antibodies identified by the 4 algorithms. To demonstrate that 

these antibodies could not have been identified by sequence alignment, we plotted the sequence 

similarity of the heavy chain to VRC01 Figure R5. Among all sequencing runs (D1, D2, B3, 

G3, G4, S4) analyzed only 17 sequences have more than 65% (maximum = 67 %) sequence 

identity with VRC01. Furthermore, none of CD4bs bNAbs identified by RAIN are among those 

17 sequences. 

 

 
Figure R5. Sequence similarity distributions to VRC01. Plotted is the percentage of 
similarity to VRC01 with each antibody sequence represented as a point. The dashed line in G4 
represents the similarity of bNAb4251 or bNAb2101 with VRC01 (57% of similarity). The 
dashed line in S4 represents the similarity of bNAb1586 with VRC01 (54%). 
 

In conclusion, it is very unlikely that sequence similarity or homology could have been used to 

identify the bNAbs. This has also been emphasized in the text lines 174-175. 

“This result indicates that a homology and alignment approach to identify bNAbs would 

probably be unsuccessful. “  

 

The appearance of a single Fab bound trimer population mixed with a large number of unbound 
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trimer particles in the cryo-EM results is unusual for a CD4 binding site bnAb at six-fold molar 

excess Fab relative to the trimer. This is especially unusual, considering the measured apparent 

affinity is 0.4 nM. Avidity could mask a faster off rate. The authors should measure Fab binding 

affinities to determine whether an off rate sufficient to lead to a single protomer bound trimer 

in the cryo-EM is reasonable. If not, an alternative explanation is needed. 

 

Response: First, we thank the reviewer for pointing out a typographical mistake, Fab was added 

at 3-fold molar excess. Nevertheless, we believe that we obtained a single Fab4251 per trimer 

due to the short incubation time (10 minutes) between a three-fold molar excess of bNAb4251 

and SOSIP. We also performed BLI measurement with Fabs and determine a KD of 5±2.4nM, 

and 17.5± 4nM for Fab4251and Fab2101, respectively (Supplementary Figure 9). To further 

demonstrate the interaction, we performed negative staining with the Fabs in complex with 

SOSIP trimer and obtained 2 Fab4251/Trimer and 1 Fab2101/Trimer (new Figure 6a-b of the 

manuscript).  These aspects are specified in the text. Line 369: “To further characterize these 

interactions, we calculated the affinity of the fragment antigen binding (Fab) to SOSIP trimers 

and obtained the following KD 5±2.4nM, and 17.5± 4nM for Fab2101 and Fab4251 respectively 
(Supplementary figure 9b). Of note, Fab1586 demonstrated poor affinity with a KD measure 

of 1µM (Supplementary figure 9b).” 

 
Figure R6. Fab4251 and Fab2101 interaction with BG505 DS-SOSIP. (a) 3D 
reconstruction of Fab4251-SOSIP complex by nsEM.  (b) 3D reconstruction of Fab2101-
SOSIP complex by nsEM. 
 
The clash score and percentage of poor rotamers in the cryo-EM model are quite high. 

Additional refinement is recommended. 

 

Response:  After additional refinement on the structure our model has now a percentage of poor 

rotamers of 2.3 and a clash score of 9.0 which we believe is acceptable at 3.8Å resolution for 

SOSIP. As example here are some SOSIP cryoEM structure with clash score in the same range: 

PDB 7TFN clash score: 14.1 (Yang et al., 2022), PDB 7TFO clash score: 16.4 (Yang et al., 
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2022), PDB 5V8M clash score: 5.88 (Molinos-Albert et al., 2023), PDB 7LOK clash score: 

14.4 (Jette et al., 2021). Taking in account the resolution obtained we removed some of our 

statements concerning side chains interaction and hydrogen bonds.   

 

Measurement and, ideally, replicate measure errors should be reported for the BLI affinity 

reports. Model fits should be shown in a supplemental figure. 

 

Response: We thank the Reviewer for pointing out this omission.  We added the standard 

deviation of our different experiments. We also performed measurement with Fabs and 

curves, fitting are shown for Ab and Fabs in the Supplementary Figure 9. 

 

Lines 346-347: This sentence appears to be incomplete.  

Line 380: “have” should be “has” 

Line 384: Should P43 be F43 (Phe43)? 

 

Response:  Thank you those mistakes have been corrected. 

 

Reviewer #3 (Remarks to the Author): 

 

THe manuscript is interesting considering that it arrives at AI based identification of HIV-1 

specific broadly neutralizing antibodies and experimentally confirms binding with reasonably 

affinity to CD4-binding site of the envelop glycoprotein of HIV-1, as well as it shows 

neutralization capability in case of wide range of clades tested. Further, cryo-EM structure of 

the Fab fragment of one of the antibodies to CD4 binding domain trimer of the GP120 at 3.7A 

resolution is being reported. The work has been carried out competently. It is good to observe 

that atleast in case of (bNAb4251) antibody a very high affinity binding was achieved, and it 

was also the same antibody which showed 80 % of the tested virus clades neutralized. Also, it 

is the same high affinity antibody for which the Cryo-EM structure has been determined.  

 

We thank the reviewer for his/her interest on our manuscript. 

 

My only concern is that considering the relatively low resolution of the structure, some 

interpretations at atomic resolutions appear overinterpreted. At 3.7A resolution, one can 
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discuss about protein surface regions where the two molecules interact. But to describe 

specific hydrogens bonds, require resolution better than 3 A.  

 

Response:  We agree, and we removed some of our statements on hydrogen bond and lateral 

chain placement.  

 

Overall, the language also needs to be improved in the tentire manuscript. 

 

Response:   The manuscript has been proofread and corrected by a native English speaker. 
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Reviewers' Comments: 

Reviewer #1: 

Remarks to the Author: 

The authors have addressed all of my comments. 

Reviewer #2: 

Remarks to the Author: 

All of my concerns were adequately addressed.
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Foglierini et al: “RAIN: Machine Learning-based identification for HIV-1 bNAbs”. We would 

like to thank the reviewers for their time reading the manuscript and for providing helpful 

comments and suggestions.  

 

Responses to Reviewers  

 

Reviewer #1 (Remarks to the Author) 

The authors have addressed all of my comments. 

We thank the reviewer for his/her helpful question and suggestion during the reviewing 

process. He or She has greatly helped to improve the quality of the manuscript.  

 

 

Reviewer #2 (Remarks to the Author) 

All of my concerns were adequately addressed. 

We thank the reviewer for his/her helpful question and suggestion during the reviewing 

process. He or She has greatly helped to improve the quality of the manuscript.  
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