Supplementary Table 1: Baseline characteristics and incident outcomes in the overall MIPS cohort

and by vitamin D category.

Baseline Characteristics	All (n = 535)	Normal (>30ng/mL) (n = 256)	Insufficiency (20-30ng/mL) (n = 163)	Deficiency (<20ng/mL) (n = 116)
Age (years)	64.0 (9.0)	65.0 (8.0)	63.0 (8.0)	62.0 (9.0) ^A
Male	415 (77.6%)	192 (75.0%)	138 (84.7%)	85 (73.3%) ^{AB}
Black Race	134 (25.0%)	36 (14.1%)	41 (25.2%)	57 (49.1%) ^{AB}
BMI, kg/m^2	29.7 (5.2)	28.8 (4.7)	30.4 (5.4)	$30.7(5.5)^{A}$
Current or Former	322 (60.2%)	151 (59.0%)	94 (57.7%)	77 (66.4%)
Smoker				
History of Hypertension	394 (73.6%)	179 (69.9%)	126 (77.3%)	89 (76.7%)
History of	441 (82.4%)	215 (84.0%)	127 (77.9%)	99 (85.3%) ^A
Hyperlipidemia	. ,	. ,		
History of Diabetes	167 (31.2%)	59 (23.0%)	56 (34.4%)	52 (44.8%) ^A
CHD	348 (65.0%)	166 (64.8%)	109 (66.9%)	73 (62.9%)
History of MI	167 (31.2%)	75 (29.3%)	50 (30.7%)	42 (36.2%) ^A
History of Heart Failure	78 (14.6%)	27 (10.5%)	25 (15.3%)	26 (22.4%) ^A
History of CABG	176 (32.9%)	84 (32.8%)	52 (31.9%)	40 (34.5%)
eGFR, mL/min/1.73 m ²	81.7 (22.2)	81.2 (19.6)	83.4 (23.7)	80.2 (25.5) ^A
Medications				
ACEi/ARB Use	339 (63.4%)	109 (42.6%)	104 (63.8%)	81 (69.8%)
Beta-blocker Use	393 (73.5%)	45 (17.6%)	123 (75.5%)	94 (81.0%) ^A
Statin Use	457 (85.4%)	176 (68.8%)	137 (84.0%)	100 (86.2%)
Aspirin Use	462 (86.4%)	220 (85.9%)	142 (87.1%)	101 (87.1%) ^A
Plavix Use	162 (30.3%)	219 (85.5%)	40 (24.5%)	43 (37.1%) ^A
Events				
All-cause Death	52 (9.7%)	17 (6.6%)	16 (9.8%)	19 (16.4%) ^A
Cardiovascular Death	28 (5.2%%)	7 (2.7%)	10 (6.1%)	11 (9.5%) ^A
Myocardial Infarction	36 (6.7%)	12 (4.7%)	15 (9.2%)	9 (7.8%)

Continuous variables are presented as mean [SD], categorical variables as count (percentage). Letter superscripts denote significant differences (p<0.05) in column means/proportions between the vitamin D deficient group and either normal^A or insufficient^B groups.

Outcome	Ν	Model	HR [95% CI]	P-value
All-cause death	535	Unadjusted	2.64 [1.34 - 5.19]	0.005
		1	2.97 [1.45 - 6.09]	0.003
		2	3.54 [1.52 - 8.26]	0.003
		3	3.41 [1.46 - 7.96]	0.005
Cardiovascular death	534	Unadjusted	2.91 [1.17 – 7.23]	0.022
		1	2.71 [1.03 - 7.14]	0.044
		2	5.17 [1.57 - 17.05]	0.007
		3	4.93 [1.46 – 16.61]	0.010

Supplementary Table 2: Relationship between VDD and adverse outcomes in the validation cohort.

Cox models investigated the relationship between VDD and 5-year adverse outcomes in the MIPS validation cohort.

Model 1 was adjusted for age, sex, Black race, BMI, and current/former smoking history.

Model 2: Model 1 + hypertension, hyperlipidemia, diabetes, CHD, heart failure history, and eGFR.

Model 3: Model 2 + aspirin, ACEi/ARB, and statin use.

Outcome	Ν	Model	HR/sHR [95% CI]	P-value
All-cause death	5,406	Unadjusted	1.92 [1.69 – 2.19]	<0.001
		1	2.16 [1.88 - 2.48]	<0.001
		2	1.95 [1.68 – 2.28]	<0.001
		3	1.91 [1.64 – 2.23]	<0.001
CV death	5,406	Unadjusted	2.06 [1.71 – 2.49]	<0.001
		1	2.17 [1.79 – 2.64]	<0.001
		2	1.86 [1.54 – 2.26]	<0.001
		3	1.85 [1.52 – 2.25]	<0.001
MACE	5,379	Unadjusted	1.31 [1.15 – 1.48]	<0.001
		1	1.38 [1.21 – 1.57]	<0.001
		2	1.27 [1.11 – 1.44]	<0.001
		3	1.28 [1.12 – 1.46]	<0.001

Supplementary Table 3: Relationship between hsCRP and adverse outcomes.

Cox (all-cause death) and Fine-Gray models (cardiovascular death, MACE) investigated the relationship between hsCRP elevation above the median (>3mg/L) and adverse outcomes.

Covariates included in models are the same as defined in Supplementary Table 2.

Supplementary Table 4: Relationship between hsCRP and adverse outcomes in the validation cohort.

Outcome	Ν	Model	HR [95% CI]	P-value
All-cause death	535	Unadjusted	1.79 [0.90 - 3.56]	0.096
		1	1.82 [0.89 - 3.72]	0.10
		2	1.34 [0.62 – 2.91]	0.45
		3	1.44 [0.66 - 3.11]	0.36
Cardiovascular death	534	Unadjusted	2.30[0.87-6.05]	0.092
		1	$2.36 \ [0.86 - 6.46]$	0.095
		2	1.65 [0.58 - 4.69]	0.34
		3	$2.02 \ [0.70 - 5.82]$	0.19

Cox models investigated the relationship between hsCRP elevation above the median (>1.7mg/L) and adverse outcomes in the validation cohort.

Covariates included in models are the same as defined in previous tables.

Supplementary Table 5: Relationship between VDD, inflammation, CPCs, and cardiovascular

Vitamin D and hsCRP status	Ν	HR [95% CI]	P-value
No VDD, <median hscrp<="" td=""><td>190</td><td>Referent</td><td>Referent</td></median>	190	Referent	Referent
VDD, >median	40	7.91 [1.30 – 48.38]	0.025
No VDD, >median	170	2.23 [0.55 - 9.01]	0.26
VDD, >median	57	9.21 [1.73 – 49.02]	0.009
Vitamin D and CD34+ count status	Ν	HR [95% CI]	P-value
No VDD, >median CD34+ count	172	Referent	Referent
VDD, >median	42	3.29 [0.65 - 16.80]	0.15
No VDD, <median< td=""><td>171</td><td>$0.55 \ [0.14 - 2.10]$</td><td>0.38</td></median<>	171	$0.55 \ [0.14 - 2.10]$	0.38
VDD, <median< td=""><td>54</td><td>4.27 [1.06 – 17.18]</td><td>0.041</td></median<>	54	4.27 [1.06 – 17.18]	0.041

mortality in the validation cohort.

Cox models investigated the relationship between VDD, hsCRP, CD34+ CPC count, and cardiovascular mortality. Models were adjusted for covariates in Model 2 in previous tables. The median hsCRP level (1.7mg/L) and CD34+ cell count (1.5956 cells/µL) were determined from the MIPS validation cohort.

Figure Legends:

Supplementary Figure 1: Sensitivity analysis of VDD and cardiovascular death for each subgroup in the EmCAB. Cox models investigated the relationship between VDD (25-hydroxyvitamin D<20 ng/mL) and cardiovascular mortality. Model was adjusted for covariates including age, sex, Black race, BMI, and current/former smoking history, hypertension, hyperlipidemia, diabetes, CHD, heart failure history, eGFR, aspirin use, ACEi/ARB use, and statin use. N=4,426. Supplementary Figure 2: Cumulative incidence of outcomes including A) all-cause mortality, B) cardiovascular death, and C) MACE by hsCRP level either <3mg/L or >3mg/L. Incidence of all three outcomes was significantly higher (p<0.001) in individuals with hsCRP>3mg/L than in those with levels <3mg/L. N=5,406 for all-cause mortality and cardiovascular mortality, N=5,379 for MACE.

Supplementary Figure 3: Cumulative incidence of outcomes including A) all-cause death, B) cardiovascular death, and C) MACE by CD34+ cell count relative to median (1.6924 cells/µL). Incidence of all-cause mortality and cardiovascular mortality were significantly higher in individuals with CD34+ cell counts beneath the median than in those with counts above the median. N=1,506 for all events.

Subgroup	Status		HR [95% CI]	Interaction P
Sex	Female Male		1.54 [1.11 – 2.12] 1.79 [1.39 – 2.31]	p = 0.28
Diabetes	No Yes		1.82 [1.40 – 2.37] 1.49 [1.10 – 2.03]	p = 0.48
Hypertension	No Yes		1.93 [1.16 – 3.21] 1.66 [1.33 – 2.06]	p = 0.39
Heart Failure	No Yes		1.87 [1.40 – 2.50] 1.54 [1.17 – 2.02]	p = 0.21
>50% Obstructive CHD	No Yes		1.60 [1.22 – 2.10] 1.74 [1.29 – 2.35]	p = 0.76
Statins	No ⊨— Yes		1.17 [0.79 – 1.73] 1.92 [1.52 – 2.42]	p = 0.07
		1 2 3		

Supplementary Figure 1: Sensitivity analysis of VDD and cardiovascular death for each subgroup in the EmCAB.

hsCRP status

- \leq 3mg/L (n = 2,876 for mortality, n = 2,860 for MACE)
 - --- >3mg/L (n = 2,530 for mortality, n = 2,519 for MACE)

CD34+/CD45med cell count

→ >median (n = 753)
→ ≤median (n = 753)