
Supplementary Figures 
 

 
 
Supplementary Figure 1: Long-term averaged NO2 Air Pollution by county. The average concentrations of 
NO2 by county are displayed, where pollution for each year was extracted at the latitude and longitude of the 
centroid of each county from satellite-based estimates of NO2 [1, 2]. 
  



 
 
Supplementary Figure 2: Long-term averaged PM2.5 Air Pollution by county. The average concentrations 
of PM2.5 by county from 1998-2016 are shown, where pollution for each year was extracted at the latitude and 
longitude of the centroid of each county from satellite-based estimates of PM2.5 [3, 4]. 
 
  



 
 
Supplementary Figure 3: Bivariate distribution of long-term averaged NO2 and PM2.5 air pollution. We 
stratified the long-term average of NO2 and PM2.5 air pollution values into 3 equal-sized bins, using cutoffs at 
33th and 67th percentiles for each pollutant (i.e., NO2< 0.9, 0.9<NO2<1.76, and NO2>1.76; PM2.5<8.63, 
8.63<PM2.5<11.1, and PM2.5>11.1). Each county/MSA was assigned a color based on the bin that their NO2 
and PM2.5 levels belong to. Individual maps for NO2 and PM2.5 are provided in Supplementary Figures 2-3. 
 
  



 
 
Supplementary Figure 4: Directed acyclic graph for estimating causal effect of pollution on disease. In 
panel a, we describe the conceptual SMILE-2 model that uses wind-direction as an instrument for estimating 
the causal effects of NO2 and PM2.5 air pollution on diseases. Wind speed and direction satisfy the relevance 
and exogeneity condition for instrument variables and are unlikely to cause any disease directly. It hence 
provides more robust estimates of the causal effect in the presence of confounders. Panel b describes a 
standard regression model for association analysis which may be subject to the impact of confounders. The 
direct causal effect of air pollution cannot be properly assessed in the presence of unobserved confounding 
effects without the use of instrumental variables. 
 
  



 
 
Supplementary Figure 5: Simulation evaluation of heritability estimation in the presence of mis-
specified pedigrees. Among simulated families of each replicate, 2.4% have 1 or 2 adoptive children and 
6.2% have 1 or 2 stepchildren, which reflects estimates from US census. We fit SMILE (GPC+S) model using 
the true genetic relationship matrix and using the mis-specified genetic relationship matrix, where all children 
were treated as biological children of both parents. We consider scenarios with different combinations of 
genetic heritability (G), and parental (P), children (C) and spatial community-level (S) environment, as well as 
different phenotype prevalence. A total of 250,000 nuclear families were simulated under each scenario with 
20 replicates. The heritability estimates using “accurate pedigree” and “noisy pedigree” are very comparable 
across all scenarios. Each dot represents the estimated genetic heritability across simulation replicates under 
different scenarios. Minima and maxima values (excluding outliers) are represented by the lower- and upper-
bound of the whiskers. Median value is represented by the bold line in the middle. First and third quartiles are 
represented by the lower- and upper-bound of the box. 
 
  



 
 
Supplementary Figure 6: Simulation evaluation of causal effect estimates in SMILE-2 using noisy 
pollution and wind measurements. For each location, we create noisy wind and pollution measurements by 
randomly sampling measurements from 10 nearest neighboring locations in place of the actual measurement. 
We assessed how the noisy measurements impacted the type-1 error, power, and mean squared error (MSE) 
of the estimated log-odds ratios. In our simulation, we resampled with replacement families from MarketScan as 
well as the confounder variables associated with those families. We varied the causal effect (in the unit of relative 
risk) for PM2.5 and NO2 between 1.0, 1.01, 1.05, 1.1, or 1.2. Confounding effects, genetic and family environment 
variance components were simulated based on the parameter estimates from the analysis of MarketScan data. 
The binary disease status was obtained by dichotomizing the continuous liability threshold according to the 
disease prevalence from real data. The type I errors, power (panel a) and mean squared errors (MSE) of the 
causal effect estimates (panel b) were evaluated using 10 replicates for each of 200 randomly selected PheWAS 
codes. We compared the causal effect estimates using original and noisy wind and pollution measurements. 
Results stratified by disease prevalence (K) and pooled results are shown. The error bars represent the standard 
error (SE) across simulation replicates performed under different scenarios. 



 
 
Supplementary Figure 7: Correlation in SMILE Variance Component estimates comparing families 
based on length of enrollment observed in MarketScan dataset. We refit SMILE models using families 
enrolled in the MarketScan database for only 6-7 years, and for families enrolled for 10-12 years and compare 
the genetic (G), parental (P), children (C) and spatial community-level (S) environment variance components 
estimates. Correlation was high for each of the variance components, particularly for diseases with prevalence 
> 0.01. The correlation is only slightly lower for diseases with prevalence ≤ 0.005, as the estimation can be 
unstable when the number of disease cases in the dataset becomes small.  
 
  



 
 
Supplementary Figure 8: Construction of instrument variables for assessing the causal effect of air 
pollution using geographic clusters, local averaged wind speed and directions. Stage 1 regression 
model creates the instrument variable for pollution via the interaction between local geographic cluster 
membership. Cluster information is shown in (panel a), with the numbers on the map indicating the cluster 
membership. The long term averaged wind speed (as represented by the color) and direction (as represented 
by the direction of the wedges) at each MarketScan location are shown in (panel b).  

 

  



Supplementary Methods 
 
1. Description of datasets 
 
MarketScan Dataset 
We used the inpatient and outpatient records from the IBM MarketScan health insurance claims database from 
2005 to 2017. Besides their health records, patient records include individual level sex, year of birth, a 
geolocation within the United States, and the relationship to the employee who is the primary enrollee of the 
insurance policy (i.e., Employee, Spouse, or Child/Other).  
 
Disease Outcomes 
Cases and controls for disease outcomes were defined according to the PheWAS code [5]. PheWAS codes 
are groupings of ICD9/10 insurance billing codes constructed to represent biologically/medically relevant 
phenotypes. For a given PheWAS code phenotype, we identified as cases any individuals who had at least 
one of the corresponding ICD9/10 codes during their recorded billing history. 
 
Approximate Familial Relationships 
We inferred family structure from the relationships of each enrollee to the designated policy holders in each 
family [6], and performed stringent data quality checks to ensure the accuracy of the inferred familial 
relationships. Specifically, we assume that “Employee” and “Spouse” are the biological parents of the enrollees 
encoded as “Child/Other” within the family. We selected for analysis nuclear families which were enrolled for at 
least 6 years within the database. We also required that the youngest sibling in each selected family be at least 
10 years old at the beginning of their 6+ year enrollment period. To maximize the validity of the assumed 
biological relationships within a family, we removed families where the “Employee” and “Spouse” were of the 
same sex, and families where either “Employee” or “Spouse” were not older than the “Children” by at least 14 
years. We also removed families where the designated “Employee” had multiple “Spouses” with different 
enrollment ID’s, as in this situation it is unclear which Spouse (if any) may be the biological parent of the 
children. This curated dataset consisted of 257,620 families for which we carried forward the downstream 
analyses.  
 
Geographic Locations in MarketScan  
To model community-level environment contributions, we made use of geolocations embedded in MarketScan. 
Prior to 2014, the geolocation of each individual was given as a county code, while during 2015-2017, the 
geolocation was provided by a code indicating Metropolitan Statistical Area (MSA). Only individuals with county 
or MSA level geospatial information were retained for analysis. A single geolocation was chosen to represent 
each individual. As county code locations are more specific than MSAs (which typically encompass multiple 
counties), the most frequent county code location was used for each individual wherever possible as the 
representative geolocation. For individuals where only MSA was provided, the most frequent MSA was chosen 
as their geolocation for further analyses. We included geolocations within the 48 continental U.S. states and 
Washington D.C., but excluded Alaska, Hawaii, and non-state U.S. territories due to the complexity of 
modeling their spatial dependence with continental states.  
 
Environmental Exposure Information from External Datasets   
We integrated county and MSA-level environmental and sociodemographic exposures using public datasets to 
assess the causal effects of air pollution on disease. We focus on pollution levels that are broadly measured 
across the country. Pollution exposures include particulate matter 2.5 (PM2.5) [3, 4] and nitrogen dioxide (NO2) 
[1, 2]. We also used the median income, population density, maximum education level, and race distribution 
variables from the 5-year ACS Community Survey 2015 [7] as covariates to control for confounding in 
regression models when assessing pollution effects. Wind speed and direction [8] were used as instrumental 
variables for causal inference. We summarized all covariates at the county and MSA location level in 
Supplementary Data 7. The fields extracted from the 5-year ACS Community Survey 2015 are listed in 
Supplementary Data 8.  
 
2. Simulations 
 
Variance Component Model Simulation 



We simulated binary phenotypes under a liability threshold model where explainable variation was attributed to 
varying proportions of parental-environment, children-environment, additive genetic, and spatial variance. 
Specifically, we simulated 5 replications of each combination of the following liability scale variance component 
values: 𝜎!" ∈ {0,0.01, 0.05},	𝜎#" ∈ {0,0.3, 0.5}, 𝜎$%&" ∈ {0,0.05,0.1,0.2}, and 𝜎'()*+" ∈ {0,0.05,0.1, 0.2,0.6}, which reflect 
the distribution of estimated variance components in the MarketScan data (Supplementary Data 2). CAR 
covariance was used for all scenarios with spatial random effects, as it is the most frequently chosen spatial 
covariance structure in MarketScan data analysis, and we found that estimated heritability is robust to the mis-
specified spatial covariance structure (Figure 3C). For each simulation setting, we considered sample sizes of 
50,000 and 250,000 nuclear families. Family locations were sampled with replacement from real MarketScan 
locations, so that the fraction of families from each location in the simulated data reflects the real distributions. 
After generating the underlying standard-normally distributed liabilities, we created binary phenotypes under 
the liability threshold model for population prevalence’s of 0.1%, 0.5%, 1%, 5%, 10%, and 40%. We then fit 
eight linear mixed models to each scenario with different combinations of random effects, including GPC+S 
(SMILE), GP+S, GC+S, GPC, PC+S, PC, G+S, and S models. For each simulated dataset, we fitted different 
sub-models using Laplace approximation, and evaluated the bias and the mean squared error for each 
parameter estimate using different sub-models. To evaluate the effectiveness of BIC for selecting the best 
model, we identified the proportion of replicates where the correctly specified sub-model had the lowest BIC 
(Figure 1A). The full simulation results are summarized in Supplementary Data 1. 
 
Pollution Causal Effect Models Simulation 
We ran extensive simulations to evaluate the properties of our pollutant effect estimates. To generate data 
under realistic scenarios of confounding, we resampled families from MarketScan together with all individual 
specific covariates, and simulated phenotypes using the estimated model parameters from our real-data 
analysis.  
 
Specifically, we generated pseudo-phenotypes for all of our 1,083 traits. We randomly chose half of the traits 
and assume that the pollutants have no causal effect on them. We assume that air pollution causally influences 
the other half of the traits. The relative risks of air pollution for each trait (as defined by the SMILE-2 model 
equation (S12)) were randomly sampled from 1.01, 1.05, 1.1, or 1.2 with equal probability. The half without 
causal effects were used to evaluate type I error and the other half with causal effects were used to assess 
power. The confounder effects (e.g., social economic status, average temperature, etc.) were simulated based 
on estimates from the MarketScan data analysis. As all individuals were sampled from real locations, they are 
subject to the influence of location-specific confounders such as social economic status and climate, which 
may be correlated with pollution levels. For each PheWAS disease code, we approximated the relative risks of 
confounders on the liability scale using the fixed effects estimated from the MarketScan data and the detailed 
formulae are derived in Section 8 of the Supplementary material. We repeated this process six times for each 
of the 1,083 MarketScan phenotypes and made sure that each phenotype was chosen in the simulation for 
both the null (RR=1) and alternative (RR > 1) hypotheses at least once. 
 
For each PheWAS code-based phenotype, we first sampled 250,000 nuclear families with replacement from 
our MarketScan family cohort, retaining both individual-level and location-level covariate information. After the 
underlying liability was generated, the binary disease status was created by dichotomizing the liability 
according to the threshold set to match the observed prevalence in the MarketScan data. We fit the SMILE-2 
model (as in equation (S12)) to the simulated datasets and estimated the type-I error, power, and the MSE of 
the estimated log-odds ratios for different phenotypes and pollution-effects sizes.  
 
We compared our SMILE-2 model to an ‘independent subject’ fixed effect model (IND-FE), which uses 
unrelated individuals as input and does not account for genetics or family-level environment.  

 
3. Comparison of SMILE Estimates with Other Published Studies 
 
We compared our heritability estimates for PheWAS code-based phenotypes to the heritability estimates from 
several previously published phenome-wide studies: 
 

1. MS1: An independent study also using the MarketScan database [9], but analyzed without modeling 
shared community-level environment; 



2. NY: A study that repurposed EHR data from New York State [10]  
3. CaTCH: A study [11] that analyzed twins from EHR data to estimate genetic and environmental 

contributions, and 
4. LDSC-UKB: Heritability estimates based upon GWAS summary statistics from UK Biobank [12]. 

 
The MS1 study estimated heritability and genetic correlations also in MarketScan database for 149 common 
diseases using 481,657 individuals grouped into 129,989 families. The CaTCH study estimated heritability in 
55,396 twin pairs from claims data provided by Aetna, Inc. health insurance company. Notably, the CaTCH 
twin cohort is considerably younger than our cohort with age IQR being (3, 13). The NY study estimated 
heritability for groups of ICD-9/10 codes from family pedigrees constructed using emergency contact data at 3 
medical centers in the state of New York. The LDSC-UKB study computed heritability for ICD-10 code groups 
by applying LD-score regression to GWAS summary statistics computed on traits from the UK-Biobank sample 
[13]. 
 
Correlations of heritability estimates between different studies are summarized in Table 2. Correlation with the 
MS1 study was high, which is reassuring as both studies use the MarketScan database. Correlation was 
lowest in the CaTCH study, which is possibly due to the younger ages of the CaTCH twins. Individuals in 
CaTCH may be too young to have developed symptoms for many analyzed diseases. Another potential source 
of differences is the smaller sample size in CaTCH. For both CaTCH and the LDSC-UKB study, correlation 
was nearly doubled if only considering more common traits with prevalence > 1%. 
 
We found SMILE generally yielded smaller estimates of heritability than GPC and the family-based studies, 
i.e., NY, MS1, and CaTCH. This is consistent with our simulation results, indicating shared community-level 
environmental risk, when left unaccounted for, could add to the upward bias of heritability estimates from 
family-based studies. 
 
4. Robustness Analyses 
 

a. Impact of the length of enrollment on heritability estimates. 

We investigated whether the length of enrollment of study participants (6-12 years) may influence our 
phenotype definitions and the estimates of variance components in the SMILE model. To assess 
robustness, we reran models estimating variance components comparing families enrolled for 6-7 
years only (149,710 families) to families enrolled for 10-12 years (39,247 families) for all 1,083 
phenotypes. Models converged for both cohorts in 973/1083 phenotypes. For models that failed to 
converge, median phenotype prevalence is less than 0.003. Variance components estimates and 
standard errors for all converged models using families enrolled for 6-7 years and for 10-12 years may 
be found in Supplementary Data 4. 
      
For the 447 phenotypes with prevalence >1% analyzed using families enrolled for 6-7 years and for 
10-12 years, the average Pearson and Spearman correlation in genetic heritability estimates are 
0.949 and 0.925 respectively. The 95% confidence intervals obtained using families with different 
enrollment lengths overlap for 88.4% of the phenotypes (Supplementary Figure 7). Our results 
suggest that length of enrollment has a minimal impact on heritability estimates in MarketScan.  
 

b. Impact of drug code on phenotype definition and heritability estimates. 
 
Phenotype definitions based only on primary provider diagnostic codes may be noisy, as they may fail 
to capture drug prescriptions provided through secondary providers and thus underestimate disease 
prevalence. To examine robustness of heritability estimation, we reanalyze Type 2 Diabetes (T2D) 
using phenotype definitions with both diagnosis and prescription information, as previously defined 
[14]. Specifically, we defined T2D cases to include patients taking any T2D drug prescriptions based 
on TriNetX or Food and Drug Administration (FDA) T2D drug prescription list, as well as any of the 
ICD diagnostic codes originally used to define T2D cases. Due to the limitation of MarketScan EHR 
data, the source of the prescriptions (primary vs. secondary care) was not available and therefore was 
not used in our phenotype definitions. Using this definition, T2D prevalence slightly increased from 
9.2% to 9.99%. Both prevalence estimates are concordant with the Centers for Disease Control and 



Prevention’s (CDC) estimate of 9-9.5% (https://www.cdc.gov/diabetes/basics/type2.html). Of the 
original 9.2% of patients with T2D diagnostic codes, 51.8% had a T2D drug code. Of all patients who 
had T2D drug codes, only 0.9% did not have a corresponding diagnostic code. Using the new T2D 
phenotype definition, the heritability estimates increased from 0.284 (SE=0.009) to 0.31 (SE=0.008). 
Importantly, using this new phenotype definition, adding spatial random effect to the model continues 
to yield smaller heritability estimates compared to models without spatial random effects (heritability = 
0.39, SE=0.008), supporting our main conclusion. Our analysis results with and without using drug 
code in the phenotype definition are shown in Supplementary Data 5. The full list of NDC drug codes 
used to define T2D cases is provided in Supplementary Data 6. 
 

c. Impact of mis-specified pedigrees and heritability estimates. 
 

It is important to assess the robustness of heritability estimates if the inferred relationship is not 
accurate. To evaluate the impact of relationship error on heritability estimates, we simulated binary 
phenotypes under a liability threshold model (See Variance Component Model Simulation section for 
more details) for 250,000 nuclear families of which 2.4% had at least one adopted child and 6.2% had 
at least one stepchild. Adopted child is assumed to be biologically unrelated to the parents and a 
stepchild is assumed to be biologically related to a randomly chosen parent in the family. Below, we 
provide a few examples of kinships matrix when there is adoptive or stepchild in the family. As a first 
example, the genetic relationship matrix used for families with 2 adoptive children is 
 

G,-./0123 = 0

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1. 

 
As a second example, we consider a family where each parent has a child from their previous 
marriage. The genetic relationship matrix used for families with 2 stepchildren, with the first child 
being the biological child of parent 2 and the second child being the biological child of parent 1, is 
 

G403/5617-839 = 0

1 0 0 0.5
0 1 0.5 0
0 0.5 1 0
0.5 0 0 1

1. 

 
We simulated 20 replicates. For each replicate, the variance parameters are randomly simulated 
based on σ4"~unif(0.01, 0.05),	σ:"~unif(0.3, 0.5), σ/,8" ~unif(0.05, 0.2), and σ5617-" ~unif(0.05,0.2), 
reflecting the estimates from MarketScan (Supplementary Data 2). Family locations were also 
sampled with replacement from real MarketScan locations, so that the fraction of families from each 
location reflects the real distributions. After generating the underlying liabilities, we created binary 
phenotypes under the liability threshold model for population prevalence’s of 0.1%, 1%, and 10%. We 
then fit SMILE (GPC+S) model using the true genetic relation matrix and using inferred genetic 
relation matrix (GPC+S noisy family), where each child was treated as biological child to both parents 
even when they are stepchild or adopted. We next compared the heritability estimates from SMILE 
models fitted to “GPC+S accurate pedigree” and “GPC+S noisy pedigree” to evaluate the effect of 
mis-specified pedigrees. We observe the mean squared error between the estimates using the correct 
and noisy relationship matrix are around 0.00037 (Supplementary Figure 5). Given that the average 
length of the 95% confidence interval for heritability estimates is 0.032, the bias induced by 
relationship error is negligible (Supplementary Data 3). 
 

d. Impact of pollution and wind measurement errors on pollution causal effect estimates. 
As all other measurements, pollution and wind may also contain errors. Thus, it is important to assess 
how the causal effects of pollution may be affected if the pollution or wind measures are noisy. To do 
so, we performed simulations (similarly to Supplementary Text Section 9) to assess how noisy wind 
and pollution measurements may impact the type-1 error, power, and mean squared error (MSE) of 
estimated causal effects.  



 
We use 𝑃;&<= to denote true pollution levels and 𝑃>?!=&@=+ to denote observed pollution levels, which 
may contain errors. The originally measured pollution and wind are used as true values, which we 
denote as 𝑃;&<=. To generate realistic pollution and wind measures with noise, for each location, we 
sample from 10 neighbors and use the sampled values as noisy measures, which we denote as 
𝑃>?!=&@=+. Wind speed and directions with noise are also simulated using resampling as for pollution 
levels. We then simulate the disease liability as following: 
 

𝑦;&<=~𝑓=𝑃;&<= , 𝑋ABCDE , 𝒖𝒈, 𝒖𝒑𝒂𝒓, 𝒖𝒄𝒉𝒊𝒍𝒅@, 
 
where 	𝑋ABCDE is a matrix of geographical specific covariates (e.g., social economic status, average 
temperature, etc.), 𝒖𝐠 is a vector of genetic random effects, 𝒖𝒑𝒂𝒓 and 𝒖𝒄𝒉𝒊𝒍𝒅 are vectors of random 
effects for the shared parental- and children-level family environment.  
 
We considered simulation scenarios where pollution level is measured with error, where wind is 
measured with error, and where pollution and wind are measured without error. A total of 2500 
replicates were simulated for each scenario. 
 
We then analyze simulated 𝑦;&<= and noisy pollution and wind measures (i.e., 𝑃>?!=&@=+ and 𝑊>?!=&@=+) 
in SMILE-2 as described in Supplementary Text Section 9 and the IND-FE model. We did not observe 
any inflation or difference in the Type-1 Error rates between the three SMILE-2 simulations 
(Supplementary Figure 6A). We observed 3.17% and 3.59% decrease in power and 3.99% and 
5.93% increase in MSE when noisy pollution and wind measurements are used. However, the 95% 
confidence intervals of power and MSE using noisy pollution and wind measurements overlapped the 
95% confidence interval based on observed pollution and wind measurements (Supplementary Figure 
6A,B). Importantly, SMILE-2 model was still more powerful and had lower MSE when compared to 
IND-FE models under scenarios with noisy pollution and wind measurements, supporting our main 
conclusion (Supplementary Figure 6A,B). Together, our simulation study suggests that pollution 
causal effect inference by SMILE-2 remains unbiased and robust to measurement errors in pollution 
levels, and wind speed and directions. 

 
5. Fitting SMILE Models via Laplace Approximation  

We seek to fit the mixed effect models via Laplace approximation. We make extensive use of the R package 
TMB (13) for model estimation, which relies on the Automatic Differentiation (AD) software to calculate the 
gradients of the approximate likelihood. Specifically, for a SMILE model with GPC+S variance components, we 
let 𝜽 = =𝜎$%&" , 𝜎'()*+" , 𝜎#", 𝜎!", 𝜌!@ denote the variance parameters of interest. We further denote the full random 
effects vector by 𝒖 = (𝒖𝒑𝒂𝒓𝑻 , 𝒖𝒄𝒉𝒊𝒍𝒅𝑻 , 𝒖𝒈𝑻 , 𝒖𝒔𝑻)R. We use 𝑁E to denote total number of nuclear families and 𝐿 to 
denote the total number of MarketScan locations. The random effect 𝒖 follows a multivariate normal 
distribution: 

𝑓(𝒖|𝜽) ∼ 𝑀𝑉𝑁(0,blk_diag(𝜎$%&" 𝑰𝟑𝑭, 𝜎'()*+" 𝑰𝟑𝑭, 𝜎#"𝑮𝑨𝑳𝑳, 𝜮𝑺(𝑳×𝑳)) 

blk-diag denotes block-diagonal matrices, with blocks being 𝜎$%&" 𝑰𝟑𝑭, 𝜎'()*+" 𝑰𝟑𝑭, 𝜎#"𝑮𝑨𝑳𝑳 and 𝜮𝑺(𝑳×𝑳). 𝑮𝑨𝑳𝑳 is the 
block diagonal kinship matrix for the entire dataset, i.e., 𝑮𝑨𝑳𝑳 = 𝑏𝑙𝑘_𝑑𝑖𝑎𝑔=𝑮𝟏, … , 𝑮𝑵𝑭@ where 𝐺Z is the genetic 
kinship for family 𝑓. Families are assumed to be independent of each other. In the example of a quad-family, 
the kinship is given by 

𝑮𝒇 = 0

1 0 0.5 0.5
0 1 0.5 0.5
0.5 0.5 1 0.5
0.5 0.5 0.5 1

1 

The log likelihood for case-control status conditional on the random effects follows 

𝑓(𝒀|𝑿, 𝜷, 𝒖) ∼ 𝑀𝑉𝑁(𝑿𝜷 + 𝒁𝒑𝒂𝒓𝒖𝒑𝒂𝒓 + 𝒁𝒄𝒉𝒊𝒍𝒅𝒖𝒄𝒉𝒊𝒍𝒅 + 𝒖𝒈 + 𝒁𝒔𝒖𝒔, 𝜎\"𝐼]E) 



Our goal is to find the parameters 𝜽 that maximize the marginal likelihood of disease status, i.e., 

𝐿(𝒀|𝑿, 𝜷, 𝜽) = ]exp(𝑙(𝒀|𝑿, 𝜷, 𝒖) + 𝑙(𝐮|𝜽)) 𝑑𝒖 

where we integrate out the random effects 𝒖 from the joint likelihood. 

We use 𝒖∗ to denote the solution which maximizes the joint log-likelihood function given a fixed value of 𝜽 and 
𝜷, i.e. 

𝒖∗(𝜽, 𝜷) = 𝑎𝑟𝑔𝑚𝑎𝑥𝐮𝑙(𝒀; 𝑿, 𝜷, 𝜽, 𝒖) 

Further we let 𝐻(𝜽, 𝜷) denote the Hessian matrix of the joint density 𝑓(𝒀;𝑿, 𝜷, 𝐮, 𝜽) with respect to random 
effects 𝒖 and evaluated at 𝒖∗(𝜽, 𝜷) by 

𝐻(𝜽, 𝜷) = 𝑙<<″ (𝒖∗(𝜽, 𝜷), 𝜽)|𝐮`𝐮∗ 

A Taylor series expansion of 𝒖 around 𝒖∗ gives the approximation 

𝑙g(𝒀; 𝑿, 𝜽, 𝜷, 𝒖) ≈ 𝑙(𝒀|𝑿, 𝜽, 𝜷, 𝒖∗) −
1
2
(𝒖 − 𝒖∗)R𝐻(𝜽, 𝜷)(𝒖 − 𝒖∗) 

We will use the approximation 𝑙g in the integrand to calculate the marginal likelihood, which equals to:  

𝐿∗(𝜃) = 𝑙𝑜𝑔 l] exp(𝑙(𝒀|𝑿, 𝜽, 𝜷, 𝒖∗) −
1
2
(𝒖 − 𝒖∗)R𝐻(𝜽, 𝜷)(𝒖 − 𝒖∗))

ℝ'()*+
𝑑𝒖m

= 𝑙(𝒀|𝑿, 𝜽, 𝜷, 𝒖∗)) +
dim	(𝒖)

2
𝑙𝑜𝑔(2𝜋) −

1
2
𝑙𝑜𝑔(𝑑𝑒𝑡(𝐻(𝜽, 𝜷)))

 

The approximate likelihood can be maximized using penalized least square method and standard nonlinear 
optimization algorithms. 

 
6. Conversion to Liability Scale Variance Components  
 
After estimating variance components on the observed scale for a phenotype using the SMILE model, we 
convert the variance components to the liability scale. Liability scale variance components for binary traits 
allows for the comparison of heritability and environmental variance estimates between diseases with different 
prevalence[15].  
 
Using the liability threshold model [16], we assume that that there is a continuous underlying score 𝑙 for binary 
disease traits which follows a standard normal distribution 

𝑙 ∼ 𝑁(0,1) 
We further assume that the observed disease status 𝑦 ∈ {0,1} is determined by whether the liability 𝑙 
surpasses a threshold 𝑇 as determined by population disease prevalence 𝐾, i.e.,   

𝑇 = Φbc(1 − 𝐾) 

𝑦 = v	1 𝑙 > 	𝑇
0 𝑙 ≤ 𝑇  

where Φ is the cumulative distribution function for a standard normal random variable. It can be shown that the 
expectation and variance of the liability for diseased individuals is 

𝐸(𝑙|𝑙 > 𝑇) = 𝑎 = 𝜙(𝑇)/𝐾
𝑉(𝑙|𝑙 > 𝑇) = 1 − 𝑎(𝑎 − 𝑇) 

The basic idea for the conversion formula is to link the estimate of the recurrence risk for two family members 
on the observed scale with that on the liability scale.  

First let 𝑙c and 𝑙" denote the liability of two relatives within a family, then it can be shown [17] that 



𝐸(𝑙"|𝑙c > 𝑇) = 𝑎𝑟*)%
𝑉(𝑙"|𝑙c > 𝑇) = 1 − 𝑟*)%" (𝑎(𝑎 − 𝑇))

 

where 𝑟*)% is the covariance of the liabilities between relatives. Reich et al. [18]  modified Falconer’s formula 
[16] to account for decreased variance in the liability distribution among relatives. If we standardize the 
distribution of relatives of diseased individuals such that their liability follows an approximate standard normal 
distribution, i.e., 𝑙"~	𝑁(0,1) , then the recurrence risk is 

𝐾D = 𝐸(𝐼(𝑙" > 𝑇) = 1|𝑙c > 𝑇) = Pr(𝐼(𝑙" > 𝑇) = 1|𝑙c > 𝑇) = 1 − Φ(𝑇D)	 (𝑆1) 
 
where 𝑇D is given by:  

𝑇D =
𝑇 − 𝑎𝑟*)%

�1 − 𝑟*)%" =𝑎(𝑎 − 𝑇)@
	 (𝑆2) 

From (S2), we can solve for 𝑟*)% 

𝑟*)% =
𝑇 − 𝑇D�1 − (𝑇" − 𝑇D")(1 − 𝑇/𝑎)

𝑎 + 𝑇D"(𝑎 − 𝑇)
	 (𝑆3) 

 

We also seek to estimate the recurrence risk 𝐾D on the observed scale. We use 𝑦c and 𝑦" to denote the 
observed phenotypes for a pair of relatives within a family. They satisfy:   

𝐸(𝑦c) = 𝐸(𝑦") = 𝐾
𝐸(𝑦"|𝑦c = 1) = 𝐾D

 

The covariance of the observed phenotypes can also be written as a function of the recurrence risk:  

𝑟>?! = 𝐶𝑜𝑣(𝑦c, 𝑦")
= 𝐸(𝑦c𝑦") − 𝐸(𝑦c)𝐸(𝑦")
= 𝐸(𝑦"|𝑦c = 1)𝑃(𝑦c = 1) − 𝐸(𝑦c)𝐸(𝑦")
= 𝐾𝐾D − 𝐾"

	 (𝑆4) 

From (S3), we can also derive recurrence risk as a function of observed phenotypic covariance between 
relatives:  

𝐾D = 𝐾 +
𝑟>?!
𝐾

𝑇D = 𝛷bc(1 − 𝐾D)
	 (𝑆5) 

Using equations (S2) and (S4), we will be able to convert phenotypic covariances in observed scale to 
phenotypic covariances in liability scale. Plugging the observed scale covariance estimate 𝑟>?! into (S5), 
solving for 𝑇D, and plugging 𝑇D into (S3), we can express 𝑟*)% as a function of 𝑟>?!.  

Finally, as observed and liability scale phenotypic covariances are functions of the variance components, we 
will be able to convert variance component estimates between observed scale and liability scale. Specifically, 
conditioning on relevant individual level fixed effects, the covariances of observed phenotypes are equal to:   

 𝑟>?!,$%&b$%& = 𝜎�!,>?!" + 𝜎$%&,>?!"

𝑟>?!,'()*+b'()*+ = 𝜎�!,>?!" +
1
2
𝜎#,>?!" + 𝜎'()*+,>?!" 			

𝑟>?!,$%&b'()*+ = 𝜎�!,>?!" +
1
2
𝜎#,>?!"

 

𝑟>?!,!b! =	𝜎�!,>?!"  

(S6) 



where 𝑝𝑎𝑟 − 𝑝𝑎𝑟,𝑐ℎ𝑖𝑙𝑑 − 𝑐ℎ𝑖𝑙𝑑, and 𝑝𝑎𝑟 − 𝑐ℎ𝑖𝑙𝑑 indicate relationships between two parents, two children, and a 
parent and a child within the same family. The covariances between individuals due to shared community-level 
environment is denoted as 𝑠 − 𝑠. 
  
As the covariances of observed phenotypes can be converted to the covariances between liabilities, we can 
obtain liability scale variance components using (S6) and below:    
 

𝜎#,*)%" = 2(𝑟*)%,$%&b'()*+ − 𝑟*)%,!b!)
𝜎$%&,*)%" = 𝑟*)%,$%&b'()*+ − 𝑟*)%,!b!
𝜎!)?,*)%" = 𝑟*)%,'()*+b'()*+ − 𝑟*)%,$%&b'()*+

	

								𝜎�!,*)%" = 𝑟*)%,!b! 

(S7) 

7. Standard Errors for Liability-scale Variance Components by Multivariate Delta Method 

We describe the calculation of standard errors for variance components estimates in SMILE model. Let 𝜽�𝒐𝒃𝒔 =
(𝜎#,>?!" , 𝜎$%&,>?!" , 𝜎'()*+,>?!" , 𝜎!,>?!" , 𝜌)R denote the maximum likelihood estimates of variance parameters from the 
full SMILE model, which is fitted to observed case control status. The covariance matrix of 𝜽�𝒐𝒃𝒔 is given by the 
inverse of the Fisher information matrix evaluated at the maximum likelihood estimates 𝜽�𝒐𝒃𝒔, i.e., 

𝑉(𝜽�𝒐𝒃𝒔) = −𝛻g,-.𝛻g,-.
R 𝑙(𝜽𝒐𝒃𝒔)|g,-.`gh,-. 

The maximum likelihood estimates asymptotically satisfy:  

=𝜽�𝒐𝒃𝒔 − 𝜽𝒐𝒃𝒔@
+
→𝑀𝑉𝑁(0, 𝑉(𝜽�𝒐𝒃𝒔)) 

As the liability scale variance components may be transformed from observed scale estimates, the variance-
covariance matrix of the liability scale estimates can be derived using multivariate delta method. We denote the 
transformation from observed to liability scale estimates as 

𝒈(𝜽𝒐𝒃𝒔) = 𝜽𝒍𝒊𝒂 = (𝜎#,*)%" , 𝜎$%&,*)%" , 𝜎'()*+,*)%" , 𝜎�!,*)%" )R 

The function 𝒈 can be broken down into the compositions of the following steps: 

 𝜽𝒐𝒃𝒔 = (𝜎#,>?!" , 𝜎$%&,>?!" , 𝜎'()*+,>?!" , 𝜎!,>?!" , 𝜌)R

𝑔i(𝜽𝒐𝒃𝒔) = (𝜎#,>?!" , 𝜎$%&,>?!" , 𝜎'()*+,>?!" , 𝜎�!,>?!" )R

𝑔c(𝑔i(𝜽𝒐𝒃𝒔)) = (𝑟$%&=j;b$%&=j;,>?!, 𝑟$%&=j;b'()*+,>?!, 𝑟'()*+b'()*+,>?!, 𝑟!,>?!)R

𝑔"(𝑔c(𝑔i(𝜽𝒐𝒃𝒔))) = (𝑟$%&=j;b$%&=j;,*)% , 𝑟$%&=j;b'()*+,*)% , 𝑟'()*+b'()*+,*)% , 𝑟!,*)%)R

𝐠(𝜽𝒐𝒃𝒔) = 𝑔k(𝑔"(𝑔c(𝑔i(𝜽𝒐𝒃𝒔)))) = (𝜎#,*)%" , 𝜎$%&,*)%" , 𝜎'()*+,*)%" , 𝜎�!,*)%" )R

 (S8) 

Individually, 

• 𝑔i transforms 𝜎!,>?!"  and 𝜌 to the Gower factor for the spatial variance component 𝜎�!,>?!" . 

• 𝑔c transforms observed scale variance components to observed scale family covariances, as in equation 
(S6). 

• 𝑔" transforms covariances of observed phenotypes to the covariances of liabilities between family 
members. 

• 𝑔k transforms covariances of liabilities to liability scale variance components, as in equation (S7). 

To obtain standard errors for 𝒈, we successively apply the multivariate delta method: 



𝑔i(𝜽�𝒐𝒃𝒔)
+
→𝑀𝑉𝑁(𝑔i(𝜽𝒐𝒃𝒔), 𝛻𝑔i𝑉(𝜽�𝒐𝒃𝒔)𝛻𝑔iR)

𝑔c(𝑔i(𝜽�𝒐𝒃𝒔))
+
→𝑀𝑉𝑁(𝑔c(𝑔i(𝜽𝒐𝒃𝒔)), 𝛻𝑔c𝛻𝑔i𝑉(𝜽�𝒐𝒃𝒔)𝛻𝑔iR𝛻𝑔cR)
⋮

𝐠(𝜽�𝒐𝒃𝒔)
+
→𝑀𝑉𝑁(g(𝜽𝒐𝒃𝒔), 𝛻𝑔k𝛻𝑔"𝛻𝑔c𝛻𝑔i𝑉(𝜽�𝒐𝒃𝒔)𝛻𝑔iR𝛻𝑔cR𝛻𝑔"R𝛻𝑔kR)

 

Here, we use 𝛻𝑔) to denote the derivative of 𝑔) with respect to its immediate input, e.g.,   

∇#/ �𝑔" �𝑔c=𝑔i(𝜃)@�� = 𝑔"l �𝑔c=𝑔i(𝜃)@� 

To begin, we can describe in detail the first transformation 𝑔i. For notational convenience, we rewrite the 
spatial covariance matrix as 𝜮𝑺 = 𝜎!"𝜴𝑺. For CAR and SAR models, we have 

𝛀𝐒,𝐒𝐀𝐑 = ((𝐼 − 𝜌𝑴bc"𝑾p𝑴
c
")𝑀bc(𝐼 − 𝜌𝑴bc"𝑾p𝑴

c
"))bc

𝛀𝐒,𝐂𝐀𝐑 = (𝑴bc"(𝐼 − 𝜌𝑴bc"𝑾p𝑴
c
")𝑴bc")bc

 

where 𝑾 is a matrix of indicators for neighboring locations where the 𝑖,𝑗;( element is 1 if locations 𝑖 and 𝑗 
share a geographical border and 0 otherwise and 

𝑴 = 𝑑𝑖𝑎𝑔0��𝑊cr
r

�

bc

, … , ��𝑊r
r

�

bc

1 

𝑾p = 𝑴𝑾 

Our community-level spatial variance component 𝜎�!" is a function of the two random variables 𝜌 and 𝜎!,>?!" , 
which describes the amount of phenotypic variance explained by the spatial random effect. 

𝑓(𝜎!", 𝜌) = 𝜎�!" =
𝜎!"

𝑁
𝑡𝑟(𝒁(𝐼 −

1
𝐿
𝟏𝟏R)𝜴𝑺𝒁R)

𝛻s./𝑓 =
1
𝑁
𝑡𝑟(𝒁(𝑰 −

1
𝐿
𝟏𝟏𝑻)𝜴𝑺𝒁𝑻)

𝛻t𝑓 = 𝜎!"(𝐼 −
1
𝐿 𝟏𝟏

𝑻)𝒁𝑻𝒁(𝛻t𝜴𝑺)

 

Where for CAR and SAR models we have 

𝛻t𝛺u,uvD = −𝜴𝑺(2𝑀bc(𝐼 − 𝜌𝑴bc"𝑾p𝑴
c
"))𝜴𝑺

𝛻t𝛺u,AvD = −𝜴𝑺(𝑴
b𝟑𝟐𝑾p𝑴

𝟏
𝟐)𝜴𝑺

 

We then apply the delta method to obtain standard errors for g using the gradients for 𝑔i,𝑔c,𝑔", 𝑔k given by: 

 

∇#(=

𝜎#,>?!"

𝜎$%&,>?!"

𝜎'()*+,>?!"

𝜎!,>?!" ⎣
⎢
⎢
⎢
⎢
⎢
⎡

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 ∇s./𝑓 ∇t𝑓⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

 

and 

𝜎!,#$%& 𝜎'(),#$%& 𝜎*+,-.,#$%& 𝜎%,#$%& 𝜌 

𝜎!,#$%& 𝜎'(),#$%& 𝜎*+,-.,#$%& 𝜎%,#$%&  



 

∇#'=

𝑟$%&b$%&,>?!

𝑟$%&b'()*+,>?!

𝑟'()*+b'()*+,>?!

𝑟!b!,>?! ⎣
⎢
⎢
⎢
⎢
⎢
⎡

0 1 0 1
1
2 0 0 1
1
2 0 1 1

0 0 0 1

			

⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

Function 𝑔" transforms the covariances of observed phenotypes to the covariances of liabilities as in (S4) and 
(S5). For a particular family relationship 𝜄, (i.e., 𝜄 can be par-par, par-child, or child-child, or s-s (same 
community location)), we let 

𝜕𝑟*)%,x
𝜕𝑟>?!,x

= 𝜓x =
𝜕𝑟*)%,x
𝜕𝑇D,x

𝜕𝑇D,x
𝜕𝐾D,x

𝜕𝐾D,x
𝜕𝑟>?!,x

𝜕𝑟*)%,x
𝜕𝑇D,x

=
−�1 − (𝑇" − 𝑇D,x" )(1 − 𝑇/𝑎)(1 + 𝑇D,x" (𝑎 − 𝑇)))

𝑎 + 𝑇D,x" (𝑎 − 𝑇)

−
2𝑇D,x(𝑎 − 𝑇)(𝑇 − 𝑇D,x�1 − (𝑇" − 𝑇D,x" )(1 − 𝑇/𝑎))

(𝑎 + 𝑇D,x" (𝑎 − 𝑇))"

𝜕𝑇D
𝜕𝐾D,x

= −
1

𝜙(𝛷bc(1 − 𝐾D,x))
𝜕𝐾D,x
𝜕𝑟>?!,x

=
1
𝐾

 

 

Then the derivatives for the transformation 𝑔" is equal to: 

 

∇#/=

𝑟$%&b$%&,*)%

𝑟$%&b'()*+,*)%

𝑟'()*+b'()*+,*)%

𝑟!b!,*)% ⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜓$%&b$%& 0 0 0

0 𝜓'()*+b'()*+ 0 0

0 0 𝜓$%&b'()*+ 0

0 0 0 𝜓!b!

			

⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

 

And finally for 𝑔k, which transforms the covariances of liabilities to liability scale variance components as in 
(S7), its derivative is given by:  

 

 

∇#0=

𝜎#,*)%"

𝜎$%&,*)%"

𝜎'()*+,*)%"

𝜎�!,*)%" ⎣
⎢
⎢
⎢
⎢
⎢
⎡

0 2 0 −2

1 0 0 −1

0 −1 1 0

0 0 0 1

			

⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

𝑟'()/'(),#$% 𝑟'()/*+,-.,#$% 𝑟*+,-./*+,-.,#$% 𝑟%/%,#$% 

𝑟'()/'(),-,( 𝑟'()/*+,-.,-,( 𝑟*+,-./*+,-.,-,( 𝑟%/%,-,( 



 

Plugging gradients in to (S8) returns the standard errors for liability scale variance components. 

8. Converting relative risk in observed scale to effects in liability scale 
 
In our simulations, we simulated liabilities of binary diseases, dichotomized the liability based on the disease 
prevalence, and obtained binary phenotypes. In order to understand the average liability scale covariate effects 
for binary disease outcomes, we derive formulae to convert them to odds ratios. The key idea for this 
conversion is to calculate average relative risks in liability and observed scale for the covariates and use them 
to derive relationships between covariate effects on the liability and binary disease status.  
  
Under the observed scale, linear regression is used where the 0-1 disease status is modeled as a linear 
function of the covariates and random effects, i.e.,  
 

𝒀 =	𝑷©𝜷 + 𝑿𝝅𝟐 + 𝒖𝒈 + 𝒁𝒑𝒂𝒓𝒖𝒑𝒂𝒓 + 𝒁𝒄𝒉𝒊𝒍𝒅𝒖𝒄𝒉𝒊𝒍𝒅 + 𝝐 
 
where all covariates were mean-centered and scaled to have standard deviation of 1 prior to  
initial model fitting. 
 
We let the superscript ‘∗’ denote the corresponding parameter effects on the liability-scale. The liability 𝑙 is 
modeled as a function of fixed and random effects, i.e.,  

𝒍 = 	𝑷©𝜷∗ + 𝑿𝝅𝟐∗ + 𝒖𝒈∗ + 𝒁𝒑𝒂𝒓𝒖𝒑𝒂𝒓∗ + 𝒁𝒄𝒉𝒊𝒍𝒅𝒖𝒄𝒉𝒊𝒍𝒅∗ + 𝝐∗	
 
We denote the standard deviation of observed scale cumulative confounding effect as  

𝑏 = 𝑠𝑑(𝑿𝝅𝟐)	
which we use as a measure of the unit of change in the cumulative confounding effect.  
 
The relative risk of having one unit of increase in the cumulative confounding effect over the baseline is equal 
to	

𝑅𝑅 =
Pr=𝑌) = 1°𝑋)R𝜋" = 𝑏@
Pr=𝑌) = 1°𝑋)R𝜋" = 0@

=
𝐸=𝑌)°𝑋)R𝜋" = 𝑏@
𝐸=𝑌)°𝑋)R𝜋" = 0@

=
𝐾 + 𝑏
𝐾

(S9)	

                                                                     
Using the estimated relative risk associated with 𝑏, we can solve for the average liability scale effect 𝑏∗. Under 
the liability threshold scale, the relative risk given one unit of change in the liability effect can be expressed as:  
 

𝑅𝑅 =
Pr=𝑌) = 1°𝑋)R𝜋"∗ = 𝑏∗@
Pr=𝑌) = 1°𝑋)R𝜋"∗ = 0@

=
Pr=𝑙) > 𝑇°𝑋)R𝜋"∗ = 𝑏∗@
Pr=𝑙) > 𝑇°𝑋)R𝜋"∗ = 0@

=
1 −Φ(𝑇 − 𝑏∗)
1 − Φ(𝑇)

	 (𝑆10) 

 
Combining (S9) and (S10), we will be able to solve 𝑏∗ as a function of 𝑏. We then rescale our confounding 
predictor effects used in the simulation to match the liability scale average effect. 	

𝜋"∗ ≈ 𝜋" �
𝑏∗

𝑏 �
 

 
We note that this transformation is not exact but can serve as a useful approximation to link liability and 
observed scale estimates of covariate effects.  
 
9. Two Stage Regression Model for Causal Inference of PM2.5 and NO2 Air Pollution 
 
In addition to characterizing overall phenotypic variation explainable by spatial environment, we also leveraged 
two stage regression to assess the causality of individual environmental risk factors, including pollutants PM2.5 

and NO2, which we collectively denote as 𝑷. We incorporated environmental data from external sources and 
used wind speed and directions (as captured by sine and cosine of the vector of direction) as instrumental 
variables, which we collectively denote as 𝒁. Wind speed and direction have previously been used as 
instrumental variables for various pollution exposures [19-22]. Wind speed and direction are unlikely to have 



any direct causal relationship with a disease phenotype, but are strong predictors of local pollution levels, as 
the pollution level in a given location is a mixture of both locally produced and transported air pollution carried 
by the wind from its original source [22, 23].  
 
It is easy to verify that the wind speed and direction satisfy the three primary assumptions of instrumental 
variables in two-stage regression analyses[24]:  
• Instrument relevance: the instrument is correlated with the pollutant 𝑷, i.e., 𝑐𝑜𝑣(𝒁, 𝑷) ≠ 0 
• Instrument exogeneity: The instrument (averaged wind-direction) is uncorrelated with other confounders 

(measured or unmeasured) in the second stage model. 
• The averaged wind-direction instruments 𝒁 have no direct effect on the disease phenotype 𝒀. 

In the first stage model, the pollutant (𝑷)	is regressed against the instrument of local averaged wind speed and 
direction (𝒁), and a set of community-level environmental risk factor (CLERF) variables 𝑿𝑪𝑳𝑬𝑹𝑭 which include 
sociodemographic census variables and climate variables (i.e., averaged precipitation, and averaged monthly 
minimum and maximum temperature). CLERF variables may act as proxy for unmeasured confounding effects 
on the disease even if they do not have a direct interpretation by themselves. For example, population density 
may act as a proxy for noise pollution or urbanicity effects. 
 
In order to incorporate instrumental variables in the first stage regression, we implement a strategy similar to 
Deryugina et al [22], where we constructed 𝐶 clusters of the centroids of MarketScan locations by longitude 
and latitude using a k-means clustering algorithm. To choose the number of spatial clusters 𝐶, we fit the first 
stage model using different numbers of clusters (i.e., 𝐶 = 20, 25,… ,45, 50) and selected the number of clusters 
that gives the largest adjusted R2.  
 
We then constructed a matrix of instruments linking each individual to the wind direction and speed at their 
MarketScan county/MSA location. Specifically, let 𝑊* be a vector of length 3 containing the average wind 
speed, and cosine and sine of the averaged wind direction at location 𝑙, where 𝑙 = 1,… , 𝐿. Further let 𝒄* =
(𝑐*c, … , 𝑐*A)R be a 𝐶 × 1	 indicator vector where element 𝑐*' is 1 if location 𝑙 is in cluster 𝑐 and 0 otherwise. Then 
the matrix of instrumental variables can be represented as:  

𝒁 =

⎣
⎢
⎢
⎡𝒄c
R ⊗𝑊c

R

𝒄"R ⊗𝑊"
R

⋮
𝒄BR ⊗𝑊B

R⎦
⎥
⎥
⎤
	 (𝑆11) 

The first stage model takes the form of 
 		𝑷 = 𝒁𝜸 + 𝑿𝑪𝑳𝑬𝑹𝑭𝝅𝟏 + 𝒖  

 
After estimating the first stage model, the pollution level is predicted based on the cluster-specific wind speeds 
and directions  

𝑷© = 𝒁	�̧� 
 
In the second stage regression, we make use of what we call the SMILE-2 model to assess the causal effect of 
pollution levels. The SMILE-2 model is specified as:   

𝒀 = 𝐏©𝜷 + 	𝐗𝝅𝟐 	+ 𝒖𝒈 + 𝐙𝐩𝐚𝐫𝒖𝒑𝒂𝒓 + 𝐙𝐜𝐡𝐢𝐥𝐝𝒖𝒄𝒉𝒊𝒍𝒅 + 	𝝐	 (𝑆12) 
   
SMILE-2 is analogous to the SMILE model, except that the focus is on estimating the causal effects of pollution 
on disease while controlling for genetic and family-level environmental effects. The spatial random effect is no 
longer incorporated as it has been partially explained by the air pollution level. Inclusion of spatial random 
effects will bias the inference of fixed effects [25, 26]. We used heteroscedastic-robust standard errors that 
were clustered at the location level to account for residual dependence within MarketScan locations. The 
detailed formula is described in the section below. 

10. Clustered Robust Standard Errors for Causal Effect Estimates in SMILE-2 Model 

Below, we show the derivations for the standard errors for the causal effect estimates in SMILE-2 model. We 
let 𝑁E denote the number of nuclear family in the mixed model, 𝑁 denote the total number of individuals in the 



dataset, and 𝐿 denote the number of MarketScan locations. Let 𝑋 be a matrix of the 𝑞	fixed effects covariates, 
with each column being a covariate, and 𝑃 be a 4𝑁E × 𝑝 dimensional matrix of air pollutants (with 𝑝 ∈ (1,2)). 
Then the marginal likelihood of case control status 𝒀 is 

𝒀 ∼ 𝑀𝑉𝑁(𝑷©𝜷 + 𝑿𝝅𝟐, 𝑽) 

𝑽 = 𝜎$%&" 𝒁𝒑𝒂𝒓𝒁𝒑𝒂𝒓𝑻 + 𝜎'()*+" 𝒁𝒄𝒉𝒊𝒍𝒅𝒁𝒄𝒉𝒊𝒍𝒅𝑻 + 𝜎#"𝑮𝑨𝑳𝑳 

The inference on 𝜷 is of primary interest. We write the log-likelihood for 𝒀 as 

𝑙(𝜷, 𝝅𝟐, 𝛔𝟐; 𝒀) = −
𝑛
2
𝑙𝑜𝑔(2𝜋) −

1
2
𝑙𝑜𝑔(|𝑽|) −

1
2
(𝒀 − 𝑷©𝜷 − 𝑿𝝅𝟐)R𝑽bc(𝒀 − 𝑷𝜷 − 𝑿𝝅𝟐) 

where the gradient with respect to the fixed effect vector (𝜷R , 𝝅"R)R is given by 

𝛻�,�/𝑙(𝜷, 𝝅𝟐, 𝛔
𝟐) = [𝑷©, 𝑿]R𝑽bc(𝒀 − 𝑷©𝜷 − 𝑿𝝅𝟐) 

We write the score function as 

𝑠(𝜷, 𝝅𝟐; 𝒚) = (Ã𝑷©, 𝑿]R𝑽bc@
R ∘ (𝒀 − 𝑷©𝜷 − 𝑿𝝅𝟐) 

Where the ‘∘’ operator denotes the Hadamard element-wise product. This score function is an 𝑁 × (𝑞 + 𝑝) 
matrix, with each column corresponding to a fixed effect parameter and each row corresponding to an 
individual sample. 

The Fisher information matrix for fixed effects is given by 

−𝐸(𝛻�,�/𝛻�,�/
R 𝑙(𝜷, 𝝅𝟐, 𝛔𝟐) = [𝑷©, 𝑿]R𝑽bc[𝑷©, 𝑿] 

Letting 𝑨 = −𝐸 �𝛻�,�/𝛻�,�/
R 𝑙=𝜷, 𝝅𝟐, 𝛔𝟐@� and 𝝍 = 𝑐𝑜𝑣(𝛻�,�/𝑙(𝜷, 𝝅𝟐, 𝛔

𝟐)), then the Huber-White sandwich 
estimator for covariance of (𝜷�R , �̧�R) takes the form 

𝑐𝑜𝑣(Ã𝜷�𝑻, �̧�𝟐
𝑻Ç
�
) = 𝑨bc𝝍𝑨bc 

When samples are independent, 𝝍 = 𝑨 and the covariance matrix 𝑐𝑜𝑣(Ã𝜷�𝑻, �̧�𝑻ÇR) reduces to the inverse of the 
Fisher information matrix. 

Due to multiple families being nested within geographic locations, we cluster the standard errors at the 
MarketScan location-level, allowing for the possibility that model residuals may be correlated within county or 
MSA location. We calculate the matrix 𝝍 empirically using  

𝝍 =�È�𝑠)(𝜷, 𝝅𝟐; 𝒀)
)∈A1

É

R

È� 𝑠)(𝜷, 𝝅𝟐; 𝒀)
)∈A1

É
B

*`c

 

where the summation of scores 𝑠) is taken over all MarketScan individuals who live in the same geographic 
location 𝑐*. 
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