Deep Learning-based Localization Algorithms on Fluorescence Human Brain 3D Reconstruction: a Comparative Study using Stereology as a Reference

Curzio Checcucci^{1,*}, Bridget Wicinski², Giacomo Mazzamuto^{3,4,6}, Marina Scardigli^{3,5}, Josephine Ramazzotti³, Niamh Brady³, Francesco S. Pavone^{3,4,6}, Patrick R. Hof², Irene Costantini^{3,4,7,+}, and Paolo Frasconi^{1,3,+}

¹University of Florence, Department of Information Engineering, Firenze (FI), 50100, Italy
²Nash Family Department of Neuroscience, Friedman Brain Institute and Center for Discovery and Innovation, Icahn School of Medicine at Mount Sinai, New York (NY), 10019, USA
³European Laboratory for Non-Linear Spectroscopy (LENS), Sesto Fiorentino (FI), 50019, Italy
⁴National Research Council, National Institute of Optics (CNR-INO), Sesto Fiorentino (FI), 50019, Italy
⁵Current affiliation: Division of Physiology, Department of Experimental and Clinical Medicine, University of Florence, Italy
⁶University of Florence, Department of Physics, Sesto Fiorentino (FI), 50019, Italy
⁷University of Florence, Department of Biology, Sesto Fiorentino (FI), 50019, Italy
⁺These authors contributed equally to this work
*Corresponding author: curzio.checcucci@unifi.it

Supplementary Information

Figure S1: Distribution of annotated data. Left panel shows the number of annotated volumes per brain slab. Right panel shows the number of annotated cells per volume (white numbers) and per brain slab (black numbers). Note that some volumes do not appear in the right panel because they do not contain any annotated cell.

Table	S1:	Performa	nce me	trics	of dee	ep lea	arning	metho	ls on	stereol	logical	annotations	grouped	by	layer.	Bold
values	are t	he highest	$\mathbf{results}$	per 1	metric	and	consid	lered se	t witl	nin a m	naximur	m distance (of 0.5 poi	nt p	$\operatorname{ercent} a$	ge to
the bes	st me	odel.														

Layer	Tot. markers	\mathbf{Method}	Prec. (%)	Rec. $(\%)$	$\mathbf{F_1}$ (%)	
		BCFind-v2	72.1	81.4	76.5	
2	820	StarDist (ResNet)	74.6	79.2	76.8	
0	029	StarDist (UNet)	78.0	69.2	73.3	
		CellPose	80.5	48.7	59.1	
		BCFind-v2	73.8	78.9	76.3	
5	631	StarDist (ResNet)	74.0	74.8	74.4	
0		StarDist (UNet)	77.9	64.3	70.5	
		CellPose	79.4	45.2	57.6	
		BCFind-v2	75.8	73.8	74.8	
6	795	StarDist (ResNet)	78.4	72.0	75.0	
0	100	StarDist (UNet)	80.8	63.7	71.2	
		CellPose	78.1	51.2	61.8	
		BCFind-v2	73.8	78.0	75.8	
Tot	2245	StarDist (ResNet)	75.6	75.4	75.5	
100.	2240	StarDist (UNet)	78.9	65.9	71.8	
		CellPose	79.3	47.8	59.7	

Layer	Slab	BCFind-v2	Stardist (ResNet)	StarDist (UNet)	CellPose	Stereology	Volume (mm^3)
3	6	$1 \ 384 \ 758$	1 174 641	971 503	529 774	904 500	84.9555
	18	$1 \ 631 \ 946$	$1 \ 499 \ 693$	$1 \ 099 \ 772$	$1 \ 117 \ 161$	$1 \ 518 \ 660$	113.2260
	30	1 401 438	1 588 116	$1 \ 484 \ 457$	$1 \ 079 \ 380$	1 195 560	102.6240
	42	924 997	950 357	847 076	$494 \ 124$	627 750	51.2406
	6	848 642	700 154	563 847	300 546	572 850	47.1015
5	18	993 471	870 519	$619\ 725$	621 701	$1 \ 072 \ 620$	62.9554
0	30	818 344	908 167	839 886	573 885	947 700	56.7181
	42	559 840	567 916	$500\ 024$	$262 \ 229$	562 950	27.4817
6	6	928 275	819 255	674 997	449 194	814 050	58.6068
	18	$1 \ 073 \ 528$	943 559	$672\ 126$	813 712	1 401 840	79.6373
	30	786 871	849 366	$782\ 056$	611 004	$913\ 680$	59.0898
	42	$605 \ 271$	609 811	549 772	370 606	814 050	35.0406

Table S2: Predicted counts on whole slab layers. Bold values are the DL-estimated counts closest to stereology.

Table S3: Intra and inter human comparisons on annotations made on 8 volumes with size $50 \times 50 \times 50$ voxels. Three experts annotated these same volumes two times, averages over the experts and the volumes, together with the standard deviations, are reported.

	Prec. (%)	Rec. (%)	$\mathbf{F_1}$ (%)
	(st. dev.)	(st. dev.)	(st. dev.)
Intro human	72.2	86.2	77.8
Intra-numan	(8.9)	(10.6)	(5.7)
Intor human	83.5	74.8	78.0
muer-numan	(8.9)	(10.9)	(6.1)

Figure S2: Ground truth mistakes and BCFind-v2 predictions. Some cells are annotated multiple times (lightblue arrows), some annotations fall into dark regions (purple arrows) or close to actual cells whose correct detection appear as false-positive (pink arrows), some false-positives correctly detect a cell (white arrows). Each image is a $126 \times 126 \ \mu m^2$ plane taken from a test volume (Section 2.1 of main text) overlaid with the scatter plot of BCFind-v2 predictions. Green circles denote true-positives predictions, red circles false-positives and orange circles false-negatives. Circle sizes are proportional to the proximity of predicted z-coordinates to the displayed plane and have a maximum radius of 15 μ m. Best viewed in color.

Figure S3: DL predictions on a small 2D RoI for each considered slab. Point sizes represent the proximity of predicted z-coordinates to the displayed plane with a maximum distance of 15 μ m (each point radius). Scale bars are 100 μ m long. Better viewed in color and zooming in.

Figure S4: Undulatory feature of acquired slabs. BCFind-v2 predictions and raw data plane at (A, D) Z = start, (B, E) Z = mid and (C, F) Z = end of slab 30. (G) ZY projection of slab 30, red horizontal lines show Z = start and Z = end considered by the above images and stereological estimates. Panel G is intentionally highly saturated to better highlight the tissue shape.

Figure S5: BCFind-v2. (A) Schematic representation of the whole pipeline. Yellow boxes and edges are only needed for training. (B) Input and (C) target pair for 3D UNet training. (D) 3D UNet architecture. (E) 3D UNet prediction. (F) Schematic representation of DoG for blob detection. (G) DoG predictions: green points are true positives, orange points false negatives and red points false positives.

Overall effort required to prepare, image, and analyze a whole Broca's area

The preparation of a $(4 \times 4 \times 2 \text{ cm}^3)$ tissue sample, approximately corresponding to a whole human Broca's area, takes about two weeks for tissue clearing and another two weeks for specific staining (all the slabs can be treated in parallel as described in detail by Di Meo et al. 2024 [2] and multiple staining can be performed up to 4 colors). Our custom-made LSFM has an image velocity of 47 frames/s [1], and one $4 \times 4 \text{ cm}^2 400 \mu\text{m}$ - thick slab can be imaged in approximately 3 hours. Once prepared, a whole block of ~50 slabs (a Broca's area is around 2 cm thick) can be imaged at the microscope in approximately 13 working days (considering 4 slabs every day). Post-processing of the data (mainly image reslicing and stitching) requires approximately 1 h per slice. Thus, to obtain images for a 3D $4 \times 4 \times 2 \text{ cm}^3$ block of Broca's area at a 3.6 μ m isotropic resolution we need approximately six weeks. Creating the ground truth for supervised learning would require about 60 hours (we spent 80 hours but 25% of the annotations were used to estimate the F_1 -measure on held-out data and since the method is already validated, we will not need them). Training BCFind-v2 and running inference on the whole set of slabs would take 3 and 30 hours, respectively, on a single GPU, i.e. a modest amount of the overall time (interestingly, inference with StarDist or Cellpose would take approximately an order of magnitude more, as shown in Fig.3). Hence, a whole Broca's area can be prepared, imaged, and analyzed in less than two months in an idealized full-time working regime.

References

- [1] Irene Costantini et al. "A cellular resolution atlas of Broca's area". In: Science Advances 9.41 (2023), eadg3844.
- [2] Danila Di Meo et al. "Optical Clearing and Labeling for Light-sheet Fluorescence Microscopy in Large-scale Human Brain Imaging." In: Journal of Visualized Experiments: Jove 203 (2024).