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Fig S1. Pairwise Bray-Curtis distances between influent and activated sludge (AS) samples using
abundances of taxa at different levels of classification. Distances between AS samples only. (B)
Distances between influent samples with comparisons in the form of 10% vs. 0%.
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Fig S2. Pairwise Bray-Curtis distances between influent and AS samples using abundances of taxa

at different levels of classification. Distances between influent samples with comparisons in the
form of 10% vs. 0%.
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Fig. S3. Phylum-level counts of high- and medium-quality metagenome assembled genomes
(MAGs) before dereplication.
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Fig. S4. Association of antibiotic resistance genes (ARGs) with putative composite mobile genetic
elements (MGEs). Counts of resistance genes in terms of their co-occurring mobileOGs with
different element classifications. For example, the most frequent association predicted through co-
occurrence analysis was with plasmid hallmarks.
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Fig. S5. Sampling scheme used for Fig. 2. Samples of feed or influent (brown bottles) and AS from
reactor 10%-1 (yellow box) were deeply sequenced for use in situ HGT and microdiversity
analyses. The 10%-specific contigs are those detected in A (day 6 0% influent/feed) but not B (day
6 10% influent/feed).
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Fig. S6. Example contexts of su// in the 10% or 0% influent samples. Clinker plots generated from
a balanced, random sample of contigs bearing sul// predicted to be either native- or hospital-sewage
specific.
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Fig. S7. Example contexts of genes encoding macrolide phosphotransferase A (mphA) in the 10%
or 0% influent samples. Clinker plots generated from a balanced, random sample of contigs
bearing mphA predicted to be either native- or hospital-sewage specific.
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Fig S8. Relative abundance of contigs through read mapping is concordant with the Kairos assess
workflow predictions. (A) Summed relative abundances of contigs predicted by Kairos assess (as
in Fig. 3) to be innate to the AS microbiome. (B) Summed relative abundances of contigs predicted
to be innate to hospital sewage. (C) Summed relative abundances of contigs predicted to be
associated with municipal sewage.
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Fig. S9. Overall structure and properties of hospital- and background municipal-sewage mobile
resistance gene networks were similar. (A) Drug classes showed similar rankings in terms of
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neighborhood connectivity. (B) Individual resistance genes showed similar rankings in hospital
sewage vs. native sewage. (C) Hospital sewage lacked many of the phyla associated with

background municipal sewage.
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Fig. S10. Experimental and logic flow diagram for distinguishing fate of hospital and native-
sewage resistance genes as in Fig. 4G. “Attenuated” genes are those present in A (day 6
influent/feed) but not B (day 9 influent/feed) or C (AS on the last day of sampling). “Persistent”

genes are those present in A and C but not B.
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Fig. S11. Microdiversity-level disparity in the fate of hospital and natlve sewage associated
resistance genes. Determined using the Kairos assess workflow and logic described in Fig. S11.

Persistent contigs were considered those still detectable after several days of operation. Attenuated
contigs were those that were not detected in AS following several days of operation. Native contigs

are described as those only detected in AS.
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Fig. S12. Hosts of the genomes associated with attenuated resistance genes. (A) is partitioned by
fraction. (B) is partitioned by date category associated with sampling. ML: mixed liquor or

activated sludge. FE: final effluent. FEED: feed or influent sewage.
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Fig. S13. Hosts of the genomes associated with persistent resistance genes. (A) is partitioned by
fraction. (B) is partitioned by date category associated with sampling. ML: mixed liquor or
activated sludge. FE: final effluent. FEED: feed or influent sewage.



Brown et al. 2024 — Supplementary Information

APH(3")}-Ib

Pseudor@daceae
merA

Morceae

mt
Melh@lilaoeae

Fig. S14. Putative gene-sharing or HGT network of resistance genes. Nodes are taxa and edges are

identical proteins found in contigs found predicted to be derived from those taxa.
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Fig. S15. Contigs associated with the putative in situ transfer of mphA. Star indicates position of
mphA.
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Fig. S16. Contigs were detected that predicted multiple potential pathways of in situ transfers of
sul2. Start indicates position of su/2.
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Fig. S17. Putative in situ HGT of sull contigs. Contigs align against edges meaning that the
taxonomic assignment underlying its status as an HGT may be inaccurate and/or uncertain.
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Fig. S18. Scaffolding draft phage genomes based on alignment to reference sequenced. (TOP):
First 60,000 basepairs of NCBI entry CP064980.1 visualized using proksee with mobileOG-db
(cyan and orange), Alien Hunter (forest green) and GC%. Alien Hunter was used to infer the
prophage region as 10,000 — 55,000 bp. In this case, Alien Hunter is suggesting the region
surrounding the integration site rather than the prophage is the HGT region as the prophage

inhabits the majority of the 60,000 basepair fragment. (BOTTOM): Example clinker plot used to
orient fragments for merging.
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Fig. S19. One putative prophage in NCBI genome CP064980.1 was integrated near genes encoding
MacA and MacB putatively associated with macrolide export.
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Fig. S20. Example nanopore read alignment to both Myxococcota and Enterobacterales genomes.
The nanopore read here (6de60e4c-c959-472c-93f4-1fe535e£4dd0) encodes mphA as
well as phage genes. Alignment details are provided in Extended Data 1.

Table S1. Hits to myxophage derived from CP064980.1.

Table S1. Hits to myxophage derived from CP064980.1.

Description Scientific Name Max Score Total Query | E Per. Acc. Access
Score Cover | value ident Len ion

Myxococcales bacterium isolate Fred_18-Q3- | Myxococcales bacterium 1.07E+05 1.07E 100% | O 100 4018 CP064
R57-64_BAT3C.417 chromosome +05 971 980.1
Corallococcus sp. EGB chromosome, | Corallococcus sp. EGB 5012 38100 | 68% 0 86.62 | 9431 CP079
complete genome 171 946.1
Archangium  violaceum strain SDU34 | Archangium violaceum 2870 17434 41% 0 77.94 | 1267 CP069
chromosome, complete genome 7854 338.1
Myxococcus xanthus strain  GH3.5.6¢2 | Myxococcus xanthus 2686 10077 34% 0 74.25 | 9321 CP017
chromosome, complete genome 034 169.1
Myxococcus ~ xanthus  strain ~ DK101 | Myxococcus xanthus 2676 36430 | 51% 0 74.3 9346 CP104
chromosome 413 803.1
Myxococcus xanthus DZ2 chromosome, | Myxococcus xanthus DZ2 2676 36430 | 51% 0 74.3 9365 CP080
complete genome 783 538.1
Myxococcus xanthus strain ATCC 27925 | Myxococcus xanthus 2676 36425 | 51% 0 74.3 9346 CP080
chromosome, complete genome 321 534.1
Myxococcus xanthus DZ2 chromosome, | Myxococcus xanthus DZ2 2676 36406 51% 0 74.3 9359 CP070
complete genome 382 500.1
Myxococcus xanthus strain DK1622:pDPO- | Myxococcus xanthus 2676 12994 44% 0 74.3 9201 CP065
Mxn116-Pvan-Tpase chromosome, complete 039 3751
genome

Myxococcus xanthus DK 1622, complete | Myxococcus xanthus DK 1622 | 2676 12994 | 44% 0 74.3 9139 CP000
genome 763 113.1
Myxococcus  xanthus  strain  DK1050 | Myxococcus xanthus 2673 23741 50% 0 74.35 | 9253 CP104
chromosome 193 804.1
Myxococcus  fulvus  124B02, complete | Myxococcus fulvus 124B02 2671 12002 | 43% 0 74.3 1104 CP006
genome 8835 003.1
Myxococcus sp. MH1 DNA, complete | Myxococcus sp. MH1 2625 13929 | 48% 0 74.19 | 1077 AP026
genome 8154 947.1
Corallococcus macrosporus DSM 14697 | Corallococcus macrosporus | 2580 24668 50% 0 74.05 | 8973 CP022
chromosome, complete genome DSM 14697 512 203.1
Myxococcus xanthus strain R31 | Myxococcus xanthus 2074 12564 | 41% 0 75.41 | 9251 CP068
chromosome, complete genome 369 048.1
Stigmatella aurantiaca DW4/3-1, complete | Stigmatella aurantiaca | 1855 18108 | 36% 0 75.88 | 1026 CP002
genome DW4/3-1 0756 2711

Supplementary Methods

Section S1. Scaffolding phage genomes
Draft phage genomes were constructed by aligning scaffolds produced by hybrid assembly to a 45,000
basepair putative prophage extracted from CP064980.1 (pos 10,000-55,000 bp). Contigs with alignments
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https://www.ncbi.nlm.nih.gov/nucleotide/CP080538.1?report=genbank&log$=nucltop&blast_rank=6&RID=TCNCBFH0013
https://www.ncbi.nlm.nih.gov/nucleotide/CP080534.1?report=genbank&log$=nucltop&blast_rank=7&RID=TCNCBFH0013
https://www.ncbi.nlm.nih.gov/nucleotide/CP080534.1?report=genbank&log$=nucltop&blast_rank=7&RID=TCNCBFH0013
https://www.ncbi.nlm.nih.gov/nucleotide/CP070500.1?report=genbank&log$=nucltop&blast_rank=8&RID=TCNCBFH0013
https://www.ncbi.nlm.nih.gov/nucleotide/CP070500.1?report=genbank&log$=nucltop&blast_rank=8&RID=TCNCBFH0013
https://www.ncbi.nlm.nih.gov/nucleotide/CP065375.1?report=genbank&log$=nucltop&blast_rank=9&RID=TCNCBFH0013
https://www.ncbi.nlm.nih.gov/nucleotide/CP065375.1?report=genbank&log$=nucltop&blast_rank=9&RID=TCNCBFH0013
https://www.ncbi.nlm.nih.gov/nucleotide/CP000113.1?report=genbank&log$=nucltop&blast_rank=10&RID=TCNCBFH0013
https://www.ncbi.nlm.nih.gov/nucleotide/CP000113.1?report=genbank&log$=nucltop&blast_rank=10&RID=TCNCBFH0013
https://www.ncbi.nlm.nih.gov/nucleotide/CP104804.1?report=genbank&log$=nucltop&blast_rank=11&RID=TCNCBFH0013
https://www.ncbi.nlm.nih.gov/nucleotide/CP104804.1?report=genbank&log$=nucltop&blast_rank=11&RID=TCNCBFH0013
https://www.ncbi.nlm.nih.gov/nucleotide/CP006003.1?report=genbank&log$=nucltop&blast_rank=12&RID=TCNCBFH0013
https://www.ncbi.nlm.nih.gov/nucleotide/CP006003.1?report=genbank&log$=nucltop&blast_rank=12&RID=TCNCBFH0013
https://www.ncbi.nlm.nih.gov/nucleotide/AP026947.1?report=genbank&log$=nucltop&blast_rank=13&RID=TCNCBFH0013
https://www.ncbi.nlm.nih.gov/nucleotide/AP026947.1?report=genbank&log$=nucltop&blast_rank=13&RID=TCNCBFH0013
https://www.ncbi.nlm.nih.gov/nucleotide/CP022203.1?report=genbank&log$=nucltop&blast_rank=14&RID=TCNCBFH0013
https://www.ncbi.nlm.nih.gov/nucleotide/CP022203.1?report=genbank&log$=nucltop&blast_rank=14&RID=TCNCBFH0013
https://www.ncbi.nlm.nih.gov/nucleotide/CP068048.1?report=genbank&log$=nucltop&blast_rank=15&RID=TCNCBFH0013
https://www.ncbi.nlm.nih.gov/nucleotide/CP068048.1?report=genbank&log$=nucltop&blast_rank=15&RID=TCNCBFH0013
https://www.ncbi.nlm.nih.gov/nucleotide/CP002271.1?report=genbank&log$=nucltop&blast_rank=16&RID=TCNCBFH0013
https://www.ncbi.nlm.nih.gov/nucleotide/CP002271.1?report=genbank&log$=nucltop&blast_rank=16&RID=TCNCBFH0013
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to the reference genome were visualized and the appropriate orientation and order inferred from the clinker'
plot. Sequences were merged and/or reversed as appropriate using seqkit.?

Section S2. Suspect Screening for PPCPs

Extraction and cleanup of water samples using solid phase extraction (SPE)

An aliquot of 200 mL water sample pre-filtered with a 0.7 pm 55 mm in diameter glass fiber filter
(Whatman, Maidstone, UK) was loaded onto a solid phase extraction (SPE) hydrophilic-lipophilic balance
cartridge (Oasis HLB cartridges (60 mg, 3cc), Waters, Milford, MA) that was pre-conditioned with 3 mL
HPLC-grade methanol and 3 mL ultra-pure water. The sample flow through the cartridge was maintained
at 5 mL min™. Once the sample passed through the cartridge, the cartridge was then dried for 10 mins by
gently pulling air through it to remove any remaining water. The PPCPs were then eluted off the cartridge
with 3 mL HPLC-grade methanol. The eluted sample was then completely dried under N> gas on a vacuum
evaporation system (RapidVap, Labconco Kansas City, MO), reconstituted with LC-grade acetonitrile-
water solution (1:1, v:v) to 1 mL, filtered through a 0.2 um polytetrafluoroethylene (Thermo Scientific,
Waltham, MA) syringe filter into a 2 mL glass amber vial (Agilent, Santa Clara, CA), and then screened
for 138 PPCPs on a ultra-performance liquid chromatography-tandem mass spectrometry (UPLC/MS/MS)
using method described below.

UPLC/MS/MS suspect screening for PPCPs

An ultra-performance liquid chromatography (UPLC) (1290, Agilent Technology, Santa Clara, CA)
coupled with a tandem mass spectrometry (6490 triple quadrupole mass spectrometer, Agilent Technology,
Santa Clara, CA) was used for the multi-compounds screening of 138 PPCPs. The PPCP suspect screening
method was developed based on a compounds database and chromatographic method that was custom-
developed by the Agilent Technology upon analysis of 140 analytical standards of compounds which were
reported to be the most detected in environmental water. This database was developed using the same model
of analytical column (Agilent Zorbax Extend C18 analytical column, 5 pum % 4.6 mm x 50 mm) and
UPLC/MS/MS (Agilent 1290-6490) as that used in our study. This database contains specific compound
identification criteria (i.e., retention time, precursor ions, product ions, collision energies) for the
identification of each of the 138 PPCPs.

For the chromatographic section of the method, compounds were separated on the Agilent Zorbax
Eclipse Plus C18 analytical column (2.1x100 mm, 1.8 pm). The temperature of the analytical column oven
was kept at 40°C. Suspect PPCPs were screened using electrospray ionization (ESI) positive mode and then
again negative mode on the mass spectrometer. For the ESI positive mode method, the analytical mobile
phase A consisted of 5 mM Ammonium acetate + 0.02% acetic acid in water and analytical mobile phase
B consisted of 95% acetonitrile in water. The mobile phase flow rate was 0.3mL min™ under a gradient
elution of 0 — 0.5 min, 5% B, 0.5 — 11 min, 5% B - 100% B, 11 - 13 min, 100%B, 13-13.1 min, 100B% -
5%B, and 13.1 — 16 min, 5%B. For the ESI negative mode method, the analytical mobile phase A consisted
of 0.005% acetic acid in water and analytical mobile phase B consisted of 95% acetonitrile in water. The
mobile phase flow rate was 0.3mL min™' under a gradient elution of 0 — 0.5 min, 5% B, 0.5 — 6 min, 5% B
- 100% B, 6 - 8 min, 100%B, 8-8.1 min, 100B% - 5%B, and 8.1 — 11 min, 5%B. The total sample injection
volume for both methods was 20 pL.

For the mass spectrometry section of the method, electrospray ionization (ESI) and multiple reaction
monitoring (MRM) mode was used. Each sample was analyzed separately in both positive and negative
modes to detect oppositely charged ions. A compound in a sample was identified based on matching the
masses of its precursor ion, product ion I, and product ion II with those listed in the database and further
confirmed based on matching chromatographic retention time and peak shape between product ion I and II.
In addition, if the signal to noise ratio of the chromatographic peak of one of the product ions for a suspected
compound was less than 3, the identity of this compound was rejected.
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For quality assurance and quality control (QA/QC), one laboratory blank (ultrapure Milli-Q water) and
one spiked recovery sample (ultrapure Milli-Q water spiked with known concentrations of seven analytical
standards: Carbamazepine, Erythromycin, Sulfamethazine, Chlorotetracycline, Tylosin,
Sulfamethoxazole, and Triclosan) were extracted, cleaned up, concentrated, and analyzed along with the
water samples for every 20 samples to monitor possible cross contamination of the compounds screened
for and recovery of the spiked compounds. In addition, an instrument blank sample (UPLC mobile phase)
was injected for every 20 samples to monitor possible instrument cross contamination. All analytes screened
for were not detectable in any of the instrumental blanks or laboratory blanks, indicating free of cross
contamination of those compounds during sample processing and analysis.
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