## **Supporting Information**

Chemical Constituents from a Marine Medicinal Brown Alga-

Derived *Xylaria acuta* SC1019

Hsiao-Yang Hsi <sup>a</sup>, Shih-Wei Wang <sup>b,c,d</sup>, George Hsiao <sup>e</sup>, Li-Kwan Chang <sup>f</sup>, Yuan-

Chung Cheng <sup>g</sup>, Shu-Jung Huang <sup>a</sup>, Yi-Shan Lu <sup>f</sup>, Tzong-Huei Lee <sup>a,\*</sup>

<sup>a</sup> Institute of Fisheries Science, National Taiwan University, Taipei 106, Taiwan

<sup>b</sup> Institute of Biomedical Sciences, MacKay Medical College, New Taipei City 252,

Taiwan

<sup>c</sup> Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan

<sup>d</sup> Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical

University, Kaohsiung 807, Taiwan

<sup>e</sup> Graduate Institute of Medical Sciences and Department of Pharmacology, School of

Medicine, College of Medicine, Taipei 110, Taiwan

<sup>f</sup> Department of Biochemical Science and Technology, College of Life Science,

National Taiwan University, Taipei 106, Taiwan

<sup>g</sup> Department of Chemistry and Center for Quantum Science and Engineering,

National Taiwan University, Taipei 106, Taiwan

\* Corresponding author.

E-mail address: thlee1@ntu.edu.tw (T.-H. Lee)

## **Table of Contents**

| Figure S1. The <sup>1</sup> H NMR (600 MHz, CD <sub>3</sub> OD) spectrum of compound 1 ······5                          |
|-------------------------------------------------------------------------------------------------------------------------|
| Figure S2. The <sup>13</sup> C NMR (150 MHz, CD <sub>3</sub> OD) spectrum of compound 1 ······5                         |
| Figure S3. The HSQC (600 MHz, CD <sub>3</sub> OD) spectrum of compound 1 ······6                                        |
| Figure S4. The HMBC (600 MHz, CD <sub>3</sub> OD) spectrum of compound 1 ······6                                        |
| Figure S5. The COSY (600 MHz, CD <sub>3</sub> OD) spectrum of compound 1 ······7                                        |
| Figure S6. The HRESIMS spectrum of compound 1                                                                           |
| Figure S7. The IR spectrum of compound 18                                                                               |
| Figure S8. The UV spectrum of compound 1 ······8                                                                        |
| Figure S9. The <sup>1</sup> H NMR (600 MHz, CD <sub>3</sub> OD) spectrum of compound 2 ······9                          |
| Figure S10. The <sup>13</sup> C NMR (150 MHz, CD <sub>3</sub> OD) spectrum of compound 2······9                         |
| Figure S11. The HSQC (600 MHz, CD <sub>3</sub> OD) spectrum of compound 2······ 10                                      |
| Figure S12. The HMBC (600 MHz, CD <sub>3</sub> OD) spectrum of compound 2······· 10                                     |
| Figure S13. The COSY (600 MHz, CD <sub>3</sub> OD) spectrum of compound 2 ············ 11                               |
| Figure S14. The HRESIMS spectrum of compound 2······· 11                                                                |
| Figure S15. The IR spectrum of compound 2                                                                               |
| Figure S16. The UV spectrum of compound 2······ 12                                                                      |
| Figure S17. The <sup>1</sup> H NMR (600 MHz, CD <sub>3</sub> OD) spectrum of compound 3············ 13                  |
| Figure S18. The <sup>13</sup> C NMR (150 MHz, CD <sub>3</sub> OD) spectrum of compound 3··········· 13                  |
| Figure S19. The HSQC (600 MHz, CD <sub>3</sub> OD) spectrum of compound 3 ······· 14                                    |
| Figure S20. The HMBC (600 MHz, CD <sub>3</sub> OD) spectrum of compound 3······· 14                                     |
| Figure S21. The COSY (600 MHz, CD <sub>3</sub> OD) spectrum of compound 3 ············ 15                               |
| Figure S22. The HRESIMS spectrum of compound 3······· 15                                                                |
| Figure S23. The IR spectrum of compound 3                                                                               |
| Figure S24. The UV spectrum of compound 3······ 16                                                                      |
| Figure S25. The <sup>1</sup> H NMR (600 MHz, CD <sub>3</sub> OD) spectrum of compound 4······ 17                        |
| <b>Figure S26</b> . The <sup>13</sup> C NMR (150 MHz, CD <sub>3</sub> OD) spectrum of compound <b>4</b> ············ 17 |
| Figure S27. The HSQC (600 MHz, CD <sub>3</sub> OD) spectrum of compound 4 ······ 18                                     |
| Figure S28. The HMBC (600 MHz, CD <sub>3</sub> OD) spectrum of compound 4······· 18                                     |
| Figure S29. The COSY (600 MHz, CD <sub>3</sub> OD) spectrum of compound 4 ······ 19                                     |
| Figure S30. The HRESIMS spectrum of compound 4······ 19                                                                 |
| Figure S31. The IR spectrum of compound 4                                                                               |
| Figure S32. The UV spectrum of compound 4······ 20                                                                      |
| Figure S33. The <sup>1</sup> H NMR (600 MHz, CD <sub>3</sub> OD) spectrum of compound 5··········· 21                   |
| Figure S34. The <sup>13</sup> C NMR (150 MHz, CD <sub>3</sub> OD) spectrum of compound 5··········· 21                  |
| Figure S35. The HSQC (600 MHz, CD <sub>3</sub> OD) spectrum of compound 5 ······ 22                                     |
| Figure \$36. The HMBC (600 MHz. CD2OD) spectrum of compound 5                                                           |

|             | The COSY (600 MHz, CD <sub>3</sub> OD) spectrum of compound $5 \cdots \cdots$                                     |    |
|-------------|-------------------------------------------------------------------------------------------------------------------|----|
| Figure S38. | The HRESIMS spectrum of compound 5·····                                                                           | 23 |
| Figure S39. | The IR spectrum of compound 5                                                                                     | 24 |
| Figure S40. | The UV spectrum of compound 5·····                                                                                | 24 |
| Figure S41. | The $^1H$ NMR (600 MHz, CD <sub>3</sub> OD) spectrum of compound 6                                                | 25 |
| Figure S42. | The $^{13}\text{C}$ NMR (150 MHz, CD <sub>3</sub> OD) spectrum of compound 6 · · · · · · · · · · · · · · · · · ·  | 25 |
| Figure S43. | The HSQC (600 MHz, CD <sub>3</sub> OD) spectrum of compound $\boldsymbol{6}$ ···································· | 26 |
| Figure S44. | The HMBC (600 MHz, CD <sub>3</sub> OD) spectrum of compound 6······                                               | 26 |
| Figure S45. | The COSY (600 MHz, CD <sub>3</sub> OD) spectrum of compound 6 ······                                              | 27 |
|             | The NOESY (600 MHz, CD <sub>3</sub> OD) spectrum of compound 6 ······                                             |    |
| Figure S47. | The HRESIMS spectrum of compound 6·····                                                                           | 28 |
|             | The IR spectrum of compound 6                                                                                     |    |
| Figure S49. | The UV spectrum of compound 6·····                                                                                | 29 |
| Figure S50. | The <sup>1</sup> H NMR (600 MHz, CD <sub>3</sub> OD) spectrum of compound 7······                                 | 30 |
| Figure S51. | The $^{13}\text{C}$ NMR (150 MHz, CD <sub>3</sub> OD) spectrum of compound 7 ······                               | 30 |
| Figure S52. | The HSQC (600 MHz, CD <sub>3</sub> OD) spectrum of compound 7 $\cdots \cdots$                                     | 31 |
| Figure S53. | The HMBC (600 MHz, CD <sub>3</sub> OD) spectrum of compound 7······                                               | 31 |
| Figure S54. | The COSY (600 MHz, CD <sub>3</sub> OD) spectrum of compound 7 $\cdots$                                            | 32 |
|             | The NOESY (600 MHz, CD <sub>3</sub> OD) spectrum of compound 7 ······                                             |    |
|             | The HRESIMS spectrum of compound 7······                                                                          |    |
|             | The IR spectrum of compound 7·····                                                                                |    |
| Figure S58. | The UV spectrum of compound 7·····                                                                                | 34 |
| Figure S59. | The $^1H$ NMR (600 MHz, CD <sub>3</sub> OD) spectrum of compound $\boldsymbol{8}$                                 | 35 |
| Figure S60. | The $^{13}\text{C}$ NMR (150 MHz, CD <sub>3</sub> OD) spectrum of compound $8\cdots\cdots$                        | 35 |
| Figure S61. | The HSQC (600 MHz, CD <sub>3</sub> OD) spectrum of compound 8 $\cdots$                                            | 36 |
| Figure S62. | The HMBC (600 MHz, CD <sub>3</sub> OD) spectrum of compound 8······                                               | 36 |
| Figure S63. | The COSY (600 MHz, CD <sub>3</sub> OD) spectrum of compound 8 $\cdots$                                            | 37 |
| Figure S64. | The NOESY (600 MHz, CD <sub>3</sub> OD) spectrum of compound 8 $\cdots$                                           | 37 |
|             | The HRESIMS spectrum of compound 8·····                                                                           |    |
|             | The IR spectrum of compound $8\cdots\cdots$                                                                       |    |
| Figure S67. | The UV spectrum of compound 8·····                                                                                | 39 |
| Figure S68. | The $^1H$ NMR (600 MHz, CD <sub>3</sub> OD) spectrum of compound $9\cdots\cdots$                                  | 40 |
| Figure S69. | The $^{13}\text{C}$ NMR (150 MHz, CD <sub>3</sub> OD) spectrum of compound 9 · · · · · · · · · · · · · · · · · ·  | 40 |
| Figure S70. | The HSQC (600 MHz, CD <sub>3</sub> OD) spectrum of compound ${\bf 9}$                                             | 41 |
| Figure S71. | The HMBC (600 MHz, CD <sub>3</sub> OD) spectrum of compound 9······                                               | 41 |
| Figure S72. | The COSY (600 MHz, CD <sub>3</sub> OD) spectrum of compound ${\bf 9}$ ··············                              | 42 |
|             | The HRESIMS spectrum of compound 9·····                                                                           |    |
|             | The IR spectrum of compound 9·····                                                                                |    |



Figure S1. The  $^1H$  NMR (600 MHz, CD<sub>3</sub>OD) spectrum of compound 1



Figure S2. The  $^{13}$ C NMR (150 MHz, CD<sub>3</sub>OD) spectrum of compound 1



Figure S3. The HSQC (600 MHz, CD<sub>3</sub>OD) spectrum of compound 1



Figure S4. The HMBC (600 MHz, CD<sub>3</sub>OD) spectrum of compound 1



Figure S5. The COSY (600 MHz, CD<sub>3</sub>OD) spectrum of compound 1



Figure S6. The HRESIMS spectrum of compound 1



Figure S7. The IR spectrum of compound 1



Figure S8. The UV spectrum of compound 1



Figure S9. The <sup>1</sup>H NMR (600 MHz, CD<sub>3</sub>OD) spectrum of compound 2



Figure S10. The <sup>13</sup>C NMR (150 MHz, CD<sub>3</sub>OD) spectrum of compound 2



Figure S11. The HSQC (600 MHz, CD<sub>3</sub>OD) spectrum of compound 2



Figure S12. The HMBC (600 MHz, CD<sub>3</sub>OD) spectrum of compound 2



Figure S13. The COSY (600 MHz, CD<sub>3</sub>OD) spectrum of compound 2



Figure S14. The HRESIMS spectrum of compound 2



Figure S15. The IR spectrum of compound 2



Figure S16. The UV spectrum of compound 2



Figure S17. The <sup>1</sup>H NMR (600 MHz, CD<sub>3</sub>OD) spectrum of compound 3



Figure S18. The  $^{13}$ C NMR (150 MHz, CD<sub>3</sub>OD) spectrum of compound 3



Figure S19. The HSQC (600 MHz, CD<sub>3</sub>OD) spectrum of compound 3



Figure S20. The HMBC (600 MHz, CD<sub>3</sub>OD) spectrum of compound 3



Figure S21. The COSY (600 MHz, CD<sub>3</sub>OD) spectrum of compound 3



Figure S22. The HRESIMS spectrum of compound 3



Figure S23. The UV spectrum of compound 3



Figure S24. The UV spectrum of compound 3



Figure S25. The <sup>1</sup>H NMR (600 MHz, CD<sub>3</sub>OD) spectrum of compound 4



Figure S26. The  $^{13}$ C NMR (150 MHz, CD<sub>3</sub>OD) spectrum of compound 4



Figure S27. The HSQC (600 MHz, CD<sub>3</sub>OD) spectrum of compound 4



Figure S28. The HMBC (600 MHz, CD<sub>3</sub>OD) spectrum of compound 4



Figure S29. The COSY (600 MHz, CD<sub>3</sub>OD) spectrum of compound 4



Figure \$30. The HRESIMS spectrum of compound 4



Figure S31. The IR spectrum of compound 4



Figure S32. The UV spectrum of compound 4



Figure S33. The <sup>1</sup>H NMR (600 MHz, CD<sub>3</sub>OD) spectrum of compound 5



Figure S34. The <sup>13</sup>C NMR (150 MHz, CD<sub>3</sub>OD) spectrum of compound 5



Figure S35. The HSQC (600 MHz, CD<sub>3</sub>OD) spectrum of compound 5



Figure S36. The HMBC (600 MHz,  $CD_3OD$ ) spectrum of compound 5



Figure S37. The COSY (600 MHz, CD<sub>3</sub>OD) spectrum of compound 5



Figure S38. The HRESIMS spectrum of compound 5



Figure S39. The UV spectrum of compound 5



Figure S40. The UV spectrum of compound 5



Figure S41. The <sup>1</sup>H NMR (600 MHz, CD<sub>3</sub>OD) spectrum of compound 6



Figure S42. The <sup>13</sup>C NMR (150 MHz, CD<sub>3</sub>OD) spectrum of compound 6



Figure S43. The HSQC (600 MHz, CD<sub>3</sub>OD) spectrum of compound 6



Figure S44. The HMBC (600 MHz, CD<sub>3</sub>OD) spectrum of compound 6



Figure S45. The COSY (600 MHz, CD<sub>3</sub>OD) spectrum of compound 6



Figure S46. The NOESY (600 MHz, CD<sub>3</sub>OD) spectrum of compound 6



Figure S47. The HRESIMS spectrum of compound 6



Figure S48. The IR spectrum of compound 6



Figure \$49. The UV spectrum of compound 6



Figure S50. The <sup>1</sup>H NMR (600 MHz, CD<sub>3</sub>OD) spectrum of compound 7



Figure S51. The <sup>13</sup>C NMR (150 MHz, CD<sub>3</sub>OD) spectrum of compound 7



Figure S52. The HSQC (600 MHz,  $CD_3OD$ ) spectrum of compound 7



Figure S53. The HMBC (600 MHz,  $CD_3OD$ ) spectrum of compound 7



Figure S54. The COSY (600 MHz, CD<sub>3</sub>OD) spectrum of compound 7



Figure S55. The NOESY (600 MHz, CD<sub>3</sub>OD) spectrum of compound 7



Figure S56. The HRESIMS spectrum of compound 7



Figure S57. The IR spectrum of compound 7



Figure S58. The UV spectrum of compound 7



Figure S59. The <sup>1</sup>H NMR (600 MHz, CD<sub>3</sub>OD) spectrum of compound 8



Figure S60. The <sup>13</sup>C NMR (150 MHz, CD<sub>3</sub>OD) spectrum of compound 8



Figure S61. The HSQC (600 MHz, CD<sub>3</sub>OD) spectrum of compound 8



Figure S62. The HMBC (600 MHz, CD<sub>3</sub>OD) spectrum of compound 8



Figure S63. The COSY (600 MHz, CD<sub>3</sub>OD) spectrum of compound 8



Figure S64. The NOESY (600 MHz, CD<sub>3</sub>OD) spectrum of compound 8



Figure S65. The HRESIMS spectrum of compound 8



Figure S66. The IR spectrum of compound 8



Figure S67. The UV spectrum of compound 8



Figure S68. The <sup>1</sup>H NMR (600 MHz, CD<sub>3</sub>OD) spectrum of compound 9



Figure S69. The <sup>13</sup>C NMR (150 MHz, CD<sub>3</sub>OD) spectrum of compound 9



Figure S70. The HSQC (600 MHz, CD<sub>3</sub>OD) spectrum of compound 9



Figure S71. The HMBC (600 MHz, CD<sub>3</sub>OD) spectrum of compound 9



Figure S72. The COSY (600 MHz, CD<sub>3</sub>OD) spectrum of compound 9



Figure S73. The HRESIMS spectrum of compound 9



Figure S74. The IR spectrum of compound 9



Figure S75. The UV spectrum of compound 9



**Figure S76**. The <sup>1</sup>H NMR (400 MHz, C<sub>5</sub>D<sub>5</sub>N) spectrum of compound 7*R*, 10*R*-MTPA ester of **2** (**2S**)



Figure S77. The  $^{1}$ H NMR (400 MHz,  $C_{5}D_{5}N$ ) spectrum of compound 7R, 10R - MTPA ester of **2** (**2R**)



Figure S78. The  $^{1}$ H NMR (400 MHz,  $C_5D_5N$ ) spectrum of compound 7S, 10R -MTPA ester of 3 (3S)



**Figure S79**. The <sup>1</sup>H NMR (400 MHz, C<sub>5</sub>D<sub>5</sub>N) spectrum of compound 7*S*, 10*R* -MTPA ester of **3** (**3R**)



Figure S80. Structures of known compounds isolated in this study



Figure S81. All compounds had no cytotoxicity on the BV-2 cells at a concentration of 20  $\mu M$ 



Figure S82. ChemBio 3D Ultra 12.0 Molecular modelling of 7.

Table S1. Crystal data and experimental details for 6

### Crystal data

Empirical formula C26 H42 O10

Formula weight 514.59

Crystal system Monoclinic

Space group P2<sub>1</sub>

Unit cell dimensions a = 12.9573(4) Å  $\alpha = 90^{\circ}$ .

b = 6.4656(2) Å  $\beta = 91.0625(13)^{\circ}.$ 

c = 15.2654(5) Å  $\gamma = 90^{\circ}$ .

Volume 1278.67(7) Å<sup>3</sup>

Z 2 F(000) 556

Density (calculated)  $1.337 \text{ Mg/m}^3$  Wavelength 1.54178 Å

Cell parameters reflections used 9834

Theta range for Cell parameters 2.90 to 78.03°.

Absorption coefficient 0.845 mm<sup>-1</sup>

Temperature 100(2) K

Crystal size  $0.200 \times 0.100 \times 0.050 \text{ mm}^3$ 

# Data collection

Diffractometer Bruker AXS D8 VENTURE, PhotonIII\_C28

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 1.0000 and 0.8992

No. of measured reflections 21066

No. of independent reflections 5233 [R(int) = 0.0306]

No. of observed [I>2\_igma(I)] 5142 Completeness to theta =  $67.679^{\circ}$  100.0 %

Theta range for data collection 2.895 to 78.235°.

# Refinement

Final R indices [I>2sigma(I)] R1 = 0.0295, wR2 = 0.0773 R indices (all data) R1 = 0.0301, wR2 = 0.0779

Absolute structure parameter 0.03(5)

Largest diff. peak and hole 0.209 and -0.195 e.Å-3

Table S2. Bond lengths [Å] and angles [°] for 6

| O(1)-C(19)    | 1.350(2)   |
|---------------|------------|
| O(1)-C(6)     | 1.4877(19) |
| O(2)-C(9)     | 1.445(2)   |
| O(3)-C(19)    | 1.209(2)   |
| O(4)-C(1')    | 1.402(2)   |
| O(4)-C(16)    | 1.440(2)   |
| O(5)-C(2')    | 1.430(2)   |
| O(6)-C(3')    | 1.421(2)   |
| O(7)-C(4')    | 1.426(2)   |
| O(8)-C(1')    | 1.4267(19) |
| O(8)-C(5')    | 1.440(2)   |
| O(9)-C(6')    | 1.427(2)   |
| C(1)-C(2)     | 1.536(2)   |
| C(1)- $C(10)$ | 1.541(2)   |
| C(2)-C(3)     | 1.533(2)   |
| C(3)-C(4)     | 1.535(3)   |
| C(4)-C(19)    | 1.518(2)   |
| C(4)-C(5)     | 1.530(2)   |
| C(4)-C(18)    | 1.550(2)   |
| C(5)-C(6)     | 1.516(2)   |
| C(5)-C(10)    | 1.549(2)   |
| C(6)-C(7)     | 1.494(2)   |
| C(1')-C(2')   | 1.526(2)   |
| C(2')-C(3')   | 1.527(2)   |
| C(3')-C(4')   | 1.524(2)   |
| C(4')-C(5')   | 1.531(2)   |
| C(5')-C(6')   | 1.512(2)   |
| C(7)-C(8)     | 1.335(2)   |
| C(8)-C(14)    | 1.512(2)   |
| C(8)-C(9)     | 1.534(2)   |
| C(9)-C(11)    | 1.534(2)   |
| C(9)-C(10)    | 1.563(2)   |
| C(10)-C(20)   | 1.549(2)   |
| C(11)-C(12)   | 1.529(2)   |
| C(12)-C(13)   | 1.537(2)   |
| C(13)-C(17)   | 1.528(3)   |

| C(13)-C(14)       | 1.543(2)   |
|-------------------|------------|
| C(13)-C(15)       | 1.544(2)   |
| C(15)-C(16)       | 1.520(2)   |
|                   |            |
| C(19)-O(1)-C(6)   | 109.07(13) |
| C(1')-O(4)-C(16)  | 112.41(14) |
| C(1')-O(8)-C(5')  | 113.52(13) |
| C(2)-C(1)-C(10)   | 110.55(15) |
| C(3)-C(2)-C(1)    | 113.27(15) |
| C(2)-C(3)-C(4)    | 116.46(15) |
| C(19)-C(4)-C(5)   | 100.50(14) |
| C(19)-C(4)-C(3)   | 117.08(15) |
| C(5)-C(4)-C(3)    | 114.90(14) |
| C(19)-C(4)-C(18)  | 104.62(14) |
| C(5)-C(4)-C(18)   | 111.37(14) |
| C(3)-C(4)-C(18)   | 107.86(14) |
| C(6)-C(5)-C(4)    | 102.04(14) |
| C(6)-C(5)-C(10)   | 110.88(14) |
| C(4)-C(5)-C(10)   | 114.49(14) |
| O(1)-C(6)-C(7)    | 114.26(14) |
| O(1)-C(6)-C(5)    | 103.57(13) |
| C(7)-C(6)-C(5)    | 114.14(14) |
| O(4)-C(1')-O(8)   | 111.73(14) |
| O(4)-C(1')-C(2')  | 108.18(14) |
| O(8)-C(1')-C(2')  | 110.94(14) |
| O(5)-C(2')-C(1')  | 107.01(14) |
| O(5)-C(2')-C(3')  | 110.24(14) |
| C(1')-C(2')-C(3') | 111.37(14) |
| O(6)-C(3')-C(4')  | 111.95(15) |
| O(6)-C(3')-C(2')  | 107.81(14) |
| C(4')-C(3')-C(2') | 111.08(14) |
| O(7)-C(4')-C(3')  | 107.29(14) |
| O(7)-C(4')-C(5')  | 110.98(14) |
| C(3')-C(4')-C(5') | 108.55(14) |
| O(8)-C(5')-C(6')  | 106.22(14) |
| O(8)-C(5')-C(4')  | 108.38(13) |
| C(6')-C(5')-C(4') | 114.87(14) |
| O(9)-C(6')-C(5')  | 109.85(14) |
|                   |            |

| C(8)-C(7)-C(6)    | 122.16(16) |
|-------------------|------------|
| C(7)-C(8)-C(14)   | 120.80(16) |
| C(7)-C(8)-C(9)    | 122.51(15) |
| C(14)-C(8)-C(9)   | 116.49(14) |
| O(2)-C(9)-C(11)   | 104.88(14) |
| O(2)-C(9)-C(8)    | 108.42(13) |
| C(11)-C(9)-C(8)   | 110.58(14) |
| O(2)-C(9)-C(10)   | 111.03(14) |
| C(11)-C(9)-C(10)  | 112.04(13) |
| C(8)-C(9)-C(10)   | 109.76(14) |
| C(1)-C(10)-C(5)   | 106.28(14) |
| C(1)-C(10)-C(20)  | 108.17(14) |
| C(5)-C(10)-C(20)  | 114.25(14) |
| C(1)-C(10)-C(9)   | 113.43(14) |
| C(5)-C(10)-C(9)   | 105.44(13) |
| C(20)-C(10)-C(9)  | 109.36(14) |
| C(12)-C(11)-C(9)  | 113.53(14) |
| C(11)-C(12)-C(13) | 112.15(15) |
| C(17)-C(13)-C(12) | 112.22(15) |
| C(17)-C(13)-C(14) | 108.38(14) |
| C(12)-C(13)-C(14) | 108.02(15) |
| C(17)-C(13)-C(15) | 109.98(15) |
| C(12)-C(13)-C(15) | 110.84(15) |
| C(14)-C(13)-C(15) | 107.22(13) |
| C(8)-C(14)-C(13)  | 114.67(14) |
| C(16)-C(15)-C(13) | 118.16(15) |
| O(4)-C(16)-C(15)  | 109.84(15) |
| O(3)-C(19)-O(1)   | 121.82(17) |
| O(3)-C(19)-C(4)   | 127.69(17) |
| O(1)-C(19)-C(4)   | 110.43(14) |
|                   |            |

Symmetry transformations used to generate equivalent atoms:

Table S3. Crystal data and experimental details for 7

### Crystal data

Empirical formula C30 H39 N O8

Formula weight 541.62

Crystal system Monoclinic

Space group P2<sub>1</sub>

Unit cell dimensions a = 13.1017(11) Å  $\alpha = 90^{\circ}$ .

b = 7.0595(6) Å  $\beta = 93.773(4)^{\circ}.$ 

c = 15.8773(14) Å  $\gamma = 90^{\circ}$ .

Volume  $1465.3(2) \text{ Å}^3$ 

Z 2 F(000) 580

Density (calculated)  $1.228 \text{ Mg/m}^3$  Wavelength 1.54178 Å

Cell parameters reflections used 9934

Theta range for Cell parameters 2.79 to 78.20°.

Absorption coefficient 0.727 mm<sup>-1</sup>

Temperature 100(2) K

Crystal size  $0.400 \times 0.030 \times 0.020 \text{ mm}^3$ 

# Data collection

Diffractometer Bruker AXS D8 VENTURE, PhotonIII\_C28

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 1.0000 and 0.8878

No. of measured reflections 27723

No. of independent reflections 5863 [R(int) = 0.0505]

No. of observed [I>2\_igma(I)] 5512 Completeness to theta =  $67.679^{\circ}$  99.8 %

Theta range for data collection 2.789 to 78.765°.

# Refinement

Final R indices [I>2sigma(I)] R1 = 0.0364, wR2 = 0.0911 R indices (all data) R1 = 0.0406, wR2 = 0.0940

Absolute structure parameter -0.04(9)

Largest diff. peak and hole 0.196 and -0.224 e.Å-3

**Table S4**. Bond lengths [Å] and angles [°] for

| O(1)-C(1)   | 1.237(3) |
|-------------|----------|
| O(2)-C(7)   | 1.428(2) |
| O(3)-C(17)  | 1.217(3) |
| O(4)-C(18)  | 1.415(3) |
| O(5)-C(19)  | 1.450(3) |
| O(5)-C(20)  | 1.459(2) |
| O(6)-C(24)  | 1.350(3) |
| O(6)-C(21)  | 1.447(2) |
| O(7)-C(24)  | 1.204(3) |
| N(1)-C(1)   | 1.334(3) |
| N(1)-C(3)   | 1.457(3) |
| C(1)-C(9)   | 1.533(3) |
| C(3)-C(10)  | 1.539(3) |
| C(3)-C(4)   | 1.567(3) |
| C(4)-C(5)   | 1.511(3) |
| C(4)-C(9)   | 1.563(3) |
| C(5)-C(6)   | 1.336(3) |
| C(5)-C(11)  | 1.513(3) |
| C(6)-C(12)  | 1.509(3) |
| C(6)-C(7)   | 1.519(3) |
| C(7)-C(8)   | 1.543(3) |
| C(8)-C(13)  | 1.509(3) |
| C(8)-C(9)   | 1.549(3) |
| C(9)-C(21)  | 1.554(3) |
| C(10)-C(1') | 1.512(3) |
| C(13)-C(14) | 1.326(3) |
| C(14)-C(15) | 1.508(3) |
| C(15)-C(16) | 1.540(3) |
| C(16)-C(17) | 1.515(3) |
| C(16)-C(22) | 1.538(3) |
| C(17)-C(18) | 1.540(3) |
| C(18)-C(19) | 1.526(3) |
| C(18)-C(23) | 1.529(3) |
| C(19)-C(20) | 1.463(3) |
| C(20)-C(21) | 1.510(3) |
| C(24)-C(25) | 1.495(3) |
|             |          |

| C(1')-C(2')           | 1.393(3)   |
|-----------------------|------------|
| C(1')-C(6')           | 1.399(3)   |
| C(2')-C(3')           | 1.393(4)   |
| C(3')-C(4')           | 1.385(4)   |
| C(4')-C(5')           | 1.380(5)   |
| C(5')-C(6')           | 1.392(4)   |
|                       |            |
| C(19)-O(5)-C(20)      | 60.38(13)  |
| C(24)-O(6)-C(21)      | 118.84(17) |
| C(1)-N(1)-C(3)        | 115.55(17) |
| O(1)-C(1)-N(1)        | 124.90(19) |
| O(1)-C(1)-C(9)        | 125.56(18) |
| N(1)-C(1)-C(9)        | 109.54(17) |
| N(1)-C(3)-C(10)       | 111.07(17) |
| N(1)- $C(3)$ - $C(4)$ | 103.01(16) |
| C(10)-C(3)-C(4)       | 115.65(18) |
| C(5)-C(4)-C(9)        | 116.29(17) |
| C(5)-C(4)-C(3)        | 108.70(17) |
| C(9)-C(4)-C(3)        | 104.80(16) |
| C(6)-C(5)-C(4)        | 123.08(19) |
| C(6)-C(5)-C(11)       | 123.3(2)   |
| C(4)-C(5)-C(11)       | 113.57(18) |
| C(5)-C(6)-C(12)       | 123.93(19) |
| C(5)-C(6)-C(7)        | 120.12(18) |
| C(12)-C(6)-C(7)       | 115.95(18) |
| O(2)-C(7)-C(6)        | 107.74(16) |
| O(2)-C(7)-C(8)        | 109.50(16) |
| C(6)-C(7)-C(8)        | 111.36(17) |
| C(13)-C(8)-C(7)       | 109.82(17) |
| C(13)-C(8)-C(9)       | 116.39(17) |
| C(7)-C(8)-C(9)        | 109.29(16) |
| C(1)-C(9)-C(8)        | 111.13(16) |
| C(1)-C(9)-C(21)       | 109.75(16) |
| C(8)-C(9)-C(21)       | 112.47(16) |
| C(1)-C(9)-C(4)        | 103.48(16) |
| C(8)-C(9)-C(4)        | 112.03(16) |
| C(21)-C(9)-C(4)       | 107.56(16) |
| C(1')-C(10)-C(3)      | 112.26(17) |
|                       |            |

| C(14)-C(13)-C(8)  | 123.9(2)   |
|-------------------|------------|
| C(13)-C(14)-C(15) | 124.4(2)   |
| C(14)-C(15)-C(16) | 113.89(18) |
| C(17)-C(16)-C(22) | 108.03(19) |
| C(17)-C(16)-C(15) | 109.36(18) |
| C(22)-C(16)-C(15) | 110.67(19) |
| O(3)-C(17)-C(16)  | 121.2(2)   |
| O(3)-C(17)-C(18)  | 117.7(2)   |
| C(16)-C(17)-C(18) | 121.1(2)   |
| O(4)-C(18)-C(19)  | 109.36(18) |
| O(4)-C(18)-C(23)  | 109.49(19) |
| C(19)-C(18)-C(23) | 109.06(19) |
| O(4)-C(18)-C(17)  | 108.34(19) |
| C(19)-C(18)-C(17) | 109.25(17) |
| C(23)-C(18)-C(17) | 111.32(19) |
| O(5)-C(19)-C(20)  | 60.10(13)  |
| O(5)-C(19)-C(18)  | 112.88(17) |
| C(20)-C(19)-C(18) | 121.05(19) |
| O(5)-C(20)-C(19)  | 59.52(13)  |
| O(5)-C(20)-C(21)  | 112.15(17) |
| C(19)-C(20)-C(21) | 124.21(19) |
| O(6)-C(21)-C(20)  | 108.81(17) |
| O(6)-C(21)-C(9)   | 107.31(15) |
| C(20)-C(21)-C(9)  | 118.09(17) |
| O(7)-C(24)-O(6)   | 123.7(2)   |
| O(7)-C(24)-C(25)  | 125.7(2)   |
| O(6)-C(24)-C(25)  | 110.6(2)   |
| C(2')-C(1')-C(6') | 118.8(2)   |
| C(2')-C(1')-C(10) | 121.3(2)   |
| C(6')-C(1')-C(10) | 119.8(2)   |
| C(3')-C(2')-C(1') | 120.2(2)   |
| C(4')-C(3')-C(2') | 120.3(3)   |
| C(5')-C(4')-C(3') | 120.2(2)   |
| C(4')-C(5')-C(6') | 119.8(3)   |
| C(5')-C(6')-C(1') | 120.7(2)   |
|                   |            |

Symmetry transformations used to generate equivalent atoms: