

Supplementary Fig. 1. Schematic of FSH-specific RNA-seq by using FSH-GFP transgenic medaka.

Left fluorescent image is the pituitary of the FSH-GFP transgenic medaka. Sub-region where FSH cells are localized show GFP fluorescence. Dotted line indicates the edge of the whole pituitary. The pituitary of the FSH-GFP transgenic medaka was excised and subjected to enzymatic dispersion. Then, the GFP positive FSH cells were collected and RNA-seq was performed.

Supplementary Fig. 2. Phylogenetic tree of cholecystokinin (cck1 and cck2) receptors.

Maximum likelihood tree of the CCK receptors based on a part of deduced amino acid sequence of each gene. Species name and the accession number for each species are indicated in the tree.

cck2r

Supplementary Fig. 3. The body weight does not change among $cck2rb^{+/+}$, $cck2rb^{+/-}$, and $cck2rb^{-/-}$. a,b Body weight of $cck2rb^{+/+}$, $cck2rb^{+/-}$, and $cck2rb^{-/-}$ female (a)

a,b Body weight of $cck2rb^{+/+}$, $cck2rb^{+/-}$, and $cck2rb^{-/-}$ female (a) and male (b) medaka (n = 5 fish). No significant change of body weight was observed among them. The data are mean \pm SEM. N.S., not significant, two-sided Dunnett's test (**a**,**b**). Source data are provided as a Source Data file.

Supplementary Fig. 4. Eggs spawned from *cck2rb* medaka of each genotype. **a,b** The number of eggs spawned (a) and fertilized eggs (b) from wild type or *cck2rb*^{-/-} female medaka paired with wild type or *cck2rb*^{-/-} male medaka (n = 4 pairs; **, p = 0.0096; *, p = 0.0011). The data are mean \pm SEM. **c** The fertilization rate of each paired groups determined by the number of eggs spawned over the number of fertilized eggs (n = 4 pairs; ***, p = 2.1e-6). The data are mean \pm SEM. **d** The number of eggs spawned from female of each genotype paired with wild type male (n = 5 pairs). The data are mean \pm SEM. **e** The number of fertilized eggs were spawned from *cck2rb*^{-/-} while *cck2rb*^{+/+} and *cck2rb*^{+/-} spawned. *p < 0.05, **p < 0.01, ***p < 0.001, N.S., not significant, two-sided Dunnett's test (**a-c**). Source data are provided as a Source Data file.

Supplementary Fig. 5. *lhb* expression in $cck2rb^{+/-}$ shows similar level as that in $cck2rb^{+/-}$ in ovariectomized fish, suggesting that the reduction of *lhb* in cck2rb KO should be a secondary effect.

The effect of *cck2rb* knockout in ovariectomized (OVX) females (n = 6 fish). **a** *fshb* mRNA expression of the pituitary of *cck2rb^{-/-}* by quantitative real-time polymerase chain reaction (qRT-PCR). **b** *lhb* mRNA expression of *cck2rb^{+/-}* and *cck2rb^{-/-}*. **c** *tshb* expression of the pituitary extracted from both genotype. The data are mean \pm SEM. ***, p = 5.5e-5; N.S., not significant; two-sided Student's *t*-test (**a-c**). Source data are provided as a Source Data file.

Supplementary Fig. 6. Phylogenetic tree of medaka cholecystokinin (ccka and cckb) and gastrin (gast).

Maximum likelihood tree of the *ccka*, *cckb*, and *gast* based on deduced amino acid sequence. Species name and the accession number for each species are indicated in the tree.

cck

		* 20 *		
ChickCck	:	MYGG-ICICVLLAALSVSSLGQQPAGSHDGSP	:	31
GarCck	:	MNSG-ICVCVLLAVLSTSCLGRPASGSEDEG	:	30
ZebraCcka	:	MNAG-LCVCALLAALSTSSCLSLPVHSEDG	:	29
MedakaCcka	:	MNVG-IYVCVILAALFTGSLTLPSKSMFQR	:	29
ZebraCckb	:	MNSG-VCVCVILAALSVSVSCASR	:	23
MedakaCckb	:	MTAG-LGVCVVLAVLCTSCLGLPVSSAPSDEGQHSLSA	:	37
ChickGast	:	MKTK-VFLGLILSAAVTACLCRPAAKAPGGS	:	30
GarGast	:	MPGSKVCLCALLVTVLAAVCLAVPLPETLGD	:	31
ZebraGast	:	MMAKFIVLTIVAMLVAACAASPLSK	:	25
MedakaGast	:	MSGKTALLFALLVVLLVSSSASPAKAEGG	:	29
		40 * 60 *		
ChickCck	:	VAAELQQSLTEPHRHSRAPSSAGPLKPAPRL-	:	62
GarCck	:	TPAQLGQSLSAPRRTARSAPPHGQPQPFQRA-	:	61
ZebraCcka	:	VQSNVG-SATGHTRHTRAAPPAGQINLLTKP-	:	59
MedakaCcka	:	TERKALVTESLPVPLTNHTRQARSAPAPPSGQ	:	61
ZebraCckb	:	PVSDERSLSARRLARSASLTLQQPLPPAG	:	52
MedakaCckb	:	PSEVALPEADTKSLDGAHVRHSRSTTQLKDLPGA-	:	71
ChickGast	:	HRPNSSLAR	:	39
GarGast	:	AGAALAHRDALRERARALRERTPSGAPRDPAQGAR	:	66
ZebraGast	:	VKPVNTKRSAISPESSPEAHETP	:	48
MedakaGast	:	TG-ALAHKGAA	:	46
		80 * 100 *		
ChickCck	:	DGSFEORATIGALLAKY OOAWKGSTGRESVLGNRVOS	:	100
GarCck	:	EEAAEORASI GELLARI INRKGSFRRNSTANSKASG	:	97
ZebraCcka	:	EDDEEPRSSLTELLARIISTKGSYRRSPAANSRT	:	93
MedakaCcka	:	LOSESAONSLSOLLARLESRK-SSSLOTRSSLTSRA	:	96
ZebraCckb	:	DIOPDTRANLSOLLAKLISSK-KGSVRRNSSMNSRA	:	87
MedakaCckb	:	EEDGDSRANLSELLARLISTR-KGSVRRNSSANNRGGV	:	108
ChickGast	:	RDWPEPPSQEQQQRFISRFLPHVFAELSDRKGFVQG	:	75
GarGast	:	VARQDRLGSLTEEQRDLVSRYVLQALTELAHREGCS	:	102
ZebraGast	:	LARVRRSVGLSEDQRELMSRQLLQALSEIIQREDC	:	83
MedakaGast	:	ATRERRRAHLTEDEREMMTKQIVQALSEVMNSD-C	:	80
		120 * 140		
ChickCck		TDPTHRINDRDYMGWMDFGRRSAEEVEVSS • 130		
GarCck	•	LSANHRIKDRDYLGWMDFGRRSAFEYEYSS · 127		
ZebraCcka	•	MGASHRIKDRDYLGWMDEGRRSAEEVEVSS · 123		
MedakaCcka	•	AAPSHRIKDRDYLGWMDEGRRSVEEVEVSP · 126		
ZebraCckh	•	NSVNHRIKDRDYVGWMDFGRRSAEEYEYSS • 117		
MedakaCckh	•	LRANHRTADRDYLGWMDFGRRSAEEYEYSS : 138		
ChickGast	:	NGAVEALHDHFYPDWMDFGRRSTEDAADAA : 105		
GarGast	:	DDHPINISDRDYHGWMDFGRRSAEFLDS : 130		
ZebraGast	:	LSDYOGWVDFGRRSSN : 99		
	-			

Supplementary Fig. 7. Alignment of amino acid sequence of vertebrate CCK and gastrin.

Alignment of medaka (MedakaCcka, ENSORLT0000007488.1; MedakaCckb, ENSORLT0000007035.1; gast, ENSORLT00000015711.1) compared with zebrafish (ZebraCcka, ENSDART00000134202.1; ZebraCckb, ENSDART00000163899.1; ZebraGast, XP_021335429.1), gar (GarCck, ENSLOCT00000001503.1; GarGast, XP_006638439.1) and chicken(ChickCck, ENSGALT00000057710.2; ChickGast, ENSGALT00000043859.2). The red horizontal line indicates the C-terminal CCK octapeptide (CCK-8). Black shading represents identical residues while gray shading represents similar residues.

Supplementary Fig. 8. ccka and cckb but not gast is expressed in the brain.

Reverse transcription polymerase chain reaction (RT-PCR) analysis of the medaka brain and intestine. cDNA of brain and intestine were examined for PCR using *ccka*- (381-bp), *cckb*- (437-bp), and *gast*- (295-bp) specific primers and resolved in 2% agarose gel electrophoresis. *ccka* and *cckb* were amplified from both brain and intestine cDNA, whereas *gast* was amplified only from the intestine cDNA. Source data are provided as a Source Data file.

Supplementary Fig. 9. *ccka* and *cckb* knockout fish do not have CCK-immunoreactive cell bodies and fibers.

a Immunohistochemistry of *ccka* and *cckb* double knockout medaka, using CCK antibody. Cell bodies and fibers were observed in the pituitary, preoptic area (POA), and nucleus ventralis tuberis (NVT) of $ccka^{+/+};cckb^{+/+}$ medaka. **b** No cell bodies or fibers were observed in $ccka^{-/-};cckb^{-/-}$ medaka.The bottom half of the figures are in higher magnification. Scale bars, 50 µm.

Supplementary Fig. 10. Increased $[Ca^{2+}]_i$ in FSH cells in male in response to CCK-8s peptide.

FSH cells in male was applied with 1000 nM CCK-8s peptide. The shaded section indicates the time and duration of the perfusion of CCK-8s. During the application of peptide, FSH cells showed drastic increase of $[Ca^{2+}]_i$ which is similar to the response in females. Source data are provided as a Source Data file.

Supplementary Fig. 11. [Ca²⁺]_i of FSH cells when perfused with 100 nM mdGnRH or 100 nM CCK-8s peptide.

a Ca^{2+} imaging of FSH cells applied with 100 nM mdGnRH or 100 nM CCK-8s. The shaded section indicates the time and duration of the perfusion of the peptide.

b The response of FSH cells to CCK-8s peptide is significantly greater than that to mdGnRH at 100 nM (n = 5 fish; *, p = 0.022). **c** Ca²⁺ imaging of LH cells applied with 100 nM mdGnRH or 100 nM CCK-8s. The shaded section indicates the time and duration of the perfusion of the peptide. **d** The response of LH cells to mdGnRH is significantly greater that that to CCK-8s at 100 nM (n = 5 fish; **, p = 0.0012). *p < 0.05, **p < 0.01, two-sided Student's *t*-test (**b**, **d**). Source data are provided as a Source Data file.

Supplementary Fig. 12. CCK-8s exclusively increases the *fshb* expression. Since there might be a increasing trend in *lhb* expression after incubation with CCK-8s, similar experiments was reexamined for both female and male. **a-f** qRT-PCR of the pituitaries after incubating in CCK-8s for 48 hours (a and d, *fshb*; b and e, *lhb*; c and f, *tshb*; n = 5, 4 fish). Only *fshb* expression was significantly different between the pituitary incubated with or without 100 nM CCK-8s. The data are mean \pm SEM. **p = 0.0057, *p = 0.014, N.S., not significant, two-sided Student's *t*-test (**a-f**). Source data are provided as a Source Data file.

Supplementary Fig. 13. Body length and weight are mostly same among *ccka* and *cckb* double KO.

a The body length and weight of $ccka^{+/-};cckb^{+/-},ccka^{+/-};cckb^{+/-},ccka^{+/-};cckb^{-/-}$, and $ccka^{-/-};cckb^{-/-}$ female medaka (n = 6 fish). **b** The body length and weight of male ccka/cckb double KO (n = 6 fish). The data are mean \pm SEM. ***, p = 2.41e-5; N.S., not significant; two-sided Dunnett's test (**a**,**b**). Source data are provided as a Source Data file.

Number of eggs spawned 10

Average number of eggs fertilized from pairing with *ccka;cckb* KO b 50 N.S 40 N.5 N.S 30 20

Male ccka*';cckb*' ccka*';cckb*' ccka*';cckb*' ccka*';cckb*' ccka*';cckb*' ccka*';cckb*' ccka*';cckb*' ccka*';cckb* Female ccka*/:cckb*/ cckb*/ ccbb*/ cbb*/ ccbb*/ ccbb*

0 Male ccka*';cckb*' ccka*';cckb*' ccka*';cckb*' ccka*';cckb*' ccka*';cckb*' ccka*';cckb*' ccka*';cckb*' ccka*';cckb*' Female ccka*/:cckb*/ cckb*/ ccka*/:cckb*/ cckb*/ ccbb*/ cb

Supplementary Fig. 14. Eggs spawned from *ccka;cckb* medaka of each genotype **a,b** The number of eggs spawned (a) and fertilized eggs (b) from wild type or *ccka*; *cckb* KO female medaka paired with wild type or *ccka*;*cckb* KO male medaka (n = 4pairs; ***, p = 0.0012, 3.0e-4). The data are mean \pm SEM. **c** The fertilization rate of each paired groups determined by the number of eggs spawned over the number of fertilized eggs (n = 4 pairs; ***, p = 1.4e-6). The data are mean \pm SEM. **d** The number of eggs spawned from female of each genotype paired with wild type male (n = 4pairs). The data are mean \pm SEM. e The number of females that spawned eggs in each genotype. ccka-/-;cckb-/- medaka began to lay eggs about one month after the other genotypes. ***p < 0.001, N.S., not significant, two-sided Dunnett's test (a-c). Source data are provided as a Source Data file.

Supplementary Fig. 15. ccka/cckb double KO females show delayed spawning with their drastically reduced FSH expression

a $ccka^{-/-};cckb^{-/-}$ showed functional ovary after a delay of ~1 month. **b** The gonadosomatic index (GSI) of ovary size normalized by body weight (n = 4 fish; **, p = 0.0021). **c,d** Quantitative real-time polymerase chain reaction (qRT-PCR) of *fshb* expression (c) and *lhb* expression (d) in $ccka^{+/-};cckb^{+/-}$ and $ccka^{-/-};cckb^{-/-}$. **e** *tshb* expression of both genotype (n = 4 fish; **, p = 0.00013). The data are mean \pm SEM. **p<0.01, N.S., not significant, two-sided Student's *t*-test (**b-c**). Source data are provided as a Source Data file.

Supplementary Fig. 16. *fshb* and *cck2r* are expressed in the pituitary of Japanese eel.

a in situ hybridization of the pituitary in Japanese eel, analyzing the expression of *fshb* and cck2r by in situ hybridization. Only sections hybridized with anti-sense probe were labeled for both *fshb* and cck2r. **b**, **c** Double in situ hybridization of *fshb* (b), *lhb* (c) and cck2r (b and c) in the pituitary. Co-expression between *fshb* and cck2r was observed, but no co-expression was observed between *lhb* and cck2r.

Supplementary Fig. 17. Specific *in situ* hybridization of *cck2rb*, *ccka*, and *cckb*. *in situ* hybridization of *cck2rb*, *ccka*, and *cckb*. Only the sections hybridized with anti-sense probes (AS) were labeled whereas sections hybridized with sense probes (SE) did not show any signal which supports the validity of this labeling. Scale bars, 100 µm.

- + SSATRALSGAPIAFIHLLSYTSACVNPIIYCFMNTRFRKALLSTFSWCGAPCRHCCRRRG 420
- + LRDIEEDVMATGASMSKFSYTTVSTMGNC 449

Supplementary Fig. 18. Generation of *cck2rb* KO medaka.

a The gene structure of *cck2rb* is shown with the location of the CRISPR target site, which is enlarged to depict the nucleotide sequences of the wild-type (+) and targeted allele ($\Delta 8$). The deleted nucleotides are indicated by dashes. **b** Comparison of the deduced Cck2rb protein sequences of the + and targeted allele ($\Delta 8$). The transmembrane domain of Cck2rb are shaded in gray. The altered sequences caused by frameshift are indicated in red.

1 kb

3'

Exon (coding regions) Exon (untranslated regions) - intron

+	GAAAGCCTACCTGTCCCACTAACCAATCACACGCGTCAGGCTCGCTC
∆7 54 + ∧754	
∆7 54 + ∧754	ACTCCTCTCTAGAAAAgtgagtgatcagaaacatgtgggcagaaaaccagagaggggaa
4 + ∧754	ctgtggcaattgtggacttgatactcatttcgtgttggcatcactgtcccgctcttgttg
+ ^754	catctcccctcctgacatccgtctgtctgcgggctgccgtcattcacgctgagcccgtac
+ ∧754	cttgccatctggcatttcccacctccttagcttccgctctccattgtcccgtgccccg
+ ^754	ctcctgtctcttccataaccgtttcctcaaatcctatccgctgacctgccctttccatta
+ ^754	ctccctcacacttgtccctacctcctaacctctttctgcctccccatcagcattacaacc
+ ^754	ctctatcatgactgagtcaacactgtttgacttgcggagctcactgaccttaaagaatat
+	aggtccagaaaaacagatcaaatctgcttgagcaactttgacaagttaatttgagaaatc
+ ^754	agagaataatctcaataaaagtaatactatttagaagaaaataaggctctaacaagctac
+ ^754	ccccccaatgttttctgcttcagGCTCATCCCTCCAGACCAGATCCTCCCTCACCAGCAG
+ ∆754	AGCTGCAGCCCCCAGTCACAGGATAAAGGACAGAGATT <u>ACCTGGGATGGATGGACTTTGG</u>
+ ∆754	<u>G</u> CGACGTAGTGTGGAG <u>G</u> CGACGTAGTGTGGAG

b

+

EYSP

+ MNVGIYVCVILAALFTGSLTLPSKSMRTERKALVTESLPVPLTNHTRQARSAPAPPSGQL 60
Δ754 MNVGIYVCVILAALFTGSLTLPSKSMRTERKALVTESLPVPLLGDVVWRSMNIPHKAASF 60
+ QSESAQNSLSQLLARLLSRKSSSLQTRSSLTSRAAAPSHRIKDRDYLGWMDFGRRSVEEY 120
Δ754 ISQHLNQSPKTRFTLLILHQMREDFSSF* 89

124

Supplementary Fig. 19. Generation of *ccka* KO medaka.

a The gene structure of *ccka* is shown with the location of the CRISPR target site, which is enlarged to depict the nucleotide sequences of the wild-type (+) and targeted allele (Δ 754). The deleted nucleotides are indicated by dashes. **b** Comparison of the deduced Ccka protein sequences of the wild-type (+) and targeted allele (Δ 754). The signal peptide region (1-20) and amino acid residue essential for CCK activity are shaded in gray. The altered sequences caused by frameshift are indicated in red.

а

5'

b

+ ∆210	MTAGLGVCVVLAVLCTSCLGLPVSSAPSDEGQHSLSAPSEVALPEADTKSLDGAHVRHSR MTAGLGVCVVLAVLCTSCLGLPVSSAPSGGWRFTGKPQ*	60 60
+	STTQLKDLPGAEEDGDSRANLSELLARLISTRKGSVRRNSSANNRGGVLRANHRIADRDY	120
+	LGWMDFGRRSAEEYEYSS	138

Supplementary Fig. 20. Generation of cckb KO medaka.

a The gene structure of *cckb* is shown with the location of the CRISPR target site, which is enlarged to depict the nucleotide sequences of the wild-type (+) and targeted allele ($\Delta 210$). The deleted nucleotides are indicated by dashes. **b** Comparison of the deduced Cckb protein sequences of the wild-type (+) and targeted allele ($\Delta 210$). The signal peptide region (1-20) and amino acid residue essential for CCK activity are shaded in gray. The altered sequences caused by frameshift are indicated in red.

gene_id	Gene name	annotation	Median TPM value of	
			FSH cell pools (n=4)	
ENSORLG00000017966	cck2rb	cholecystokinin receptor-like	542.79	
ENSORLG00000019757	gnrh-r2	gonadotropin-releasing	449.315	
		hormone receptor 2		
ENSORLG00000016288	tgfbr3	transforming growth factor beta	442.8	
		receptor type 3		
ENSORLG0000000865	chrna4b	neuronal acetylcholine receptor	267.245	
		subunit alpha-2		
ENSORLG00000014011	pgrmc1	progesterone receptor	247.1	
		membrane component 1		
ENSORLG0000030131	pk1-r	pyrokinin-1 receptor-like 224.915		
ENSORLG0000024060 nr1d2b nuclear receptor subfam		nuclear receptor subfamily 1	199.77	
		group D member 2		

Supplementary Table 1. List of highly expressed receptors in the RNAseq analysis of FSH cells

EC50	CCK-8s	Gastrin-8s
pGL4.29(cAMP)	0.2 nM	9.1 nM
pGL4.30(Ca ²⁺)	0.7 nM	1.8 nM
pGL4.33(MAPK)	1.0 nM	1.8 nM

Supplementary Table 2. EC50 values of the reporter assay using HeLa cells expressing Cck2rb.

Target	direction	purpose	sequence (5' to 3')
cck2rb	forward	genotyping (gDNA PCR)	AAAGACGGAGAGCCAAAGACAG
cck2rb	reverse	genotyping (gDNA PCR)	TGCAGAGATAGCTTTCTCCAAGAT
cck2rb	forward	genotyping (HRM)	CTGATGGAGCAGCTTCAGAGC
cck2rb	reverse	genotyping (HRM)	TGCTGCGCTTCTCCTGTCGT
cck2rb	forward	genotyping (HRM)	ATCTCCTGCGTGAACCCGTCCACGCTT
ccka	forward	genotyping (gDNA PCR)	GTGTCTAATCCCAATTCAGAAAGTG
ccka	reverse	genotyping (gDNA PCR)	AAGCTGACAAGCTGTGCCTCTT
ccka	forward	genotyping (CS)	ATCCTGGCTGCTCTTTTCACTG
cckb	forward	genotyping (gDNA PCR)	AGCTCCTCACATGACTGAAGCT
cckb	reverse	genotyping (gDNA PCR)	AGTGGCAGGAAAAAGCACTCG
cckb	forward	genotyping (CS)	AAACGCTCCGTCTTCTGTCTGTG
cck2rb	forward	Probe template	CTGATCTCCAGGGAACTTTATCG
cck2rb	reverse	Probe template	GCAGGAGAAAGTATGGAGTACAG
ccka	forward	Probe template	ACTGTTTGAAAGCCTCAGCACCA
ccka	reverse	Probe template	CCCTAGTAGATGATTTGATATGAAGATT
cckb	forward	Probe template	GAACTGCTCTCCTCACTCTCATA
cckb	reverse	Probe template	GCAGCGAAGCAGCTTTTGCTG
ccka	forward	RT-PCR	GCAGTCATGAATGTAGGAATCTACGT
ccka	reverse	RT-PCR	TTATGGGGAATATTCATACTCCTCCACAC
cckb	forward	RT-PCR	TTCTCTCCTCAAGATGACCGCTG
cckb	reverse	RT-PCR	AAGAGTACGAGTACTCCTCATAAGGG
gastrin	forward	RT-PCR	AGGCAGCCATGTCAGGGAAAAC
gastrin	reverse	RT-PCR	TCCCTCCTCCCAAAGTCCA
eel_fshb	forward	Probe template for eel	CAGATTCACAGTTGCCATGCATCT
eel_fshb	reverse	Probe template for eel	CATCTATCCCTTGCCGCAGTT
eel_cck2r	forward	Probe template for eel	GCGATGGACGTACAGAAACTGAATG
eel_cck2r	reverse	Probe template for eel	CTTCCAGGTGTTGACGGAGTAG
cck2rb	forward	cds cloning (including	CTTGCCGCCATGGATACTTTGAGAAACG
		sequence for construction)	AGAC
cck2rb	reverse	cds cloning (including	CTCTCAGCAGTTTCCCATGGTG
		sequence for construction)	
actb	forward	qPCR	GTGATGTTGATATCCGTAAGGATCTGTA
actb	reverse	qPCR	TCTGGTGGGGCAATGATCTTGA
fshb	forward	qPCR	TGGAGATCTACAGGCGTCGGTAC

fshb	reverse	qPCR	AGCTCTCCACAGGGATGCTG
lhb	forward	qPCR	TGCCTTACCAAGGACCCCTTGATG
lhb	reverse	qPCR	AGGGTATGTGACTGACGGATCCAC
tshb	forward	qPCR	GCTACTCAAGGGACAGCA
tshb	reverse	qPCR	GCAGCCTCTCTGGATAAGGAA
fshUP+	Forward	Construct for rescue	CAGAGGGGGGGGCCACCATGGATACTTTGA
cck2rbSE		transgenic	GAAACGAGACAGC
Cck2rbFLA	Reverse	Construct for rescue	GTCGCGGCCGCTTCATCACTTATCGTCGT
Gstop+		transgenic	CATCCTTGTAATCTCCTCCGCAGTTTCCC
LinkAS			ATGGTGCTG

Supplementary Table 3. Primers used in this study.

gDNA PCR, PCR on genomic DNA; CS, cycle sequence; HRM, high-resolution melt analysis. Unless otherwise specified, all target genes mentioned are from the medaka.