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Variation	partitioning	

Methods		

A	partial	redundancy	analysis	(pRDA)	variance	partitioning	method	was	used	to	

investigate	patterns	of	spatial	genetic	variation	at	local	(ESS,	MAR,	PAR,	PIE)	and	regional	

(aggregated	 across	 all	 local	 sites)	 levels.	 Specifically,	 the	 relative	 effects	 of	 neutral	

(population	structure	and	geographic	spatial	structuring)	and	adaptive	processes	(local	

adaptation)	on	explaining	 intragenic	 SNP	variation	were	disentangled.	 In	 a	pRDA,	 the	

model	looks	to	estimate	the	proportion	of	variance	explained	by	a	group	of	explanatory	

variables	while	controlling	for	other	variables	of	interest	(Legendre	and	Legendre,	1998),	

such	that	the	independent	contributions	of	each	variable	group	can	be	separated	from	

confounding	effects	due	to	collinearity	amongst	variable	group	(Peres-Neto	et	al.,	2006).	

Here,	the	estimated	independent	effects	of	i)	population	structure,	ii)	spatial	geographic	

structure	 (geography),	 and	 iii)	 local	 adaptation	 (environmental	 drivers)	 on	 observed	

intragenic	SNP	variation	at	each	site	were	investigated,	using	the	varpart	function	in	the	

vegan	R	package.	

Neutral	genetic	structure	resulting	from	demographic	history	was	accounted	for	

using	PCAs	of	the	LD-pruned	intergenic	SNP	datasets,	performed	with	the	rda	function	in	

the	vegan	R	package.	The	number	of	principal	components	(PCs)	retained	to	represent	

population	 structure	was	determined	visually	using	 scree	plots	 and	biplots.	 Similarly,	

geography	was	accounted	for	using	Moran	Eigenvector	Maps	(MEMs),	following	Dray	et	

al.	(2006).	Briefly,	plant	neighbours	were	triangulated	using	geographic	coordinates	(X,	

Y)	 to	 estimate	weightings	 of	MEMs	 using	 the	graph2nb	 and	nb2listw	 functions	 of	 the	

spdep	 R	 package	 (v.1.2.3;	 Bivand,	 2022).	 Moran's	 I	 was	 calculated	 for	 each	 MEM	

eigenvector	of	the	weighting	matrix,	using	999	permutations	using	the	scores.listw	and	

test.scores	functions	of	the	spacemakeR	R	package	(v.0.0-5/r113;	Dray,	2013),	where	only	

MEMs	with	a	p-value<0.01	were	retained.	The	number	of	MEMs	were	further	reduced	

using	a	forward	selection	procedure,	retaining	MEMs	that	best	explained	variance	in	the	

neutral	LD-pruned	intergenic	SNP	dataset,	with	the	full	RDA	model’s	adjusted-R2	value	as	

the	 stopping	 criteria,	 which	 was	 performed	 using	 the	 forward.sel	 function	 of	 the	

adespatial	R	package	(v.0.3-16;	Dray	et	al.,	2022).	

The	 contribution	 of	 elevation	 and	 DEM-derived	 variables	 in	 shaping	 genetic	

variation	and	supporting	a	pattern	of	local	adaptation	was	assessed	using	variables	at	a	

range	of	spatial	resolutions.	The	effect	of	each	of	the	variable	sets	(Table	2	in	the	main	
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text)	was	 systematically	 evaluated	 for	 the	 local	 and	 regional	 analyses.	 As	 elevation	 is	

known	to	be	correlated	with	environmental	variables	such	as	temperature	and	humidity	

(Ashcroft	and	Gollan,	2013;	Hof	et	al.,	2012),	it	was	removed	from	each	of	the	variable	

sets	and	evaluated	separately.	

Results	

Up	 to	 half	 of	 genomic	 variation	 across	 each	 local	 site	was	 explained	 by	 either	

neutral	 processes,	 including	 demographic	 history	 (population	 structure)	 and	 spatial	

geographic	 structure	 (geography),	 or	 by	 adaptive	 processes	 yielding	 patterns	 of	 local	

adaptation	 (Suppl.	 Fig.	 S5;	 Suppl.	Table	S5),	where	most	 of	 explained	variation	was	

confounded	 between	 neutral	 processes	 (Suppl.	 Fig.	 S6).	 Total	 explained	 genetic	

variation	was	predominantly	influenced	by	the	number	of	input	environmental	variables	

used	in	analyses,	rather	than	the	spatial	resolution	of	the	variable	set	(Table	2).	At	local	

sites,	population	structure,	accounted	 for	using	PCAs	of	 the	neutral	 intergenic	dataset	

(Suppl.	 Fig.	 S7a–d),	 explained	 relatively	 limited	 variance	 alone,	 as	 it	 was	 highly	

confounded	with	geography	such	as	latitudinal	coordinates	(Suppl.	Fig.	S3).	Geography	

(accounted	for	using	MEMs;	Suppl.	Fig.	S8;	Suppl.	Table	S6)	explained	more	intragenic	

variance	 at	 sites	 with	 homogeneous	 rather	 than	 heterogeneous	 terrains,	 where	

geography	was	stronger	when	modelled	with	finer-resolution	VS-single	models	(Suppl.	

Fig.	S5).	After	accounting	for	neutral	spatial	genetic	structuring,	elevation	explained	very	

little	 genetic	 variation	 on	 its	 own	 (generally	 <1%)	 at	 the	 local	 sites.	 Likewise,	 the	

environmental	partition	explained	little	genetic	variation	alone,	where	patterns	of	local	

adaptation	were	stronger	at	homogeneous	than	at	heterogeneous	terrain	sites	(Suppl.	

Fig.	S5).		

At	the	regional	level,	almost	half	of	the	total	intragenic	variation	was	explained	by	

neutral	or	adaptive	processes,	half	of	which	was	confounded	(Suppl.	Fig.	S3e;	Suppl.	Fig.	

S5).	 In	 contrast	 to	 the	 local	 sites,	more	 than	 half	 of	 this	 unconfounded	 variance	was	

shaped	 purely	 by	 geography	 and,	 to	 a	 much	 lesser	 extent,	 also	 population	 structure	

(Suppl.	Fig.	S7e).	Patterns	of	local	adaptation	however	remained	weak	at	the	regional	

level,	with	elevation	accounting	for	<1%	of	explained	genetic	variation,	and	the	remaining	

environmental	variables	accounting	for	<3%	with	VS-single	and	<15%	with	VS-fwd	and	

VS-all.	
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