Supplementary Material

for

Live imaging of excitable axonal microdomains in ankyrin-G-GFP mice

Christian Thome^{1,2,3}, Jan Maximilian Janssen^{1,2,4}, Seda Karabulut⁴, Claudio Acuna⁵, Elisa D'Este⁶, Stella J. Soyka⁷, Konrad Baum^{1,2}, Michael Bock⁴, Nadja Lehmann⁴, Johannes Roos^{1,2,4}, Nikolas A. Stevens³, Masashi Hasegawa⁸, Dan A. Ganea⁹, Chloé M. Benoit^{8,9}, Jan Gründemann^{8,9}, Lia Min¹⁰, Kalynn M. Bird¹⁰, Christian Schultz⁴, Vann Bennett¹¹, Paul M. Jenkins^{10*}, Maren Engelhardt^{1,2,4*}§

¹Institute of Anatomy and Cell Biology, Johannes Kepler University, 4020 Linz, Austria

²Clinical Research Institute of Neuroscience, Johannes Kepler University, 4020 Linz, Austria

- ³Institute of Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
- ⁴Institute of Neuroanatomy, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- ⁵Chica and Heinz Schaller Research Group, Institute of Anatomy and Cell Biology, Heidelberg University, 69120 Heidelberg, Germany
- ⁶Optical Microscopy Facility, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
- ⁷Institute of Anatomy and Cell Biology, Dept. of Functional Neuroanatomy, Heidelberg University, 69120 Heidelberg, Germany
- ⁸German Center for Neurodegenerative Disease (DZNE), Neural Circuit Computations, 53127 Bonn, Germany
- ⁹University of Basel, Department of Biomedicine, 4031 Basel, Switzerland
- ¹⁰Departments of Pharmacology and Psychiatry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- ¹¹Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
- * These authors contributed equally. § Corresponding author: maren.engelhardt@jku.at

Supplementary Figure S1: Ank-G-GFP activation and expression in nodes of Ranvier do not alter node morphology

A Top panel shows a cryosection of neocortical white matter from an ankyrin-G-GFP x CaMKIIa-Cre mouse, with GFP⁺ and GFP⁻ nodes of Ranvier (noR; see Fig. 3A for details). The bottom panel shows an automated 3D reconstruction of noR using Imaris. Nodes were identified via the ankyrin-G channel, classified by the GFP channel, and properties were analyzed in Na_v1.6 and ankyrin-G channels. All steps were automated within the Imaris software. Scale bar = 5 μ m. **B** Nodes that are GFP⁺ and GFP⁻ show no differences regarding their length, ellipticity, and median fluorescence intensity of ankyrin-G or Na_v1.6 signals (*n* = 141 GFP⁻ nodes, 91 GFP⁺ nodes, 1 animal, Mann-Whitney U test). **C** *Top* panel: The fluorescence intensity of the sodium channel Na_v1.6 did not correlate with ankyrin-G-GFP fluorescence intensity, indicating unchanged levels of sodium channels. *Bottom* panel: The intensity of GFP fluorescence correlates positively with the levels of all ankyrin-G in GFP⁺ but not GFP⁻ nodes (*n* as in B; Pearson correlation details in the graph). This demonstrates that ankyrin-G-GFP does not change the Na_v1.6 channel fluorescence intensity and provides a reliable predictor of ankyrin-G levels, though we do not exclude the possibility that native unlabeled ankyrin-G remains in the nodes to some degree.

Supplementary Figure S2: AIS length, position, and molecular composition remains intact after ankyrin-G-GFP expression

A Measurements of length and position of AIS in CA1 pyramidal neurons that are either GFP positive (green) or negative (orange). The inclusion of GFP into the ankyrin-G gene does not significantly change AIS length (*left* panel) or distance to the soma (*right* panel). Sample preparation was conducted as outlined in Fig. 7 and AIS measurements were based on the β IV-spectrin signal (*n* = 3 animals). An independent Thy1-GFP control line (grey, *n* = 3 animals) was used as an additional control. The number of individual AIS (white circles) and *P* values are given within the graph (*t*-test for AIS length; Mann – Whitney U-test for AIS distance). **B** Correlation of AIS length measured live via the ankyrin-G-GFP signal in a patch clamp chamber (grey) and post-fixation using antibodies against GFP, ankyrin-G, and β IV-spectrin in CA1 pyramidal neurons (sample preparation as in Fig. 7, *n* = 20 AIS, 1 animal). **C** Alternative visualization of data from panel B (post-fixation). Measurements for AIS signals using antibodies against GFP, ankyrin-G, and β IV-spectrin show comparable lengths. **D** Immunosignals from Na, 1.6 channels retain their fluorescence intensity across the AIS after the expression of ankyrin-G-GFP. AIS length was normalized from start to end of the ankyrin-G signal and fluorescence intensity from lowest to highest. Tissue preparation as described in Fig. 4A (*n* = 10 GFP⁻ and 10 GFP⁻ AIS). **E** Line plots of K, 2.1 and GFP fluorescence intensities along the AIS signal indicate no change in K, 2.1 expression. Normalization as in panel D. Tissue preparation as described in Fig. 4B (*n* = 10 GFP⁺ and 10 GFP⁻ AIS).

Supplementary Table 1 Summary of statistics for passive and active properties (related to Fig. 7)

stats	wildtype					Ank	G-GFP			AnkG-GFP+Cre				ANOVA	-Cre / +Cre
	N	mean	median	SD		N	mean	median	SD	N	mean	median	SD	p(A) / <u>p(KW)</u>	ttest / <u>M-</u> <u>Whit</u>
RMP	28	-63.29	-63.56	3.78		22	-62.57	-63.43	4.62	42	-64.14	-63.32	4.17	0.3441	0.1733
Rinput	28	268.60	251.50	95.51		23	226.10	203.70	89.55	42	253.00	234.40	95.75	<u>0.0952</u>	<u>0.1634</u>
Ih sag	28	22.25	22.01	8.67		23	22.84	23.30	8.64	42	25.06	28.05	9.91	<u>0.2529</u>	<u>0.3469</u>
rheobase	28	52.16	44.86	30.90		23	70.86	69.81	36.43	41	69.31	69.81	37.54	<u>0.0654</u>	<u>0.9917</u>
ISI (ratio 1/6)	27	2.55	2.32	1.00		22	2.39	2.11	0.68	42	1.98	1.86	0.47	<u>0.0038</u>	<u>0.0123</u>
maxAP	27	12.04	11.00	2.59		22	9.77	10.00	2.05	42	10.52	10.00	2.48	0.0044	0.2278
IhalfmaxAP	27	102.40	96.82	39.97		22	122.20	120.10	32.56	42	122.90	116.30	46.33	<u>0.0576</u>	<u>0.6471</u>
AP thesh	28	-39.00	-38.45	2.75		23	-38.30	-38.70	3.75	42	-36.91	-36.54	3.41	<u>0.0163</u>	<u>0.0457</u>
AP amp.	28	84.98	86.78	10.90		23	88.85	90.03	7.73	42	90.29	91.51	6.92	0.0396	<u>0.4537</u>
AP hw	28	2.05	2.04	0.26		23	1.91	1.88	0.21	42	1.94	1.91	0.21	<u>0.0546</u>	<u>0.5371</u>
AP rise	28	0.54	0.54	0.12		23	0.50	0.49	0.07	42	0.46	0.45	0.08	<u>0.0013</u>	<u>0.0103</u>
AP decay	28	2.19	2.19	0.41		23	2.07	2.03	0.31	42	2.19	2.20	0.27	<u>0.2392</u>	0.1174
EPSP amp.	27	0.59	0.59	0.08		22	0.59	0.59	0.10	42	0.61	0.58	0.12	<u>0.8246</u>	<u>0.5555</u>
EPSP frequ.	27	0.47	0.31	0.61		22	0.49	0.32	0.50	42	0.40	0.25	0.41	<u>0.6986</u>	<u>0.3858</u>

multiple comparisons:

significant pairs:

ISI (ratio 1/6)	Ank-G-GFP+Cre is different from both others
maxAP	wildtype is different from both Ank-G-GFP groups
AP thesh	wildtype vs. ankg□GFP+cre
AP amp.	wildtype is different to ankG□GFP+Cre
AP rise	wildtype vs ankG□GFP+Cre
	-

Supplementary Table 2 Summary of Cre viruses and Cre driver lines

Neuron population	Cre virus / line	Common name	Source, strain
Unspecific	FUW-nGFP::Cre (lentiviral vector), CMV	nGFP-Cre, NA	Gift from the Südhof lab, Stanford
	promotor		University, CA, USA
Unspecific	FUW-nGFP:: ΔCre (lentiviral vector),	nGFP-∆Cre, NA	Gift from the Südhof lab, Stanford
	CMV promotor		University, CA, USA
Excitatory neurons	pENN.AAV.CamKII 0.4.Cre.SV40	CaMKII-Cre	Addgene viral prep #105558-
			AAV5, Lot: v7050
Neurons (unspecific)	ENN.AAV.hSyn.Cre.WPRE.hGH	Synapsin-Cre	Addgene viral prep #105553-
			AAV1, Lot: v75882
Inhibitory neurons	AAV1-hDIx-Flex-dTomato-Fishell_7	hDIx-tdTomato	Addgene viral prep #83894-AAV1
Neurons (unspecific)	pAAV-hSyn-Cre-P2A-dTomato	Synapsin-Cre-tdTomato	Addgene viral prep 107738-
			AAVrg, Lot: v75881
Excitatory neurons	B6.Cg-Tg(Camk2a-Cre)T29-1Stl/J	T29-1	The Jackson Laboratory
		IMSR_JAX:005359	Strain # 005359
Parvalbumin-pos.	B6;129P2-Pvalbtm1(Cre)Arbr/J	B6 PV ^{Cre}	The Jackson Laboratory
interneurons with	crossed with	IMSR_JAX:017320	Strain # 017320
tdTomato	B6.Cg-GT(ROSA)26Sortm14(CAG-		
	tdTomato)/Hze/J	Ai14	Strain # 007914
		IMSR_JAX:007914	
Unspecific	AAV-retro/2-hSyn1-mCherry-iCre-	Retro-mCherry-Cre	University of Zürich, Viral Vector
	WRPE-hGHp(A)		Facility, v230

Supplementary Table 3 Specification of primary and secondary antibodies (catalog number, working dilution, previously conducted controls, sources, Research Resource Identification Portal (RRID) code and references where available).

Primary Antibody	Dilution	Reported controls				Source & Catalog Number		
Clone/type		KO IF		IP	WB	RRID or other reference		
Ankyrin-G (rb)	1:500		Х		Х	Santa Cruz Biotechnology, Heidelberg, Germany; sc- 28561 AB 633909		
Ankyrin-G (gp)	1:1000		Х		Х	Synaptic Systems, Göttingen, Germany 386 005 [1]		
<i>Ankyrin-G</i> (ms) N106/36	1:500	Х	Х		Х	UC Davis/NIH NeuroMab Facility, CA, USA; 73-146 AB_2315803		
ank-G C-terminus	1:200		Х			Santa Cruz Biotechnology, Heidelberg, Germany; sc- 28561; discontinued		
<i>ßIV-spectrin</i> (rb)	1:1000	Х	Х		Х	Self-made [2-4]		
<i>Caspr</i> (ms) K65/35	1:500	Х	Х	Х	Х	UC Davis/NIH NeuroMab Facility, CA, USA; 75-001 AB_2083496		
<i>FGF14</i> (ms) N56/21	1:500	Х	Х	Х	Х	UC Davis/NIH NeuroMab Facility, CA, USA; 75-096 AB_2104060		
GFP (ch)	1:1000		Х			Acris Antibodies GmbH, Hiddenhausen, Germany; AP20142PU-N AB 10756183		
<i>lba1</i> (rb)	1:2000		Х			Wako, Neuss, Germany; 019-19741 AB 839504		
<i>K</i> ⊭1.2 (ms) K14/16	1:200	Х	Х	Х	Х	UC Davis/NIH NeuroMab Facility, CA, USA; 73-008 AB_2296313		
<i>K</i> _v 2.1 (ms) K89/34	1:1000	Х	Х		Х	UC Davis/NIH NeuroMab Facility, CA, USA; 75-014- 020 AB 2877280		
Nav1.6 (rb)	1:2000		Х		Х	Alomone Labs, Jerusalem, Israel ASC-009 AB 2040202		
NeuN (ms) A60	1:500		Х		Х	Millipore, Temecula, CA, USA; MAB377 AB 2314889		
NeuN (gp)	1:2000		Х			Synaptic Systems, Göttingen, Germany 266 004 AB 2619988		
Parvalbumin (rb)	1:500		Х		Х	Swant Inc., Marly, Switzerland PV27 AB 2631173		
Synaptopodin (gp)	1:500		Х		Х	Synaptic Systems, Göttingen, Germany 163 004 AB_10549419		
TRIM46 (ms) SMP14 (aka MDM2)	1:500		Х		Х	Santa Cruz Biotechnology, Heidelberg, Germany; sc- 965 AB_627920		
vGAT (ch)	1:1000		Х			Synaptic Systems, Göttingen, Germany 131 006 AB 2619820		

KO absence of immunosignal in knock out animals, *IF* immunofluorescence, *IP* immuno-precipitation, *WB* western blot, *rb* rabbit, *ms* mouse, *gp* guinea pig, *ch* chicken

Supplementary Table 3 (continued) Specification of primary and secondary antibodies (catalog number, working dilution, previously conducted controls, sources, Research Resource Identification Portal (RRID) code and references where available).

Secondary Antibody	Dilution	Repor	ted co	ntrols		Source & Catalog Number		
Clone/type		KO	IF	IP	WB	RRID or other reference		
FluoTag-X4-anti GFP- StarRED 1H1/1B2	1:500					NanoTag Technologies, Göttingen, Germany; N0304 AB_2744631		
gt anti mouse abberior STAR 580	1:100					Abberior GmbH, Göttingen, Germany; ST580-1001 AB_2923543		
gt anti rabbit abberior STAR 580	1:100					Abberior GmbH, Göttingen, Germany; ST580-1002 AB_2910107		
gt anti ch Alexa Fluor 488	1:1000					Molecular Probes, Thermo Fisher, Karlsruhe, Germany; A-11039 AB_ 42924		
gt anti ms Alexa Fluor 568	1:1000					Molecular Probes, Thermo Fisher, Karlsruhe, Germany; A-11004 AB 143162		
gt anti rb Alexa Fluor 568	1:1000					Molecular Probes, Thermo Fisher, Karlsruhe, Germany; A-21069 AB 141416		
gt anti gp Alexa Fluor 568	1:1000					Molecular Probes, Thermo Fisher, Karlsruhe, Germany; A-11075 AB 141954		
gt anti ch Alexa Fluor 568	1:1000					Molecular Probes, Thermo Fisher, Karlsruhe, Germany; A-11041 AB 2534098		
gt anti ms Alexa Fluor 594	1:500					Molecular Probes, Thermo Fisher, Karlsruhe, Germany; A-21125 AB 141593		
gt anti rb Alexa Fluor 594	1:500					Molecular Probes, Thermo Fisher, Karlsruhe, Germany; A-11012 AB 141359		
gt anti ms Alexa Fluor 647	1:500					Molecular Probes, Thermo Fisher, Karlsruhe, Germany; A AB_2535804-21235		
gt anti rb Alexa Fluor 647	1:500					Molecular Probes, Thermo Fisher, Karlsruhe, Germany; A-21244 AB 2535812		
gt anti gp Alexa Fluor 647	1:500					Molecular Probes, Thermo Fisher, Karlsruhe, Germany; A-21450 AB_2735091		
gt anti ch Alexa Fluor 647	1:500					Molecular Probes, Thermo Fisher, Karlsruhe, Germany; A-21449 AB_2535866		
Alexa Streptavidin 568	1:1000					Molecular Probes, Thermo Fisher, Karlsruhe, Germany; S11226 AB_2315774		

KO absence of immunosignal in knock out animals, *IF* immunofluorescence, *IP* immuno-precipitation, *WB* western blot, *rb* rabbit, *ms* mouse, *gp* guinea pig, *ch* chicken

Supplementary Table 4 Summary of fixation and blocking reagents for all immunofluorescence experiments.

Sample	Fixation	Post Fix	Blocking buffer
	Time / Div		Incubation buffer
Isolated hippocampal neurons	4% PFA, 15 min DIV 19	No	 B: 1% BSA in PBS. Prior to blocking, quench in PBS with 100 mM glycine, 100 mM ammonium chloride (5 min) and application of 0.1% Triton X-100 for 5 min I: PBS
Hippocampal OTC	4% PFA, 30 min	No	B: 0.1% Triton X-100, 1% BSA, 0.2% fish skin gelatine, in 1 x PBS I: same
Ex vivo acute slices	2% PFA, 90 min	No	 B: 0.3% Triton X-100, 5% normal goat serum in 1 x PBS I: 0.2% Triton X-100, 1% normal goat serum in 1 x PBS
Whole mount retina	4% PFA, 15 min >P55	No	 B: 0.5% Triton X-100, 0.2% BSA, 0.02% sodium azide in 1x PBS I: 1% Triton X-100, 10% FCS and 0.02% sodium azide in 1x PBS
Cryosections	Perfusion, 15 min 2% PFA (for ion channels) 4% PFA (for all others) >P28	No	B: 1% BSA, 0.2% fish skin gelatine, 0.1% Triton X-100 in 1 x PBS I: same

PFA paraformaldehyde, min minutes, DIV days in vitro, BSA bovine serum albumin, PBS phosphate buffered saline, FCS fetal calf serum

References for Supplements

1. Schlüter, A., et al., Dynamic regulation of synaptopodin and the axon initial segment in retinal ganglion cells during postnatal development Frontiers Cell Neurosci, 2019.

2. Gutzmann, A., et al., A period of structural plasticity at the axon initial segment in developing visual cortex. Front Neuroanat, 2014. 8: p. 11.

3. Freal, A., et al., Cooperative Interactions between 480 kDa Ankyrin-G and EB Proteins Assemble the Axon Initial Segment. J Neurosci, 2016. 36(16): p. 4421-33.

4. Höfflin, F., et al., Heterogeneity of the Axon Initial Segment in Interneurons and Pyramidal Cells of Rodent Visual Cortex. Front Cell Neurosci, 2017. 11: p. 332.