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SUPPLEMENTARY DISCUSSION 1 
 2 
Assignment and equilibrium dynamics of Ca2+ bound to engineered linkers in mini-PCDH15 models 3 
 4 
Our AlphaFold2 (AF2) and aligned (AL) models of mini-PCDH15 ectodomains included engineered linker regions 5 
where we manually placed bound Ca2+ ions. Mini-PCDH15-V4 (Fig. 4a, 4d) has one engineered EC3-EC9 linker 6 
region with the atypical p.366DENNQ linker motif. The native EC3-EC4 linker region with this motif and with Ca²⁺ 7 
observed at sites 2 and 3 79 exhibits reduced Ca²⁺ binding ability compared to what is expected for linker regions 8 
with the canonical DXNDN Ca2+ binding motif and three bound Ca²⁺. Analysis of our EC3-EC9 AF2 and AL 9 
models (Fig. 4 and S3), revealed residues arranged in conformations that were compatible with Ca²⁺ binding at 10 
sites 2 and 3, where Ca²⁺ ions were placed (Fig. 4b and 4e, left middle panels). Interestingly, Ca2+ at site 2 was 11 
coordinated by p.N369 in the mini-PCDH15-V4 AL model, but not in the mini-PCDH15-V4 AF2 model. Mini-12 
PCDH15-V4 AF2 and AL models showed consistent Ca2+ coordination profiles pre- and post-simulation (Fig. 4b 13 
and 4e, right middle panels).  14 
 15 
Mini-PCDH15-V7 (Fig. 4g and 4j) features two engineered linker regions: EC3-EC7 and EC8-EC11. The EC3-16 
EC7 linker region has the non-canonical p.366DENNQ linker motif. Our AF2 model (Fig. 4h, left middle), the AL 17 
model (Fig. 4k, left middle), and the crystal structure (Fig. 3a) show a Ca2+ bound at site 3, as expected. Notably, 18 
our crystal structure of the EC3-EC7 fragment has a K+ at site 1, with no cation occupancy at site 2 (Fig. 3a). In 19 
contrast, in both the AF2 and the AL models, Ca2+ ions were placed at site 2, leading to p.D724 coordinating 20 
Ca²⁺ ions at sites 2 and 3, as we previously observed in the native EC3-EC4 linker with residue p.D411 (PDB: 21 
5T4M). In both the AF2 and AL models, the side chains of the linker motif segment p.368NNQ are oriented in a 22 
configuration consistent with the EC3-4 crystal structure (Fig. 3a, Fig. 4h and 4k, left middle). Equilibrium 23 
simulations also revealed that in both models for mini-PCDH15-V7 EC3-EC7, the backbone oxygen atom of 24 
p.N728 loses coordination with the Ca2+ ion at site 3 (Fig. 4h and 4k, right middle), inconsistent with the 25 
configuration observed in the EC3-EC7 crystal structure (Fig. 3a). In contrast, Ca2+ at site 2 moved close to site 26 
1 during the equilibration of the AL model, to a position that is consistent with that observed for K+ in the crystal 27 
structure (Fig. 3a). 28 
 29 
Our models for the engineered linker region EC8-EC11 of mini-PCDH15-V7 with the p.897DMNDY linker motif, 30 
display similar Ca2+ coordination at sites 2 and 3 pre- and post-simulation (Fig. S3b and S3e, middle panels). 31 
However, the backbone oxygen atom of p.Y1155 loses its coordination with the Ca²⁺ ion at site 3 after 32 
equilibration (Fig. S3b and S3e, right middle panels). 33 
 34 
Models for mini-PCDH15-V8 and its engineered EC4-EC7 (Fig. S3g and S3j) linker region with the canonical 35 
p.480DANDN linker motif displayed Ca2+ coordination at sites 2 and 3 (Fig. S3h and S3k, left panels), similar to 36 
that observed in our crystal structure (Fig. 3b). Post-simulation, however, both models exhibited a notable shift: 37 
the backbone oxygen atom of p.N728 moved away from the Ca2+ ion at site 3 (Fig. S3h and S3k, right middle 38 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 17, 2024. ; https://doi.org/10.1101/2024.06.16.599132doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.16.599132
http://creativecommons.org/licenses/by-nc/4.0/


panels), accompanied by a general increase in flexibility (Fig. S3i and S3l). Furthermore, our AF2 and AL models 1 
of the engineered EC7-EC11 linker region with a canonical p.790DIDDN linker motif had identical Ca2+ binding 2 
configurations (Fig. 4n and 4q). Equilibrium simulations of mini-PCDH15-V8 AF2 and AL models revealed a 3 
consistent pattern: the backbone oxygen atom at p.Y1155 disengaged from the Ca2+ ion at site 3 in both models 4 
(Fig. 4n and 4q, right middle panels), although the overall Ca2+ coordination remained unchanged pre- and post-5 
simulation.  6 
 7 
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Supplementary Figures and Tables 1 
 2 

 3 
Fig. S1 | Structural models and equilibrium MD simulations of mini-PCDH15-V7 and -V8. a, Full ectodomain of mini-4 
PCDH15-V7 AF2. b, Views of the EC8-EC11 linker region at beginning and end of 100-ns MD equilibrations. c, Inter-repeat 5 
linker flexibility of EC8-EC11 repeats in mini-PCDH15-V7 AF2 (as in Fig. 5c). d, Full ectodomain of mini-PCDH15-V7 AL. 6 
e, Views of EC8-EC11 in mini-PCDH15-V7 AL (as in Fig. 5b). f, Inter-repeat linker flexibility (as in Fig. 5c) of EC8-EC11 7 
repeats in mini-PCDH15-V7 AL. g, Full ectodomain of mini-PCDH15-V8 AF2. h, Views of EC4-EC7 in mini-PCDH15-V8 8 
AF2 (as in Fig. 5b). i, Inter-repeat linker flexibility (as in Fig. 5c) of EC4-EC7 in mini-PCDH15-V8 AF2. j, Full ectodomain 9 
of the mini-PCDH15-V8 AL. k, Views of EC4-EC7 in mini-PCDH15-V8 AL (as in Fig. 5b). l, Inter-repeat linker flexibility (as 10 
in Fig. 5c) of EC4-EC7 in mini-PCDH15-V8 AL. All molecular images display protein backbones in cartoon and sidechains 11 
in sticks. Mini-PCDH15 proteins with AF2-predicted engineered linker regions are shown in mauve, whereas those 12 
assembled based on alignments (AL) are in purple. 13 
  14 
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 1 
Fig. S2 | Structural stability of mini-PCDH15s. a-d, Root-mean-square deviation (RMSD) as a function of time for the full 2 
ectodomains and individual EC repeats of the mini-PCDH15-V7 and -V8 AF2 and AL models. 3 
  4 
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 1 
Fig. S3 | Elasticity of monomeric mini-PCDH15 proteins in complex with CDH23 EC1-3. a, Snapshots of mini-PCDH15-2 
V4 AF2 + CDH23 EC1-3 during stretching at 0.1 nm/ns (Sim1d). C-terminal Ca atoms are shown as red spheres. Applied 3 
forces are indicated with spring arrows. Insets highlight the most extended EC linker (EC9-EC10). b, Snapshots of mini-4 
PCDH15-V7 AF2 + CDH23 EC1-3 during stretching at 0.1 nm/ns (Sim3d).  c, Snapshots of mini-PCDH15-V8 AL + CDH23 5 
EC1-3 during stretching at 0.1 nm/ns (Sim6d). d, Snapshots of mini-PCDH15-V8 AF2 + CDH23 EC1-3 during stretching at 6 
0.1 nm/ns (Sim5d).   7 
  8 
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 1 
Fig. S4 | Extension of mini-PCDH15 linker regions in stretching simulations at 0.1 nm/ns. The linker regions are 2 
depicted based on two different models: AF2 predictions shown in mauve and AL predictions in purple.  3 
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 1 
Fig. S5 | Assembly of mini-PCDH15-V4 AF2 model. Base model from Choudhary et al. includes CDH23 EC1-3 in blue, 2 
PCDH15 EC1-2 in purple, and PCDH15 EC10-MAD12 in purple. Engineered linker EC3-EC9 (in mauve) was predicted 3 
using AF2. We then manually connected the C-terminal end of PCDH15 EC1-2 to the N-terminal end of the AF2-predicted 4 
PCDH15 EC3-EC9. Similarly, the C-terminal end of the AF2-predicted EC3-EC9 was connected to N-terminal end of 5 
PCDH15 EC10-MAD12. Box highlights the AF2-predicted EC3-EC9 subdomain. 6 
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 1 
Fig. S6 | Assembly of mini-PCDH15-V4 AL model. Base model from Choudhary et al. includes CDH23 EC1-3 in blue, 2 
PCDH15 EC1-3 in purple, and PCDH15 EC9-MAD12 in lime. We manually connected the C-terminal end of PCDH15 EC1-3 
3 to the N-terminal end of PCDH15 EC9-MAD12. Box highlights the engineered linker region. 4 
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Table S1 | RMSD values from COOT using atoms of protein backbone between PDB structures of linkers 1 
and WT domains (Å)  2 
 3 

 8TON EC3 8UMZ EC4 
(chain A) 

8UMZ EC4 
(chain B) 

8TON EC7 8UMZ EC7 
(chain A) 

8UMZ EC7 
(chain B) 

5T4M EC3 
(chain A) 

1.083 - - - - - 

5T4M EC3 
(chain B) 

0.842 - - - - - 

5T4M EC4 
(chain A) 

- 0.925 0.395 - - - 

5T4M EC4 
(chain B) 

- 0.395 0.473 - - - 

5ULY EC3 0.511 - - - - - 
5W1D EC4 - 0.729 0.719 - - - 
5W1D EC7 - - - 0.516 0.594 0.649 
6BWN EC7 - - - 0.399 0.435 0.533 

 4 
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Table S2 | Summary of simulations for mini-PCDH15 proteins + CDH23 EC1-3. 1 
Label System 𝒕𝒔𝒊𝒎 (ns) Type Start Speed 

(nm/ns) 
Average 

force Peak 
(pN) 

Size 
(#atoms) 

Initial Sytem 
Size (𝒏𝒎𝟑) 

Sim1a 

V4 AF2 

100 EQ - - -  
1,239,195 

 
76×14×12 

Sim1b 1.24 SMD S1a 10 695.0 +/- 
197.8 

Sim1c 9.85 SMD S1a 1 388.4 +/- 23.0 

Sim1d 170.9 SMD S1a 0.1 355.8 +/- 12.7 

Sim2a 

 
V4 AL 

100 EQ - - -  
938,545 

 
76×16×8 

Sim2b 1.2 SMD S2a 10 713.5 +/- 
261.7 

Sim2c 9.77 SMD S2a 1 390.7 +/- 51.2 

Sim2d 189.2 SMD S2a 0.1 315.1 +/- 0.6 

Sim3a 

V7 AF2 

100 EQ - - -  
1,060,405 

 
76×12×12 

Sim3b 0.94 SMD S3a 10 754.4 +/- 
236.0 

Sim3c 6.74 SMD S3a 1 431.9 +/- 49.0 

Sim3d 84.0 SMD S3a 0.1 291.8 +/- 48.8 

Sim4a 

V7 AL 
 

100 EQ - - -  
1,060,492 

 
76×12×12 

Sim4b 0.98 SMD S4a 10 729.5 +/- 
236.2 

Sim4c 6.35 SMD S4a 1 411.9 +/- 55.9 

Sim4d 100.6 SMD S4a 0.1 287.2 +/- 4.0 
Sim5a 

V8 AF2 

100 EQ - - -  
1,060,357 

 
76×12×12 

Sim5b 0.96 SMD S5a 10 753.8 +/- 
204.0 

Sim5c 6.16 SMD S5a 1 402.9 +/- 65.7 

Sim5d 84.5 SMD S5a 0.1 353.3 +/- 41.2 

Sim6a 

V8 AL 

100 EQ - - -  
1,060,501 

 
76×12×12 

Sim6b 0.96 SMD S6a 10 731.3 +/- 
204.8 

Sim6c 6.25 SMD S6a 1 388.7 +/- 68.2 

Sim6d 84.1 SMD S6a 0.1 309.7 +/- 7.7 

 2 
  3 
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 Table S3 | Predicted elasticity of monomeric mini-PCDH15 proteins 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
  15 

Mini-PCDH15 
Versions 

Effective Spring 
Constant k 

(mN/m) 

Extensibility 
(nm) 

V4 AF2 3.3 34.2 9.0 5.0 
V4 AL 3.3 17.2 7.0 7.5 
V7 AF2 36.3 4.5 
V7 AL 33.0 5.5 
V8 AF2 53.9 3.5 
V7 AL 55.5 4.0 
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Table S4 | RMSD values between AF2 and AF3 predictions for mini-PCDH15 engineered linkers 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 41 
 42 
 43 
 44 
 45 
 46 
 47 
 48 
 49 
 50 
 51 
 52 
 53 
 54 
 55 
 56 

Mini-PCDH15 Engineered 
linkers 

RMSD Values Using Non-
Hydrohen Atoms (Å) 

RMSD Values Using Atoms 
of Protein Backbone (Å) 

V4 AF2 EC3 2.359 1.166 
V4 AF2 EC3-EC9 linker 2.555 0.698 
V4 AF2 EC9 1.773 0.441 
V7 AF2 EC3 2.236 0.943 
V7 AF2 EC3-EC7 linker 1.779 0.083 
V7 AF2 EC7 1.815 0.189 
V7 AF2 EC7-EC8 linker 1.662 0.069 
V7 AF2 EC8 1.779 0.314 
V7 AF2 EC8-EC11 linker 1.489 0.071 
V7 AF2 EC11 2.661 1.005 
V8 AF2 EC4 1.721 0.192 
V8 AF2 EC4-EC7 linker 1.798 0.103 
V8 AF2 EC7 1.752 0.122 
V8 AF2 EC7-EC11 linker 1.649 0.091 
V8 AF2 EC11 3.221 1.714 
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Movies 1 
 2 
Movie S1. Animation of 2D class averages of mini-PCDH15-V4 demonstrating the various conformations present. 3 
 4 
Movie S2. Forced unbending and unrolling in a simulation of the mini-PCDH15 V4 AF2 (EC1-EC2-EC3-EC9-EC10-EC11-5 
MAD12 in mauve) + CDH23 (EC1-3 in blue) model. Stretching of the complex at 0.1 nm/ns (simulation s1d in SI Appendix, 6 
Table S1, 0 - 170.9 ns) results in straightening of the mini-PCDH15 V4 AF2 ectodomain with lengthening of the EC2-3 and 7 
EC9-10 linker regions. As the simulation progresses the mini-PCDH15 MAD12 began to unfold from its C-terminal end. The 8 
mini-PCDH15 MAD12 eventually unrolled away from EC11 while unfolding continued. The CDH23 EC1-3 did not unbind 9 
from mini-PCDH15 V4 AF2. 10 
 11 
Movie S3. Forced unbending and unrolling in a simulation of the mini-PCDH15 V4 AL (EC1-EC2-EC3-EC9-EC10-EC11-12 
MAD12 in purple) + CDH23 (EC1-3 in blue) model. Stretching of the complex at 0.1 nm/ns (simulation s2d in SI Appendix, 13 
Table S1, 0 - 189.2 ns) results in straightening of the mini-PCDH15 V4 AL ectodomain with lengthening of the EC9-10 linker 14 
region. As the simulation progressed the mini-PCDH15 MAD12 began to unfold from its C-terminal end. The mini-PCDH15 15 
MAD12 eventually unrolled away from EC11 while unfolding continued. The CDH23 EC1-3 did not unbind from mini-16 
PCDH15 V4 AL. 17 
 18 
Movie S4. Forced unrolling in a simulation of the mini-PCDH15-V7 AF2 (EC1-EC2-EC3-EC7-EC8-EC11-MAD12 in mauve) 19 
+ CDH23 (EC1-3 in blue) model. Stretching of the complex at 0.1 nm/ns (simulation s3d in SI Appendix, Table S1, 0 - 84.0 20 
ns) results in straightening of the mini-PCDH15-V7 AF2 ectodomains with minimal lengthening of linker regions. As the 21 
simulation progressed the mini-PCDH15 MAD12 began to unfold from its C-terminal end. The mini-PCDH15 MAD12s 22 
eventually unrolled away from EC11 while unfolding continued. The CDH23 EC1-3 did not unbind from mini-PCDH15 V7 23 
AF2. 24 
 25 
Movie S5. Forced unrolling in a simulation of the mm (mini-PCDH15-V7 Alignment EC1-EC2-EC3-EC7-EC8-EC11-MAD12 26 
in purple) + (CDH23 EC1-3 in blue) model. Stretching of the complex at 0.1 nm/ns (simulation s4d in SI Appendix, Table 27 
S1, 0 - 100.6ns) results in straightening of the mini-PCDH15-V7 Alignment ectodomains with minimal lengthening of linker 28 
regions. As the simulation progressed the mini-PCDH15 MAD12s began to unfold from their C-terminal ends. The mini-29 
PCDH15 MAD12s eventually unrolled away from EC11 while unfolding continued. The CDH23 EC1-3 did not unbind from 30 
mini-PCDH15 V7 Alignment. 31 
 32 
Movie S6. Forced unrolling in a simulation of the mm (mini-PCDH15-V8 AlphaFold2 EC1-EC2-EC3-EC4-EC7-EC11-33 
MAD12 in mauve) + (CDH23 EC1-3 in blue) model. Stretching of the complex at 0.1 nm/ns (simulation s5d in SI Appendix, 34 
Table S1, 0 - 84.5ns) results in straightening of the mini-PCDH15-V8 AlphaFold2 ectodomains with minimal lengthening of 35 
linker regions. As the simulation progressed the mini-PCDH15 MAD12s began to unfold from their C-terminal ends. The 36 
mini-PCDH15 MAD12s eventually unrolled away from EC11 while unfolding continued. The CDH23 EC1-3 did not unbind 37 
from mini-PCDH15 V8 AlphaFold2. 38 
 39 
Movie S7. Forced unrolling in a simulation of the mm (mini-PCDH15-V8 Alignment EC1-EC2-EC3-EC4-EC7-EC11-MAD12 40 
in purple) + (CDH23 EC1-3 in blue) model. Stretching of the complex at 0.1 nm/ns (simulation s6d in SI Appendix, Table 41 
S1, 0 - 84.1ns) results in straightening of the mini-PCDH15-V8 Alignment ectodomains with minimal lengthening of linker 42 
regions. As the simulation progressed the mini-PCDH15 MAD12s began to unfold from their C-terminal ends. The mini-43 
PCDH15 MAD12s eventually unrolled away from EC11 while unfolding continued. The CDH23 EC1-3 did not unbind from 44 
mini-PCDH15 V8 Alignment. 45 
 46 
 47 
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