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Nuclear Invagination-Nucleolus Contact Regulates Ribosome Biogenesis 

 

 

Figure S1. Nuclear Invagination is Associated with Ribosome Biogenesis. 

(A) Airyscan images of MCF-10A and MDA-MB-231 cells immunostained with anti-eIF6 (yellow) 
and anti-RPL13 (magenta) antibodies. Scale bars: 20 µm. 

(B) Analysis of eIF6 intensity within the nuclei of MCF-10A and MDA-MB-231 cells. Each bar 
represents mean ± standard error of more than 20 cells. **** indicates p<0.0001 by unpaired t 
test. 

(C) Analysis of RPL13 intensity of MCF-10A and MDA-MB-231 cells. Each bar represents mean 
± standard error of more than 35 cells. **** indicates p<0.0001 by unpaired t test. 

(D) Western blot images of MCF-10A and MDA-MB-231 total protein extracts and membrane 
immunostained with anti-eIF6, anti-RPL13 and anti-GAPDH antibodies. 

 

 

 

 



 

Figure S2. Probability of Different types of NE-Nucleolus Contacts in Cell Lines. 69, 39, 56, 54 
nucleoli were analyzed in MCF-10A cells (A), progeria HGPS primary cells (B), MEF cells (C) 
and U2OS cells (D), respectively. 



 

Figure S3. Dynamics of NE-Nucleolus Contacts. 

Airyscan time-lapse images of HEK293T cells CRISPR knocked in split mNeongreen-UBTF (red 
hot) and live-stained with ERtracker red (cyan). (A) Red arrows point to a nuclear tunnel-
nucleolus contact site. (B) White arrows point to a nuclear dent-nucleolus contact site. Grey 
arrows point to a flat NE-nucleolus contact site. Scale bars: 5 µm. 

 

 

 

 

 
  



Cell Cultured on Nanopillar Patterns 

 

 

Figure S4. Nanopillars induce nuclear invaginations of desired curvatures. 

Brightfield and fluoresce two-color images of MCF-10A cells cultured on substrates with a 
nanopillar array and a flat surface region. The dashed line boxes outline the nanopillar areas. All 
cells were immunostained with anti-LaminB1 antibodies (green). All images were taken on an 
Airyscan microscope. (A) Images of cells cultured on a substrate containing nanopillars with a 
150 nm radius. i: Brightfield channel. ii: LaminB1 fluorescence channel. (B) Images of cells 
cultured on a substrate containing nanopillars with a 350 nm radius. i: Brightfield channel. ii: 
LaminB1 fluorescence channel. White arrowheads point to the natural tunnels and yellow 
arrowheads point to artificial tunnels generated by the nanopillars. Scale bars: 20 µm. 

 

 



Figure S5. Full View of Nanopillar Patterns. Brightfield images of nanopillar patterns with radii 
from 150 nm (R150) to 400 nm (R400). Scale bar: 50 µm. Inserts: Blueprints of the nanopillar 
patterns. On one quartz, there are 3 groups of nanopillars with different radii. Each group consists 
of 9 patterns. Each pattern consists of 20x20 nanopillars. 

 

Mitochondria Interactions at Nuclear Tunnel 
 

 

Figure S6. Mitochondria in the nuclear tunnel. (A) Airyscan expansion microscopy image of 
UCI082014 cell stained with anti-Tom20 (green) antibodies, NHS ester (blue), and mCling 
(magenta). Scale bar: 5 µm in pre-expansion unit. (B) Magnified view of the boxed area of image 
(A). Scale bar: 500 nm in pre-expansion unit. Length expansion factor: 3.7. 

 

F-actin Puncta inside the Nuclear Tunnel 



 

Figure S7. F-actin puncta inside nuclear tunnels. (A) Airyscan image of UCI082014 cells stained 
with phalloidin-FITC (green), anti-LaminB1 antibodies (magenta), and anti-nucleolin antibodies 
(grey). Scale bar: 20 µm. (B) Airyscan expansion microscopy image of UCI082014 cells stained 
with phalloidin-FITC and anti-fluorescein antibody (green), NHS ester (grey), and mCling 
(magenta). Scale bar: 5 µm in pre-expansion unit. White arrows point to F-actin puncta. Length 
expansion factor: 3.8. 

 

mTOR Signaling and Nuclear Invaginations 
 

 

Figure S8. Nuclear phosphorylated-mTOR is Curvature-Dependent. 



(A) (i-iii): Airyscan images of UCI082014 cells immunostained with anti-LaminB1 (red) and anti-
phosphorylated-mTOR (cyan) antibodies. White arrowhead indicates the natural nuclear tunnel. 
The black holes inside the nucleus at the pmTOR channel shape nucleoli. (iv-vi): Airyscan images 
of MCF-10A cells seeded on the pillars with 300 nm radius immunostained with anti-LaminB1 
(red) and anti-phosphorylated-mTOR (cyan) antibodies. Arrowhead indicates artificial tunnels 
generated by the nanopillars. The black holes inside the nucleus at the pmTOR channel shape 
nucleoli. Scale bar: 5 µm. 

(B) Barchart of phosphorylated-mTOR intensity in nuclei of MCF-10A cells cultured on flat 
surfaces and nanopillars with radii of 150 nm (R150) and 400 nm (R400). Each bar represents 
mean ± standard error of more than 40 nuclei. **** indicates p<0.0001 and *** indicates 
p<0.001 by unpaired t test.  

 

Diffusion Model Description 

 

Full two-dimensional model 

For a prescribed nuclear and nucleolar geometry (see section Geometry Generation), we assume 
a diffusion model for the motion of the pre-ribosomes between the nucleolus and export out of the 
nucleus through NPCs. This is based on single-molecule measurements that suggest this motion is 
indeed diffusive, or at least well-approximated [1,2].  

For parameters that may depend on the particular geometry, we denote these as functions of 𝑅, 
where we consider 𝑅 to index the pillar radii 𝑅 = {150, 250, 300, 350, 400} in nm.  

The concentration of pre-ribosomes 𝑢(𝑥⃗, 𝑡) is assumed to follow Fickian diffusion  

∂!𝑢 = ∇ ⋅ 𝐷(𝑥⃗)∇𝑢,  (1) 

where we assume that creation and export are in equilibrium, so we consider steady-state (setting 
∂!𝑢 = 0), yielding  

0 = ∇ ⋅ 𝐷(𝑥⃗)∇𝑢.  (2) 

The diffusion of pre-ribosomes is assumed to differ in heterochromatin regions and other nuclear 
space 

𝐷(𝑥⃗) = 1𝐷"#$% 𝑥⃗ ∈ heterochromatin
𝐷&'"( otherwise.   (3) 

We also assume that pre-ribosomes are released in a non-depleting manner from the nucleolar 
surface with fixed concentration that may vary based on geometry, 

𝑢|)⃗∈nucleolus boundary = 𝑝(𝑅).  (4) 

Without direct knowledge of the explicit location of the NPCs, we instead follow and model export 
through the NPCs using a surface reactivity (Robin condition) term [3,4] 



𝑛6⃗ ⋅ (𝐷(𝑥)∇𝑢) + 𝑘(𝑥,666⃗ 	𝑅)𝑢|)⃗∈nucleus boundary = 0.  (5) 

Here, 𝑛6⃗  is the outward normal vector and 𝑘(𝑥⃗, 𝑅) describes the surface reactivity, which may vary 
between the pillar geometries. The spatial dependence arises from the observation that NPC 
density varies between the pillar and non-pillar flat portions of the nuclear surface, modeled as 

𝑘(𝑥,666⃗ 	𝑅) = 1
𝑘,-##'.(𝑅) 𝑥⃗ ∈ pillar surface
𝑘&#'( nuclear surface otherwise.

  (6) 

Interpreting this boundary condition: as 𝑘 becomes large, pre-ribosomes exit through NPCs more 
quickly. Alternatively, whenever a pre-ribosome diffuses into the nuclear surface, 𝑘 captures the 
probability of how likely it is to be exported [5]. Ultimately, this term serves to approximate (1) 
the known delay in export through an NPC [6] and (2) NPC distribution on the nuclear surface.  

These PDEs are solved using MATLAB’s Finite Element PDE Toolbox. From the solution, the 
flux through the boundary is computed by 

boundary	flux = −F 𝑛6⃗
)⃗∈nucleus boundary

⋅ ∇𝐷(𝑥)𝑢(𝑥⃗) d𝑥,666⃗ = F 𝑘(𝑥⃗)
),000⃗ ∈nucleus boundary

𝑢(𝑥⃗) d𝑥  (7) 

At the stage of this surface integral, we reiterate acknowledgement that this two-dimensional 
approximation does not faithfully reflect the full three-dimensional nature of the system and 
presumably has different scaling properties. However, we seek to understand relative trends in the 
flux, the exploration of which is possible because of this simpler setup. 

We next note that exportin is required for a pre-ribosome to be exported through an NPC. In lieu 
of resolving bound and anchored exportin, we assume the binding process between pre-ribosomes 
and exportin is a fast, first-order reaction. That is, pre-ribosomes bind with exportin to form a 
complex 𝑃 + 𝑋 ↔ 𝐶 with a fixed pool 𝐸 of exportin where 𝑋 + 𝐶 = 𝐸, then in equilibrium 𝐶 ∝
𝐸. Noting that the complex is exported, we use this argument to scale the flux by the exportin 
concentration. Due to the observation that exportin densities vary between the pillar and non-pillar 
regions (flat) on the nuclear surface, we also incorporate this dependence.  

The resulting final expression that is compared with mature ribosome measurements in the main 
text is  

𝐽 = flux,-##'.𝐸123345(R) + flux&#'(𝐸634!
= 𝐸123345(𝑅)F 𝑘,-##'.(𝑅)

)⃗∈pillar boundary
𝑢(𝑥⃗) d𝑥 		

+ 	𝐸634!F 𝑘&#'(
)⃗∈flat  boundary

𝑢(𝑥⃗) d𝑥⃗	.  (8) 

This expression describes the “Full Model” predictions in the main text.   

Approximate Model 

To understand the behavior of the model more intuitively, we note that since we are only interested 
in the relative flux change for different conditions, we can instead consider the pointwise flux at 



the boundary rather than the integrated total flux. Therefore, we consider the 1-dimensional 
approximation where 𝑥 = 0 is the nuclear surface (with NPCs) and 𝑥 = 𝐿 is the nucleolar surface, 

0 = ∂)𝐷"#$% ∂)𝑢, −𝐷"#$% ∂)𝑢(0) + 𝑘𝑢(0) = 0, 𝑢(𝐿) = 𝑝.  (9) 

The distance 𝐿 from the nucleolus to the pillar is assumed to be the measured heterochromatin 
thickness. Moreover, we assume that diffusion at the nuclear surface is through heterochromatin, 
so 𝐷 = 𝐷"#$%. This can be solved analytically using straightforward integration, 

𝑢(𝑥) = 𝑝
𝐷"#$% + 𝑘𝑥
𝐷"#$% + 𝑘𝐿

.  (10) 

Finally, we make the same assumption about exportin scaling, yielding the analytical expression 
for the flux  

𝐽(𝑟) = flux = 𝐸(𝑅)𝑘𝑢(0) = 𝐸
𝐷"#$%𝑘(𝑅)

𝐷"#$% + 𝑘𝐿(𝑅)
𝑝(𝑅).  (11) 

This expression describes the “Simplified Model” predictions in the main text.  

 

 

Figure S8: Inputs to the model. A: Model geometries used to solve the full 2D model. Green 
regions indicate (slow diffusion) chromatin regions. Pink shows the nucleolus. See “Geometry 
Generation” for details on generation. B: Pillar roundness dependency for each parameter. In the 
main text, k saturating (no R dependence) and E decreasing are used due to being the best fit with 
reasonable parameters (see “Model Fitting”). Values for R400 are taken to be the same as R350 
if unmeasured. 

 



Model fitting and variations 

Only relative changes in mature ribosome can be measured, so all flux values are measured relative 
to 𝐽(𝑅 = 350) , and therefore we set 𝐽(𝑅 = 350) = 1 . Then, the remaining values, e.g., the 
relative flux in the 150 nm pillar configuration 𝐽(𝑅 = 150)/𝐽(𝑅 = 350) are compared with the 
mature ribosome measurements, and fit with respect to MSE (mean-squared error) MSE =
(1/5)∑ [RPL13(𝑅) − 𝐽(𝑅)/𝐽(350)]789{;<=,7==,7<=,>==,><=}  and this quantity is minimized over 
the parameters 𝐷"#$% and 𝜅. Notably, since this is steady-state, all rates can be rescaled to yield 
the same solution, so 𝐷&'"( = 10 is fixed, based on the observation of a free-cytosol diffusion 
coefficient of approximately 10+ 𝜇𝑚/𝑠7 in previous studies [2,7]. 

In the “Full Model” (and the simplified 1D version) we assume 𝑝, 𝑘, 𝐸 and the heterochromatin 
thickness all vary with the pillar radius 𝑅 and scale directly proportionally to the observed 
measurements, as shown in Figure S8B. Specifically, only relative values are shown, so the 
surface reactivity is taken so that 𝑘(𝑅) = 𝜅 ⋅ Nup153(𝑅)  , where Nup153(𝑅)  are the NPC 
measurements and 𝜅 determines the overall magnitude of the process. These are again relative to 
the measurement at 350 nm pillar radius, so Npc153(𝑅 = 350) = 1.  

We also consider several model variants. Both exportin1 and Nup153 concentrations should likely 
appear as Michaelis-Menten-like scaling in the model. However, in lieu of introducing this 
complexity, we instead investigate the two effective regimes: a low-concentration linear 
dependence and a saturating non-dependence. In this latter saturating scenario, the NPC import 
and exportin terms become independent of R, so we set 𝑘(𝑅) = 𝜅 or 𝐸(𝑅) = 𝐸 = 1. Each of these 
variants is shown in Figure S8B.  

 

Figure S9: A: Fits for various competing models. B: Mean squared errors (MSE) for fits shown 
in the previous panel. C: Diffusivity fit for each scenario, and D: surface reactivity fit.  



The fitting procedure produces a notably good fit for all models, as shown in Figure S9A. 
However, we note that the scenarios (both full and approx.) with NPC saturation provide a 
discernibly better fit (Figure S9B). Moreover, these scenarios correspond to parameter regimes 
where both D and k have values in agreement with the literature (Figure S9C and D). From this, 
we conclude that export rate saturating in NPC density is the most plausible model, and the one 
used elsewhere unless noted otherwise.  

Role of Parameters 

As one last investigation of the model and corresponding fits, we take the model fits from the 
previous section and sweep over D and k to see how increases (or decreases) in these parameters 
shape the resulting flux. Specifically, we consider the NPC saturating scenario in the approximate 
model and take each parameter to be 100x smaller to 100x larger than its baseline (best fit) value, 
shown in Figure S10.  

 

Figure S10: Role of D and k on output flux. A: Unnormalized (raw output of the model) flux from 
sweeping D in the approximate model. Larger D yields larger flux. B: Same plot and trend for 
sweeping k. C: Normalizing the curves in A by their value at R350, higher values of D flatten the 
flux curve. D: Normalizing by R350 reveals that larger values of k steepen the flux curve.  

 

In Figure S10A and B, we see that increasing D or k yields the intuitive result that the overall flux 
increases when these parameters increase. However, the experimental data is normalized by the 
value at R350, and all measurements are relative to this. In Figure S10C and D, the previous 
curves are normalized by their values at R350 and a surprising difference emerges. As D increases, 
the effect for different pillar radii gets washed out. In contrast, larger values of k yield larger 



differences in the flux for different pillar radii. This difference can be understood as follows: if 
diffusion through chromatin becomes fast, the varied thickness seen becomes increasingly 
negligible, and the curve flattens. However, for k larger, meaning faster NPC export, the only 
limiting factor is diffusive transport time through the chromatin, so the varied thickness becomes 
the dominant difference. Altogether, this further emphasizes the main text point that export is a 
fine balance between these two competing timescales.  

Geometry Generation 

To generate the nucleolus geometries used in the diffusion model, we follow the methods of Ref. 
[8] to evolve a deformable solid experiencing a variety of biophysical forces. In contrast to that 
work, we emphasize that our forces are fictitious, and solely used to generate plausible geometries 
rather than trying to faithfully describe the complex physics of the nucleolus. 

Each nuclear domain is first taken to be a 𝑊 by 𝐻 rectangle, approximating the side view of an 
approximately cylindrical nuclear domain. At the bottom of the rectangular domain, 3 rectangular 
pillars are added symmetrically around the center of the boundary, with varied pillar width, spacing 
3 𝜇m, and heights 1.5 𝜇m to mirror setups.  

The nucleus is initially configured at (fictitious) 𝑡 = 0 to be a circle with radius 𝑟 specified so that 
the area matches experimentally observed values. The surface of the nucleolus is a parameterized 
curve 𝑥⃗(𝑠)  with 0 ≤ 𝑠 ≤ 1 . This curve is discretized into 𝑀  points, 𝑥⃗;, … , 𝑥@  where we can 
associate 𝑥⃗@A; = 𝑥⃗;.  

The points on the nucleolus surface then evolve via the sum of the forces exerted on them until 
apparent convergence ∥ ∂!𝑥2 ∥< 10BC or until 𝑡 = 1000. The forces are in total,  

∂!𝑥⃗2 = 𝐹⃗D#'"( + 𝐹⃗,.D"" + 𝐹⃗E$%F + 𝐹⃗"(D.-G.  (12) 

Elastic: An elastic force on the surface of the nucleolus resists deformations caused by the other 
forces, and results in effective Hookean springs between the discretized points on the surface:  

𝐹⃗D#'"( = 𝑓D#'"( ∂H(∥ ∂H𝑥⃗ ∥ −ℓ)𝜏,  (13) 

where ℓ is the rest length of each connection determined by the initial configuration, 𝜏 = ∂H𝑥⃗/∥
∂H𝑥 ∥  is the tangent vector, and 𝑓D#'"(  controls the overall magnitude of this force. All ∂H 
derivatives are computed by a finite difference approximation ∂H𝑥2 ≈ (𝑥⃗2 − 𝑥⃗2)/(𝑀 − 1). 

Pressure: To maintain the overall area of the nucleolus after deformations, a pressure force is 
exerted  

𝐹⃗,.D"" = −𝑓,.D""ln(𝐴/𝐴=)𝑛6⃗ ,  (14) 

where 𝐴 is the area enclosed by 𝑥⃗, 𝐴= is the initial area, and 𝑛6⃗  is the outward normal vector.  

Downward force: Based on the observation that the nucleolus deforms around the pillars and 
heterochromatin, a fictitious downward body force is exerted on the nucleolus so that it comes in 
contact with the pillars. This is taken to be 

𝐹⃗E$%F = −𝑓E$%F𝑦⃗,  (15) 



where 𝑦⃗ = [0,1], the vertical direction.  

Steric force: Finally, the nucleus, pillar, and heterochromatin exert a steric force on the nucleolus 
itself, of the form 

𝐹⃗ster = −𝑓(∥ 𝑥2 − 𝑏 ∥)
𝑥2 − 𝑏

∥ 𝑥2 − 𝑏 ∥
,  (16) 

where 𝑏 is the closest point on the boundary to point 𝑥2, and the functional form is taken to be 
𝑓(𝑑) = 𝑓"(D.(1 − 𝑑/ℓ"(D.)1IJℓ!"#$. That is, the steric force occurs when the point on the nucleolus 
surface is within a distance ℓ"(D. of a corresponding boundary. The heterochromatin thickness 
(either surface or pillar) measured from experiments is used for ℓ"(D..  

For each pillar radius, heterochromatin is populated with a fixed thickness around all non-pillar 
surfaces, and then around pillar surfaces and the nucleolus itself with a radius-varying thickness.  

In the main text, the generated geometries use force-magnitude parameters 𝑓"(D. = 1, 𝑓'.D' = 5, 
𝑓D#'"( = 5,  chosen to qualitatively match shapes of nucleoli to those seen in experimental images. 
For reproducibility, other parameters taken were 𝑊 = 15, 𝐻 = 10 (to generate geometries), 𝐻 =
5 (for diffusion model), and the center initial circle of the nucleolus is placed at [0,4]. The resulting 
geometries can be seen in Figure S8A.  
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