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1 The Waterbear model

The Waterbear model has a more general generative view which we use for the simulations and call the “cell-level”
view of the model. It is described in Supplementary Section 1.1. The model used for inference is referred to as the
“gene-level” model and a full description of the model is in Supplementary Section 1.2.

1.1 The cell-level generative model

The cell-level model can be seen in Algorithm 1. In this model, we assume the gene-level effect sizes, guide-
composition (the relative frequency of each guide in the input population), the experiment-level multiplicity of
infection (MOI), and bin-sizes are fixed. While this is not necessary, it enables us to define the parameters for these
arguments and thus iterate over them, while still keeping randomness in the remainder of the model. Fixed here
is also relative to when the model is run. Parameters are fixed at the start of a simulation, but randomly sampled
and passed in as arguments in practice. Additionally, a plate model can be seen in Supplementary Figure 1.1.
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Algorithm 1 The cell-level generative view of the Waterbear model.

Input
µ, a vector of effect sizes, length number of genes. Genes with no effects have value 0.
φ, a vector of length N dispersion values (one per sample).
λ, the multiplicity of infection.
guide composition, a unit simplex of length number of guides.

Output
A tensor of dimension N x number of guides x number of bins.

for n in N samples do
for c in Cn cells do

Mnc ∼ Poisson(λ) . The number of guides in this cell.
Gnc |Mnc ∼ Multinomial(Mnc, guide composition) . Choose which guides.
Rnc | Gnc ∼ Normal(GT

ncµ, 1) . Given effect sizes µ, draw from the shifted distribution.
Ync ← binMapping(Rnc) . Given the reporter, sort the cell into the correct bin.
Bn[1{Gnc}]← Bn[1{Gnc}] + Ync . Update the true cell-guide counts.

end for
for g in G guides do

Ong ∼ DirichletMultinomial(sum(Bn[g]), φnBn[g]/sum(Bn[g])) . The observation is a noisy version of
the truth, post sorting.

end for
end for

S. Figure 1.1: Plate model for the cell-level model which is used for simulation.

1.2 The gene-level inference model

We begin by describing the full generative model. This model is represented in the plate model in Supplementary
Figure 1.2.

First, the experiment-level parameters:

π ∼ Beta(10, 10),

σ ∼ Gamma(1, 0.10),

τ ∼ Gamma(1, 0.10),

φ ∼ Exponential(1/φMLE).

Importantly, these priors are fairly diffuse. Additionally, φMLE is the MLE estimate learned from a frequentist view
of this model only on the non-targetting guides.
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Next, we cover the effect parameters,

ψg | π ∼ Bernoulli(p),

µg | ψg, σ ∼ Normal(0, σ2),

βh | µG(h), τ ∼ Normal(µG(h) · ψg, τ
2),

where G(h) is a map from the guide index to the corresponding gene index.
Finally, we cover the remaining nuisance parameters. Note that one can specify the model in terms of either

the function q or tn (see Methods in the main manuscript). Because of this duality, we can specify a prior in either
space, and thus choose to do so on q as the prior is more natural:

qn ∼ Dirichlet(α),

φn | φ ∼ Exponential(1/φ).

Here, α is the estimated bin sizes (in unit scale). Finally, we can write the observation as

Bnh | cnh, φn, tn, βh ∼ DirichletMultinomial(cnh, φnqn(tn, βh)).

The posterior offers no simple closed form solution, and thus we turn to Markov Chain Monte Carlo. The model
is implemented using NIMBLE and can be found on the GitHub link. As implemented, it uses a Gibbs sampler
where conditional conjugacy is possible and adaptive random walk MCMC otherwise.

S. Figure 1.2: Plate model for the gene-level model used for inference.

2 Simulations

Here, we report additional simulations which were referenced, but not included in the main text for brevity. Addi-
tionally, we describe some of the modeling choices (e.g. the effect size generation).

2.1 Simulation effect sizes

Pooled CRISPR screens were performed as described (Methods, Pooled CRISPR screens) and effect sizes were
learned from these data. An excess of cells from one donor were collected. After genomic DNA isolation, the
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genomic DNA was diluted to the equivalent of 50X, 100X, and 200X coverage. Sequencing libraries were made
from each diluted sample as described for the other pooled CRISPR screens. We broke the effects into classes easy,
moderate, and difficult based on whether MaGeCK called them significant across all dilution rates, some, or only
the lowest dilution rate. Since MaGeCK effect sizes are a function of the bin sizes, we used Waterbear to learn
the effect sizes in the standard normal space. Those effect sizes are plotted in Supplementary Figure 2.1a. We
then smoothed the distribution using the kernel density estimator in R which resulted in the distributions seen
in Supplementary Figure 2.1b. Of note, we thresholded the distributions so they would be discrete classes and
their intepretation would be simpler. For all simulations, a gene-level effect is drawn from these distributions. To
create the equalmixture simulations, we sampled classes uniformly at random, then sampled an effect size from
the corresponding class. The final distributions are shown in Supplementary Figure 2.2 which shows the marginal
distribution of the observed experiments and the simulated experiments is comparable.

2.2 Simulations across additional experimental configurations

In the following simulations we now vary

• the proportion of gene effects (0.05, 0.10, 0.25),

• the number of cells (50e3, 500e3, 1e6),

• the total number of genes (500, 1,000, 5,000),

• the MOI (0.3, 1, 2, 5, 10),

while maintaining four targeting guides per gene assayed, three replicates, and 1,000 non-targeting guides as in the
main text. The proportion of gene effects is represents the total fraction of genes that have true non-zero effects.
The number of cells is the number of observed cells across all bins (post FACS sorting). The number of guides is
the total number of targeting genes assayed. Each simulation is performed ten times and each line represents an
average.

We present the figures grouped by number of genes targeted, as we believe that is most insightful. The figures
thus represent 500, 1,000, and 5,000 genes in Supplementary Figures 2.3, 2.4, and 2.5, respectively.

The following overall trends hold true for all figures:

• As the proportion of gene effects increase, sensitivity increases.

• As the MOI increases, sensitivity increases.

• As the number of cells increases, sensitivity increases.
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(a) The effect size distribution as inferred from the dilution
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(b) The effect size distribution after smoothing the density.

S. Figure 2.1: Effect size distributions from real data used to inform simulated data.
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However, it is clear that this rate reaches an inflection point at 5,000 genes where there is very little sensitivity
achievable with 50,000 cells (Supplementary Figure 2.5). Even at 500,000 cells, sensitivity only becomes comparable
to the other configurations around MOI 2.

2.3 Effect of Non-Targeting Guides

To test the robustness of inference with varying number of non-targetting guides, we simulated under the similar
conditions as in Figure 3 in the main text, while varying only the number of non-targetting guides. In particular, we
used 10, 100, and 1,000 non-targetting guides (the main paper uses 1,000). We also maintained the total number of
targetting guides. This means that the per guide coverage is technically slightly higher for simulations with smaller
number of non-targgeting guides. Supplementary Figures 2.6 and 2.7 display the sensitivity and FDR, respectively.
Note, there is little difference, if any in performance as a function of the number of non-targetting guides.

2.4 Effect of unequal bin sizes

Here, we simulated from different bin sizes for each replicate to see how it might change the observed FDR and
sensitivity, Supplementary Figures 2.8a and 2.8b. These simulations follow the same sampling scheme as those in
Figure 3, with only the bin sizes changed to:

• Replicate 1 bin sizes: (0.10, 0.40, 0.25, 0.25),

• Replicate 2 bin sizes: (0.20, 0.30, 0.30, 0.20),

• Replicate 3 bin sizes: (0.25, 0.25, 0.40, 0.10).

2.5 Sensitivity plots including MAUDE

In the main text we do not include MAUDE in the sensitivity analysis (Figure 3) as it is very miss-calibrated and
thus is expected to have high sensitivity somewhat spuriously. Indeed, we see higher sensitivity in Supplementary
Figures 2.9a and 2.9b, but perhaps not as high as expected given average FDR around 0.50.
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S. Figure 2.2: The ECDF of the complete effect size distribution after pooling easy, moderate, and difficult effects.
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S. Figure 2.3: 500 gene simulations which vary the MOI, proportion of gene effects, and number of cells. In the sub
panels, p refers to the proportion of effects, and nc refers to the number of cells.
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S. Figure 2.4: 1,000 gene simulations which vary the MOI, proportion of gene effects, and number of cells. In the
sub panels, p refers to the proportion of effects, and nc refers to the number of cells.
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S. Figure 2.5: 5,000 gene simulations which vary the MOI, proportion of gene effects, and number of cells. In the
sub panels, p refers to the proportion of effects, and nc refers to the number of cells.
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S. Figure 2.6: Sensitivity of Waterbear as a function of number of non-targetting controls (in parentheses), MOI,
and number of cells.
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S. Figure 2.7: False Discovery Rate of Waterbear as a function of number of non-targetting controls (in parentheses),
MOI, and number of cells.
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(b) Average sensitivity results when bin sizes are unequal.

S. Figure 2.8: Results from simulations with unequal bin sizes while varying coverage.
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(a) Average sensitivity results while varying coverage and ex-
actly one guide per cell.
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(b) Average sensitivity results while varying MOI.

S. Figure 2.9: Sensitivity results from Figure 3 (main text) including MAUDE.

3 Experimental validation results

In this section we display further results from the arrayed knockdown experiments [1]. We previously validated
a number of regulators of IL2RA by individually knocking out each regulator and measuring the effect on IL2RA
levels (Freimer et al.). Here we use that data to validate Waterbear’s sensitivity identifying regulators from IL2RA
CRISPR FACS screens under different experimental conditions including changing MOI, coverage, and number of
replicates.

3.1 Down sampling replicates

Here, our goal is to see how much the results are affected by reducing the number of replicates from three to two.
Of particular interest is the extreme of high-coverage, low MOI (a conventional experiment) to low-coverage, high
MOI. These figures can be seen in Supplementary Figures 3.1 - 3.4. In particular, we note reasonable concordance
between all four cases, however, we note that (low coverage, low MOI) has the lowest, while (high coverage, high
MOI) has the highest concordance.

3.2 Validation against arrayed knockouts

Here, we use the arrayed knockout data from [1] to benchmark all the tools against a positive control set (26 genes)
and a much smaller null set (2 genes). These genes are listed in Supplementary Table 1. Waterbear is shown here
with all gene names (Supplementary Figure 3.5), along with MaGeck (Supplementary Figure 3.6), and MAUDE
(Supplementary Figure 3.7). In particular, both Waterbear and MAUDE show high sensitivity, whereas MaGeCK
misses a large number of true positives, even some with modest effect sizes (e.g. JAK3, RELA).
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S. Figure 3.1: The effect size distribution and significant hits at LFSR ≤ 0.10 when including only replicates 1 and
2 versus all three replicates with the high coverage, low MOI data.

12



−1.0

−0.5

0.0

0.5

−1.0 −0.5 0.0 0.5
effect size (Three replicates)

ef
fe

ct
 s

iz
e 

(T
w

o 
re

pl
ic

at
es

)

sig

Both (109)
Neither (1189)
Three replicates (20)
Two replicates (32)

S. Figure 3.2: The effect size distribution and significant hits at LFSR ≤ 0.10 when including only replicates 1 and
2 versus all three replicates with the high coverage, high MOI data.
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S. Figure 3.3: The effect size distribution and significant hits at LFSR ≤ 0.10 when including only replicates 1 and
2 versus all three replicates with the low coverage, low MOI data.
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S. Figure 3.4: The effect size distribution and significant hits at LFSR ≤ 0.10 when including only replicates 1 and
2 versus all three replicates with the low coverage, high MOI data.
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S. Figure 3.5: Validation using low coverage, high MOI data for Waterbear.
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S. Figure 3.6: Validation using low coverage, high MOI data for MaGeCK.
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gene validation direction mfi avg mfi rank mfi rank centered
1 ETS1 Decrease -0.53 9.00 -5.50
2 ATXN7L3 Increase 0.30 16.00 1.50
3 MYB Increase 0.79 23.00 8.50
4 KMT2A Decrease -0.68 7.00 -7.50
5 TNFAIP3 Increase 0.66 22.00 7.50
6 GATA3 Decrease -0.43 11.00 -3.50
7 STAT5B Decrease -2.40 3.00 -11.50
8 YY1 Decrease -0.44 10.00 -4.50
9 FOXP1 Decrease -0.75 6.00 -8.50

10 FOXK1 Increase 0.59 21.00 6.50
11 STAT5A Decrease -1.54 5.00 -9.50
12 RXRB Decrease -0.23 14.00 -0.50
13 MBD2 Decrease -0.38 12.00 -2.50
14 MED12 Increase 0.87 24.00 9.50
15 ZNF217 Increase 0.37 18.00 3.50
16 KLF2 Increase 0.92 25.00 10.50
17 IRF1 Increase 0.32 17.00 2.50
18 HIVEP2 Increase 0.45 20.00 5.50
19 PRDM1 Increase 0.29 15.00 0.50
20 PTEN Decrease -0.35 13.00 -1.50
21 IRF2 Increase 0.38 19.00 4.50
22 RELA Decrease -0.68 8.00 -6.50
23 CBFB Increase 1.62 26.00 11.50
24 IL2RA Decrease -4.80 1.00 -13.50
25 IRF4 Decrease -2.26 4.00 -10.50
26 JAK3 Decrease -3.05 2.00 -12.50

Table 1: The validation set read from [1]. Genes that were not included due to uncertain effects were: MYC,
IKZF1, IKZF3, FOXO1, and SMARCB1.

4 Average number of collisions

Here, we derive a simple model to estimate the number of collisions. A collision occurs when two or more guides
which have an effect on the phenotype enter the same cell. By definition, collisions are an upper bound of the
expected fraction of epistatic events, since two guides may enter a cell and have independent effects on the phenotype.
Our goal here is to compute for a given cell, the expectation that this cell receives two or more guides with an
effect. In particular, there are two free parameters in this calculation: (1) p, the proportion of guides that have an
effect on the phenotype, and (2) λ, the multiplicity of infection.

Let X be a random variable that counts the number of guides in a cell. We assume,

X ∼ Poisson(λ),

where λ is the multiplicity of infection (MOI) of the experiment. If we assume that p proportion of total guides in
our pool have an effect, then, if we select a guide at random, let

Gi =

{
1 if guide i has an effect,

0 otherwise.

Further, we assume P (Gi = 1) = p (a Bernoulli random variable). Finally, define,

Y = 1

{
X∑
i=1

Gi 6= 0

}
= 1

{
X∑
i=1

Gi > 0

}
.

By definition, Y is 1 if a collision happens, and 0 otherwise. Thus, by construction, we want to compute E[Y ] =
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P (
∑X

i=1Gi > 0), the probability of a collision. By iterated expectation we get,

E[Y ] = EX [E[Y | X]] = EX

[
P

(
X∑
i=1

Gi > 0 | X

)]
.

Additionally, note that

P

(
X∑
i=1

Gi > 0 | X

)
= 1− P

(
X∑
i=1

Gi = 0

)
= 1− P (G1 = 0, . . . , GX = 0 | X)

= 1− (1− p)X .

This result yields,

E[Y ] = EX [1− (1− p)X ]

= 1− EX

[
(1− p)X

]
.

Note that, the moment generating function of X, a Poisson, is

E[exp (tX)] = exp (λ(exp(t)− 1)).

By taking t = log(1− p),

E[exp(log(1− p)X)] = EX [(1− p)X ].

Thus, the expected number of collisions per cell is a function of the multiplicity of infection, λ, and the proportion
of guides that have an effect, p,

E[Y ] = 1− exp [λ(exp(log(1− p))− 1)]

= 1− exp [λ(1− p− 1)]

= 1− exp (−λp) .

This function can be visualized in Supplementary Figure 4.1.
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