
Supplemental Figure 1. Genetic diversity among commensal and extra-intestinal B. fragilis isolates

A) Bar graph of log₂ odds ratio between accessory and core genes per COG category separated by commensal (navy) versus extra-intestinal (pink) strains.

B) The top 30 core and top 30 accessory KEGG categories, ordered by most frequently observed KEGG KO category. C, commensal; E, extra-intestinal.

C) Genome size of commensal (C, n=281) and extra-intestinal (E, n=280) isolates, excluding assemblies derived from metagenomic assemblies, Welch's t-test, p=0.42.

D) GC content of commensal (C, n=281) and extra-intestinal (E, n=280) isolates, excluding assemblies derived from metagenomic assemblies, Welch's t-test, p=0.074.

Supplemental Figure 2. *B. fragilis* commensal and extra-intestinal strain distribution among phylogroups and niche specificity traits

A) Genome size of phylogroups 1-16. No statistically significant phylogroups by Welch's t-test at a corrected p-value of 0.05.

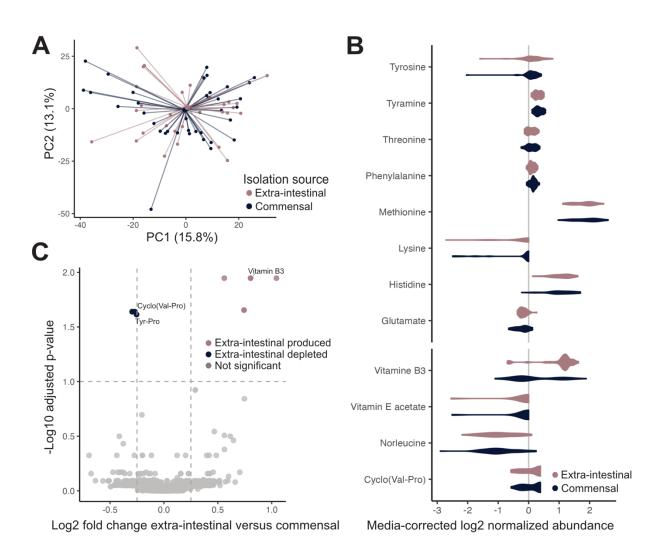
B) Distribution of *B. fragilis* isolates by isolation source across phylogroups. No statistically significant difference between isolation sources per phylogroup after chi-squared test with correction for multiple hypothesis testing.

C) Distribution of phylogroups per PSA operon structure expressed in percentage.

D) Distribution of commensal versus extra-intestinal B. fragilis isolates across PSA operons.

E) Top 15 capsular polysaccharide genes which are differentially present in commensal compared with extraintestinal strains.

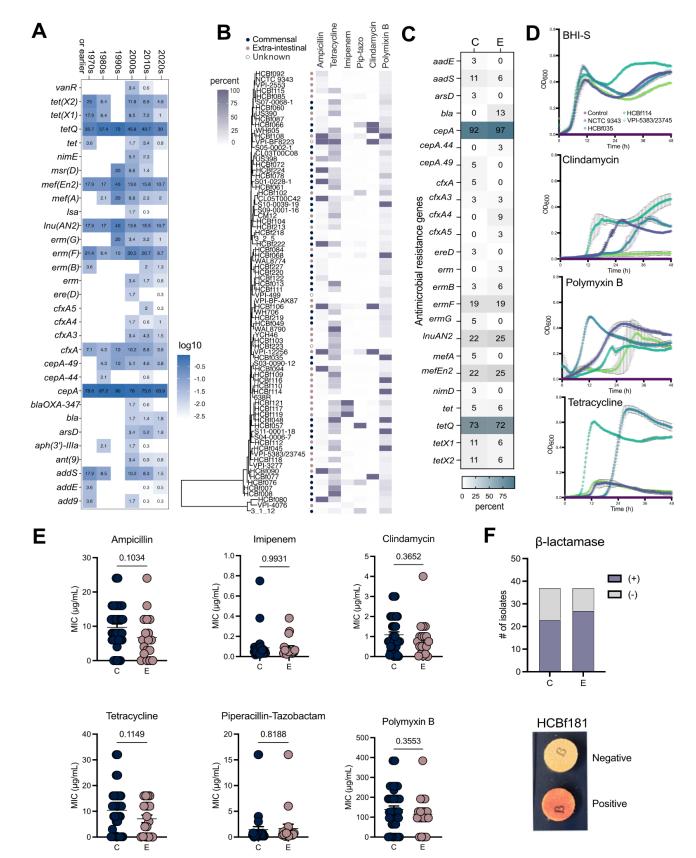
F) KEGG categories of genes core to a number of phylogroups (x-axis).


Supplemental Figure 3. Polysaccharide operon structures among *B. fragilis* strains

PSB-H operon structure per all high-quality isolates in the *B. fragilis* pangenome (n=262). Genes are annotated with gene names, if annotated by bakta. Colored by COG category, annotated with information on select strains profiled throughout the study.

<u>tssC</u> cplV	(x) x) x) x) x) x x x x x x x x x x x x		280 XXXX tssN tssK tssG tssO tssO tssR
tssC cplV			ssK tssG tssO tssR
tssC cplV			tssN tssK tssG tss0 tss0
tssC cplV	* * * / / * / * / * / * / * / * / * / *	DUF3289XXX	tssN tssK tssG tss tss
tssC cplV	* * * / * / * / * / * / * / * / * / * /	DUF3289	tssN tssK tssG tssO tssO tssR
tssC cplV	* * *) * * * * * * * * * * * * * * * *		286) / tssN tssK tssG toso tssR 638R
tssC cplV	* * * / / * / * / * / * / * / * / * / *		tssK tssG xss0 xtss0 xtssR
tssC cplV	* * * * * * * * * * * * * * * * * * *	X VasX X XssA	tssK tssG tss tssR HCBf046
tssC cplV	* * *)		tssN tssK tssG tssQ tssQ tssQ tssR
tssC cplV	*) *) *) *) *) *) *) *) *) *)	5) DUF3289))	tssN tssK tssG tss tss tssR
tssC cplV	* * * / * / * / * / * / * / * / * / * /	S X X DUF3289X X	tssN tssK tssG tssQ tssQ tssR
tssC cplV	* * * / * / * / * / * / * / * / * / * /	S X XDUF3289X X X	tssR tssK tssG water tssR HCBf084 HCBf077
tssC cplV	*		Azen XXXX tssK tssG tssO tssR
tssC cplV	* * * / * / * / * / * / * / * / * / * /	S VasX Xssi	V tssK tssG tss tssR
tssC cplV	* * * / * / * / * / * / * / * / * / * /	G VasX / ts	sN tssK tssG was seen tssR NCTC 9343
tssC cplV	* * * * * * * * * * * * * * * * * * *		XtssN tssK tssG tss tss tssR
tssC cplV	* * *)	5 X XDUF3289X XX X	tssN tssK tssG tssO tssO
tssC cplV	* * * / / / * * * * * * * * * * * * * *	G) (DUF3289) (tssN tssK tssG tss tssR
tssC cplV	* * * / / / / * * * /* /* /* / tssF / VgrC	5 X XDUF3289X X X	tssN tssK tssG tssQ tssQ tssQ tssR
tssC cplV	* * * X X X * X * X * X * X * X * X * X	VasX X Xts	sN tssK tssG tss3 tss3 tss8
tssC cplV	* * * X X X X X X X X X X X X X X X X X	G VasX X Xts	sN tssK tssG tss3 tss3 tss8
tssC cplV	* * *) *) *) *) *) *) *) *) *)) XDUF3289 XX X	tssN tssK tssG tssO tssO tssR
tssC cplV	*)*) *) *) *) *) *) *) *) *)	XDUF3289XXXXX	xtssN tssK tssG tssO tssO
tssC cplV	* * * / / * / * / * / * / * / * / * / *		tssN tssK tssG tssO tssO
tssC cplV	*)*) *)*)*)*)*)*)*)*)*)*)*)		DUF 4280X X X XssN tssK tssG tssO tssO tssR
tssC cplV	* * * * * * * * * * * * * * * * * * *	VasX XssN	tssK)tssG)tssO)tssO) / tssR
tssC cplV	*)*) *)*)*)*)*)*)*)*)*)*)*)	VasX X XtssA	tssK tssG tss tss tssR
tssC cplV	*	VasX X XtssA	tssK tssG
tssC cplV	*		XssN tssK XtssG XssO XssO X tssR
0	2500	5000	7500 1

Supplemental Figure 4. T6SSiii GA3 operon structures present in *B. fragilis* isolates


T6SSiii GA3 operon structure per all isolates in the *B. fragilis* pangenome (n=813), genes annotated with gene names if annotated by bakta, colored by COG category (grey, unknown; green, cell wall/membrane/envelope biogenesis; pink, replication and repair), annotated with information on phylogroup composition per operon.

Supplemental Figure 5. Metabolic features among commensal and extra-intestinal B. fragilis

A) PCA plot of media-corrected normalized abundances of strains (total, n=69; extra-intestinal=38; commensal=31) connected to the centroid of each group, colored by isolation source, (PERMANOVA, p=0.992).
B) Metabolite production of annotated metabolites across *B. fragilis* strains normalized against the media control (n=73), comparing extra-intestinal (n=33) and commensal (n=40) strains.

C) Volcano plot of differentially abundant metabolites of extra-intestinal (n=33) compared with commensal (n=40) strains. P-values on the y-axis are from a Wilcoxon rank-sum test comparing the average abundance of metabolites across strains versus a media control (dashed lines at Benjamini-Hochberg adjusted p-value ≤ 0.1 and log2-fold change ≥ 0.25).

Supplemental Figure 6. Antimicrobial resistance profile among commensal and pathogenic *B. fragilis* **A)** The percentage of antimicrobial gene presence-absence, grouping *B. fragilis* isolates by decade of isolation (1970s or earlier, n=28; 1980s, n=47; 1990s, n=10; 2000s, n=348; 2010s, n=393; 2020s, n=393).

B) Phylogenetic tree of *B. fragilis* strains used in antimicrobial resistance testing with proportion of resistance to ampicillin, tetracycline, imipenem, piperacillin-tazobactam (pip-tazo), clindamycin and polymyxin B.

C) Percent of antimicrobial resistance gene distribution among *B. fragilis* strains (commensal, n=37; extraintestinal, n=32). Unknowns were excluded from the analysis.

D) Growth rate of representative strains in no antibiotic media control, clindamycin (0.03125 µg/mL), polymyxin B (400 µg/mL), and tetracycline (0.1875 µg/mL).

E) Comparison of antimicrobial minimal inhibitory concentration (MIC, μg/mL) among commensal (C) and extraintestinal (E) *B. fragilis* strains. Unknowns were excluded from the analysis. Unpaired t-test with Welch's correction.

F) Beta-lactamase production among commensal (C) and extra-intestinal (E) *B. fragilis* strains and representative positive reaction for beta-lactamase production (n=37 per group). p=0.457 from a Fisher's exact test.