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Supplementary Methods 27 

Analysis of local ancestry 28 

We performed lifetime cannabis use GWAS (N=131,895) and frequency of cannabis use 29 

GWAS (N=73,374) on 23andMe, Inc. participants classified as being of European ancestry. 30 

Ancestry falls along a spectrum1,2; each individual was clustered based on genetic similarity to a 31 

reference panel using local ancestry analysis3. Briefly, the 23andMe algorithm first partitions 32 

phased genomic data into short windows of about 300 SNPs. Within each window, we use a 33 

support vector machine to classify individual haplotypes into one of 31 reference populations 34 

(https://www.23andme.com/ancestry-composition-guide/). The support vector machine 35 

classifications are fed into a hidden Markov model that accounts for switch errors and incorrect 36 

assignments, and gives probabilities for each reference population in each window. The reference 37 

population data is derived from public datasets (the Human Genome Diversity Project, HapMap, 38 

and 1000 Genomes), as well as 23andMe customers who have reported having four grandparents 39 

from the same country.  40 

Ancestries are defined as follows: 41 

Ancestry Classification Criteria 

European European + Middle Eastern > 0.97, European > 0.90 

East Asian East Asian + Southeast Asian > 0.97 

South Asian South Asian > 0.97 

Middle Eastern (& North African) 
Middle Eastern + European > 0.97, Middle Eastern > 

0.90 

African American + Latin 

American 

European + African + East Asian + Native American + 

Middle Eastern > 0.90, African + Native American > 0.01 

https://www.23andme.com/ancestry-composition-guide/
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Genome-wide association and secondary analyses 42 

DNA extraction and genotyping were performed from saliva samples by clinical 43 

laboratories CLIA-certified and CAP-accredited by the Laboratory Corporation of America. 44 

23andMe, Inc. conducted all quality control, imputation, and univariate genome-wide analyses as 45 

previously described (see Supplementary Table 3 for SNPs analyzed following quality control 46 

and imputation)4,5. Participants were genotyped on one of five Illumina genotyping platforms, 47 

containing between 550,000 to 950,000 variants, for a total of 1.6 million genotyped variants. 48 

Samples were genotyped on one of five genotyping platforms. The V1 and V2 platforms were 49 

variants of the Illumina HumanHap550 + BeadChip, including about 25,000 custom SNPs 50 

selected by 23andMe, with a total of ~560,000 SNPs. The V3 platform was based on the Illumina 51 

OmniExpress + BeadChip, with custom content to improve the overlap with our V2 array, with a 52 

total of ~950,000 SNPs. The V4 platform is a fully custom array, including a lower redundancy 53 

subset of V2 and V3 SNPs with additional coverage of lower-frequency coding variation, and 54 

~570,000 SNPs. The v5 platform, in current use, is an Illumina Infinium Global Screening Array 55 

(~640,000 variants) supplemented with ~50,000 variants of custom content. Samples that failed 56 

to reach 98.5% call rate were excluded from the study. Samples that failed to reach 98.5% call 57 

rate were re-analyzed6,7. Variants were imputed based on an imputation panel combining 1000 58 

Genomes Phase 3, UK10K and the Human Reference Consortium (HRC). About 64.4 million 59 

variants were then imputed against the HRC panel, augmented by a single unified imputation 60 

reference panel combining the May 2015 release of the 1000 Genomes Phase 3 haplotypes with 61 

the UK10K imputation reference panel for variants not present in the HRC. Imputed variants with 62 

low imputation quality (r2<0.50 averaged across batches or a minimum r2<0.30), or with evidence 63 

of batch effects (p<1.00E-50) were removed6,7. A total of 1.3 million genotyped and 30.5 million 64 

imputed variants passed the pre- and post-GWAS quality controls. We furthermore filtered out 65 

variants with minor allele frequency (MAF) <0.1%, which are extremely sensitive to quantitative 66 

trait over-dispersion, reducing to 14.1 million variants available for follow-up analyses. Principal 67 
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components were computed using ~65,000 high-quality genotyped variants present in all five 68 

genotyping platforms. 69 

A maximal set of unrelated individuals was chosen for the analysis using a segmental 70 

identity-by-descent (IBD) estimation algorithm8 to ensure that only unrelated individuals were 71 

included in the sample. Individuals were defined as related if they shared more than 700 cM IBD, 72 

including regions where the two individuals shared either one or both genomic segments IBD. 73 

This level of relatedness (~20% of the genome) corresponds to approximately the minimal 74 

expected sharing between first cousins in an outbred population. For the lifetime cannabis use 75 

binary phenotype, if a case was found to be related to a control, the case was preferentially kept 76 

in the sample. The 23andMe GWAS pipeline performs linear regression and assumes an additive 77 

model for allelic effects9-12. Age (inverse-normal transformed), sex, the top five principal genotype 78 

components, and indicator variables for genotype platforms were applied as covariates and p-79 

values were corrected for genomic control. We imputed participant genotype data against the 80 

September 2013 release of 1000 Genomes phase 1 version 3 reference haplotypes. We phased 81 

and imputed data for each genotyping platform separately. We phased using an internally 82 

developed phasing tool, Finch, which implements the Beagle haplotype graph-based phasing 83 

algorithm, modified to separate the haplotype graph construction and phasing steps. In 84 

preparation for imputation, we split phased chromosomes into segments of no more than 10,000 85 

genotyped SNPs, with overlaps of 200 SNPs. We excluded SNPs of low genotyping quality, 86 

including those that failed a Mendelian transmission test in trios (p<1.00E-20) or with large allele 87 

frequency discrepancies compared to European 1000 Genomes reference data, failed Hardy-88 

Weinberg test (p<1.00E-20), failed batch effects test (ANOVA p<1.00E-20), or had a call rate 89 

<90%. Frequency discrepancies were identified by computing a 2 x 2 table of allele counts for 90 

European 1000 Genomes samples and 2000 randomly sampled 23andMe research participants 91 

with European ancestries, and identifying SNPs with a 𝜒2 p<10E-15. We imputed each phased 92 
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segment against all-ethnicity 1000 Genomes haplotypes (excluding monomorphic and singleton 93 

sites) using Minimac213, using 5 rounds and 200 states for parameter estimation. 94 

For the X chromosome, we built separate haplotype graphs for the non-pseudoautosomal 95 

region and each pseudoautosomal region, and these regions were phased separately. We then 96 

imputed males and females together using Minimac2, as with the autosomes, treating males as 97 

homozygous pseudo-diploids for the non-pseudoautosomal region. 98 

For tests using imputed data, we use the imputed dosages rather than best-guess 99 

genotypes. We imputed HLA allele dosages from SNP genotype data using HIBAG. We imputed 100 

alleles for HLA-A, B, C, DPB1, DQA1, DQB1, and DRB1 loci at four-digit resolution. To test 101 

associations between HLA allele dosages and phenotypes, we performed linear regression using 102 

the same set of covariates used in the SNP based GWAS. We performed separate association 103 

tests for each imputed allele. HLA analysis did not identify any significant signal and hence are 104 

not described in the main text. 105 

Genetic correlation, PheWAS, and LabWAS traits 106 

Genetic correlations were conducted using a set of 292 summary statistics across 22 107 

health, psychiatric, and anthropomorphic categories. Summary statistics related to health 108 

included 21 cancer, 16 cardiovascular, 10 immune & inflammation, 10 metabolic, 9 109 

gastrointestinal, 8 neurological, 6 pain, and 15 other health traits. Summary statistics related to 110 

psychiatric health included 39 substance use & misuse, 23 anxiety & stress disorder, 23 bipolar 111 

& depression, 12 cognitive & executive function, 8 psychosis, 4 suicide, and 17 other psychiatric 112 

traits. Summary statistics related to anthropologic characteristics included 28 personality, 16 113 

lifestyle/events, 7 diet, 7 physical, 6 sleep, 4 neuroimaging, and 3 longevity traits. 114 

Following exclusion of phecodes with insufficient data, we retained 1,405 phenotypes for 115 

the PheWAS analysis. Disease phenotypes included 149 circulatory system, 131 digestive, 129 116 

genitourinary, 123 endocrine/metabolic, 120 neoplasms, 96 musculoskeletal, 92 sense organs, 117 

77 injuries & poisonings, 77 respiratory, 72 dermatological, 71 neurological, 70 psychiatric 118 
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disorders, 47 infectious diseases, 45 hematopoietic, 36 symptoms, 35 congenital anomalies, and 119 

35 pregnancy complications. 120 

We explored associations with cannabis PGS using 314 LabWAS phenotypes. LabWAS 121 

phenotypes included 74 immune, 68 metabolic, 56 blood, 24 cardiovascular, 23 urinary, 20 122 

endocrine, 16 toxicology/pharmacology, 14 other, 6 cancer, 6 kidney, 6 liver, and 1 OB/GYN. 123 

Polygenic Score Prediction in All of Us 124 

The following concept ID codes available in All of Us (AoU) were used to create cohorts 125 

of participants with cannabis use traits of interest: 126 

Concept ID(s) Question/Criteria 

Lifetime Cannabis Use 

1585636 Answered MARIJUANA to the question “In your LIFETIME, which of the 
following substances have you ever used?” 

Daily Cannabis Use 

1585650 Answered DAILY to the question "In the PAST THREE MONTHS, how 
often have you used Marijuana (cannabis, pot, grass, hash, weed, etc.)?" 

Problematic Cannabis Use 

434327 Cannabis abuse EHR 

440387 Cannabis dependence EHR 

440996 Cannabis dependence in remission EHR 

433452 Cannabis dependence, continuous EHR 

437838 Cannabis dependence, episodic EHR 

4323639 Cannabis misuse EHR 

4103419 Nondependent cannabis abuse EHR 

435231 Nondependent cannabis abuse in remission EHR 

434019 Nondependent cannabis abuse, continuous EHR 

434328 Nondependent cannabis abuse, episodic EHR 



7 

To calculate liability scale R2 estimates for polygenic prediction based on Lee et al. 14, the 127 

estimated prevalence of cannabis use traits in the US population was obtained from the literature 128 

for individuals over 18 years old. 129 

Trait Estimate (%) Criteria 

Lifetime cannabis use15 50.30  

Answering yes to the question “Have you ever, 
even once, used marijuana or any cannabis 

product?” in the National Survey on Drug Use 
and Health Survey 

Daily or almost daily 
cannabis use15 

25.10 

Reporting using marijuana on ≥20 days in the 

past month in the National Survey on Drug Use 
and Health Survey 

DSM-5 CUD16 6.27 

≥2 out of 11 diagnostic criteria within a 12-month 
period in the, aggregated with prior diagnosis 

history in the National Epidemiologic Survey on 
Alcohol and Related Conditions-III 

  130 
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Supplementary Figures 131 

 132 

Supplementary Figure 1. Participant cannabis use by sex and age group. A) Proportion of 133 

reported lifetime cannabis use by sex. B) Proportion of frequency of cannabis use by sex. C) 134 

Proportion of reported lifetime cannabis use by age groups. D) Proportion of reported frequency 135 

of cannabis use by age group. 136 

  137 
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 138 

Supplementary Figure 2. Q-Q plots for A) lifetime cannabis use and B) frequency of cannabis 139 

use. 140 

  141 
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Supplementary Figure 3. Locus zoom plot focusing on SNP A) rs11922956 on chromosome 3 143 

and B) rs12673181 on chromosome 7. These plots were generated using LocusZoom 17. The -144 

log10(p-value) is shown on the left y-axis; position in Mb is on the x-axis. Recombination rates 145 

(expressed in centiMorgans cM per Mb; NCBI Build GRCh37; highlighted in blue) are shown on 146 

the right y-axis. Pairwise linkage disequilibrium (r2) of each SNP with the top SNP in the region is 147 

indicated by its color. Crossed points represent imputed SNPs, circles represent directly 148 

genotyped SNPs. 149 

  150 
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 151 

Supplementary Figure 4. Locus zoom plot focusing on SNP rs4856591 on chromosome 3. This 152 

plot was generated using LocusZoom 17. The -log10(p-value) is shown on the left y-axis; position 153 

in Mb is on the x-axis. Recombination rates (expressed in centiMorgans cM per Mb; NCBI Build 154 

GRCh37; highlighted in blue) are shown on the right y-axis. Pairwise linkage disequilibrium (r2) of 155 

each SNP with the top SNP in the region is indicated by its color. Crossed points represent 156 

imputed SNPs, circles represent directly genotyped SNPs. 157 

  158 
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 159 

Supplementary Figure 5. Comparison of shared FDR-significant genetic correlations between 160 

lifetime cannabis use and frequency of cannabis use. Traits with discordant genetic correlation 161 

directions of effect located in gray quadrants. Dotted lines represent point of full linearity 162 

between lifetime and frequency of cannabis use. *reverse coded traits.  163 

 164 

 165 

 166 

  167 
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