EXTENDED DATA CONTENT

Table/Figure	Title	Page
Table 1	Participant characteristics by cohort (all participants)	2-10
Figure 1	Association between plasma p-tau217 and Tau-PET across cohorts	11
Table 2	Performance indicators of models predicting mPACC5 decline	12
Table 3	Comparison of different models predicting mPACC5 decline	13
Table 4	Variance explained by different models predicting mPACC5 decline	14
Figure 2	Effect sizes for mPACC5 decline by cohort	15
Figure 3	Explained variance for mPACC5 decline by cohort	16
Table 5	RMSE of different models predicting mPACC5 decline by cohort	17
Table 6	Performance of different models predicting clinical progression to MCI	18
Table 7	Comparison of different models predicting clinical progression to MCI	19
Figure 4	Effect sizes for clinical progression to MCI by cohort	20
Figure 5	C-index for clinical progression to MCI by cohort	21
Table 8	C-index of different models predicting clinical progression MCI	22
Figure 6	Two-step approach for trials using mPACC5 decline with Tau-PET _{NEO}	23
Figure 7	Two-step approach for trials using progression to MCI with Tau-PET _{NEO}	24
Table 9	Sample size reductions in a clinical trial following a two-step approach	25
Figure 8	Two-step approach for trials using mPACC5 decline in $A\beta$ + CU	26
Table 10	Plasma p-tau217 / Tau-PET _{MTL} groups: Aβ status and clinical outcomes	27
Table 11	Plasma p-tau217 / Tau-PET _{MTL} groups: Demographic information	28
Figure 9	Characterization of different plasma p-tau217/Tau-PET _{NEO} groups	29
Figure 10	Saved costs in a hypothetical trial with mPACC5 as an endpoint	30
Figure 11	Saved costs in a hypothetical trial with MCI progression as an endpoint	31
Table 12	Cohort descriptions	32-34
Table 13	Methods to determine Amyloid PET status by cohort	35-36
Table 14	Methods to determine Tau PET status	37
Table 15	Composition of the mPACC5 for each cohort	38
	References	39

ADC				
	All participants	Aβ+ participants only		
N	44	17		
Age, years	65.0±7.5	66.4±6.3		
Sex, % female	45.5%	47.1%		
Education, years	12.1±2.7	12.2±2.8		
MMSE score	28.8±1.3	28.4±1.3		
APOE e4 status, % carriers	38.6%	64.7%		
Aβ-status, % positive	38.6%	100%		
Follow-up duration, years	4.6±1.8	3.8±1.6		
Follow-up visits, median (range)	5 (2-8)	5 (3-7)		
Plasma p-tau217, z-score	0.62±1.4	1.59±1.28		
Tau-PET _{MTL} , z-score	0.71±1.75	1.84±2.10		
Tau-PET _{NEO} , z-score	0.81±2.50	2.10±3.51		
mPACC5, baseline score	-0.19±0.74	-0.50±0.61		
mPACC5, annual change	-0.065±0.084	-0.161±0.148		
% Progression to MCI	13.6%	35.3%		

Extended Data Table 1. Participant characteristics by cohort (all participants)

AIBL				
	All participants	Aβ+ participants only		
N	180	34		
Age, years	74.7±5.3	77.5±6.4		
Sex, % female	52.8%	58.8%		
Education, years	12.7±2.7	11.5±2.9		
MMSE score	28.5 ±1.4	27.9±1.6		
APOE e4 status, % carriers	29.4%	58.8%		
Aβ-status, % positive	18.9%	100%		
Follow-up duration, years	3.2±0.8	2.9±0.9		
Follow-up visits, median (range)	3 (2-4)	3 (2-4)		
Plasma p-tau217, z-score	0.21±0.99	0.95±0.88		
Tau-PET _{MTL} , z-score	0.28±1.17	1.57±1.30		
Tau-PET _{NEO} , z-score	0.27±1.43	1.27±2.36		
mPACC5, baseline score	-0.02±0.71	-0.27±0.80		
mPACC5, annual change	-0.045±0.068	-0.130±0.142		
% Progression to MCI	3.9%	8.8%		

BioFINDER-1				
	All participants	Aβ+ participants only		
N	39	12		
Age, years	73.5±7.0	74.2±5.9		
Sex, % female	53.8%	58.3%		
Education, years	11.8±3.7	10.7±3.0		
MMSE score	28.6±1.3	28.3±1.7		
APOE e4 status, % carriers	53.8%	75.0%		
Aβ-status, % positive	30.8%	100%		
Follow-up duration, years	3.4±0.75	3.3±0.9		
Follow-up visits, median (range)	2 (2-5)	2 (2-5)		
Plasma p-tau217, z-score	0.16±1.23	0.53±1.70		
Tau-PET _{MTL} , z-score	0.40±1.69	1.40±2.48		
Tau-PET _{NEO} , z-score	0.46±1.90	1.45±2.99		
mPACC5, baseline score	0.06±0.74	-0.22±0.87		
mPACC5, annual change	-0.037±0.053	-0.082±0.095		
% Progression to MCI	12.8%	41.7%		

BioFINDER-2				
	All participants	Aβ+ participants only		
N	481	137		
Age, years	65.0±11.4	70.1±9.1		
Sex, % female	52.4%	49.6%		
Education, years	12.8±3.5	12.8±3.8		
MMSE score	28.9±1.3	28.7±1.4		
APOE e4 status, % carriers	48.2%	71.5%		
Aβ-status, % positive	28.5%	100%		
Follow-up duration, years	3.0±1.1	3.0±1.2		
Follow-up visits, median (range)	3 (2-6)	3 (2-6)		
Plasma p-tau217, z-score	0.48±1.36	1.78±1.23		
Tau-PET _{MTL} , z-score	0.26±1.58	1.53±2.05		
Tau-PET _{NEO} , z-score	0.13±1.66	0.99±2.52		
mPACC5, baseline score	0.17±0.78	-0.11±0.81		
mPACC5, annual change	-0.034±0.088	-0.113±0.174		
% Progression to MCI	11.0%	26.3%		

Knight ADRC				
	All participants	Aβ+ participants only		
N	109	34		
Age, years	70.2±6.4	70.6±6.3		
Sex, % female	53.2%	61.8%		
Education, years	16.3±2.3	16.6±2.3		
MMSE score	29.3±1.1	29.4±1.1		
APOE e4 status, % carriers	29.4%	35.3%		
Aβ-status, % positive	31.2%	100%		
Follow-up duration, years	3.9±1.7	3.6±1.5		
Follow-up visits, median (range)	4 (2-8)	4 (2-8)		
Plasma p-tau217, z-score	0.71±1.79	2.10±2.23		
Tau-PET _{MTL} , z-score	0.27±1.21	0.85±1.39		
Tau-PET _{NEO} , z-score	0.31±1.53	0.94±2.17		
mPACC5, baseline score	-0.08±0.68	-0.13±0.76		
mPACC5, annual change	-0.050±0.083	-0.138±0.144		
% Progression to MCI	11.9%	20.6%		

MCSA				
	All participants	Aβ+ participants only		
N	363	108		
Age, years	68.3±12.0)	76.4±7.9		
Sex, % female	45.7%	53.7%		
Education, years	15.1±2.3	14.7±2.5		
MMSE score	28.8±1.0	28.5±1.2		
APOE e4 status, % carriers	29.2%	47.2%		
Aβ-status, % positive	108 (29.8%)	100%		
Follow-up duration, years	5.6±2.1	4.9±2.2		
Follow-up visits, median (range)	5 (2-7)	5 (2-7)		
Plasma p-tau217, z-score	0.42±1.29	1.34±1.40		
Tau-PET _{MTL} , z-score	0.17±1.18	0.76±1.41		
Tau-PET _{NEO} , z-score	0.06±1.09	0.47±1.20		
mPACC5, baseline score	-0.01±0.75	-0.42±0.67		
mPACC5, annual change	-0.038±0.053	-0.102±0.084		
% Progression to MCI	11.0%	25.0%		

PREVENT-AD				
	All participants	Aβ+ participants only		
N	112	24		
Age, years	67.4±4.8	68.5±5.1		
Sex, % female	74.1%	66.7%		
Education, years	15.3±3.31	14.3±2.9		
MMSE score	28.8±1.2	28.7±1.2		
APOE e4 status, % carriers	39.3%	62.5%		
Aβ-status, % positive	21.4%	100%		
Follow-up duration, years	4.2±1.2	4.4±1.3		
Follow-up visits, median (range)	4 (2-5)	3 (2-5)		
Plasma p-tau217, z-score	0.34±1.44	1.75±1.87		
Tau-PET _{MTL} , z-score	0.19±1.14	0.93±1.36		
Tau-PET _{NEO} , z-score	0.14±1.20	0.66±1.71		
mPACC5, baseline score	0.05±0.60	-0.31±0.60		
mPACC5, annual change	-0.021±0.061	-0.058±0.135		
% Progression to MCI	22.3%	54.2%		

TRIAD				
	All participants	Aβ+ participants only		
N	124	27		
Age, years	71.4±5.8	74.2±4.8		
Sex, % female	66.9%	74.1%		
Education, years	15.7±3.6	14.1±3.2		
MMSE score	29.2±0.9	29.0±1.1		
APOE e4 status, % carriers	22.6%	25.9%		
Aβ-status, % positive	21.8%	100%		
Follow-up duration, years	2.4±0.7	2.2±0.5		
Follow-up visits, median (range)	3 (2-4)	3 (2-4)		
Plasma p-tau217, z-score	0.31±1.20	1.61±0.98		
Tau-PET _{MTL} , z-score	0.36±1.38	1.55±1.88		
Tau-PET _{NEO} , z-score	0.15±1.12	0.60±1.28		
mPACC5, baseline score	-0.02±0.75	-0.083±0.81		
mPACC5, annual change	-0.053±0.070	-0.107±0.160		
% Progression to MCI	13.7%	33.3%		

WRAP				
	All participants	Aβ+ participants only		
N	82	20		
Age, years	68.1±5.9	70.5±4.5		
Sex, % female	58.5%	50.0%		
Education, years	16.5±2.1	17.1±2.1		
MMSE score	29.4±0.9	28.9±1.3		
APOE e4 status, % carriers	41.5%	55.0%		
Aβ-status, % positive	24.4%	100%		
Follow-up duration, years	3.0±1.1	2.68±0.79		
Follow-up visits, median (range)	2 (2-3)	2 (2-3)		
Plasma p-tau217, z-score	0.70±1.66	2.82±1.43		
Tau-PET _{MTL} , z-score	0.43±1.79	1.90±2.66		
Tau-PET _{NEO} , z-score	0.25±1.53	0.93±2.52		
mPACC5, baseline score	0.01±0.74	-0.22±0.88		
mPACC5, annual change	-0.053±0.083	-0.121±0.140		
% Progression to MCI	7.3%	25.0%		

Extended Data Figure 1. The association between plasma p-tau217 and Tau-PET_{MTL}/Tau-PET_{NEO} across cohorts

Spearman correlations are presented, color coded by cohort.

Madal	plasma p-tau217	p plasma	Tau-PET	n Tau DET	D ²		
widdel	β _{std} [95%CI] p-tau217 β _{std} [95%CI]		p rau-rer	K-	AICC		
All participants							
Basic without	-	-	-	-	0.23[0.10, 0.26]	3603 3	
APOE					0.23[0.19, 0.20]	-3003.3	
Basic with APOE	-	-	-	-	0.24[0.20, 0.27]	-3617.1	
Plasma p-tau217	-0.02 [-0.02, -0.01]	< 0.001	-	-	0.32[0.27, 0.35]	-3766.1	
Tau-PET MTL	-	-	-0.02 [-0.02, -0.01]	< 0.001	0.32[0.27, 0.36]	-3773.5	
Tau-PET Neo-T	-	-	-0.01 [-0.02, -0.01]	< 0.001	0.31[0.25, 0.35]	-3750.9	
Plasma p-tau217 &		<0.001	0.01 [0.02 0.01]	<0.001	0.26[0.20, 0.4]	2949.0	
Tau-PET MTL	-0.01 [-0.02, -0.01]	<0.001	-0.01 [-0.02, -0.01]	<0.001	0.36[0.30, 0.4]	-3848.9	
Plasma p-tau217 &		<0.001		<0.001	0.25[0.20, 0.4]	2941 1	
Tau-PET Neo-T	-0.01 [-0.02, -0.01]	<0.001	-0.01 [-0.01, -0.01]	<0.001	0.35[0.29, 0.4]	-3641.1	
			Aβ+ participants				
Basic without	-	-	-	-	0 16[0 07 0 21]	_427.7	
APOE					0.10[0.07, 0.21]	-+2/./	
Basic with APOE	-	-	-	-	0.16[0.07, 0.21]	-427.6	
Plasma p-tau217	-0.04 [-0.05, -0.03]	< 0.001	-	-	0.30[0.19, 0.36]	-497.2	
Tau-PET MTL	-	-	-0.04 [-0.04, -0.03]	< 0.001	0.33[0.22, 0.40]	-515.0	
Tau-PET Neo-T	-	-	-0.03 [-0.04, -0.02]	< 0.001	0.35[0.22, 0.43]	-523.2	
Plasma p-tau217 &	0.03[0.04_0.02]	<0.001	0.03[0.04_0.02]	<0.001	0 38[0 27 0 45]	515 5	
Tau-PET MTL	-0.03 [-0.04, -0.02]	~0.001	-0.03 [-0.04, -0.02]	~0.001	0.36[0.27, 0.43]	-545.5	
Plasma p-tau217 &	_0.03 [_0.04 _0.02]	<0.001	-0.02[-0.030.02]	<0.001	0 39[0 27 0 47]	-550.4	
Tau-PET Neo-T	-0.03 [-0.04, -0.02]	~0.001	-0.02 [-0.03, -0.02]	~0.001	0.39[0.27, 0.47]	-550.4	

Extended Data Table 2. Performance indicators of models predicting decline on the mPACC5

P-values	Basic without APOE	Basic with APOE	Plasma p-tau217	Tau-PET _{MTL}	Tau-PET _{NEO}	Plasma p-tau217 & Tau-PET _{MTL}	Plasma p-tau217 & Tau-PET _{NEO}	
	All Participants							
Basic without APOE	1	0.054	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Basic with APOE		1	< 0.001	< 0.001	0.001	< 0.001	< 0.001	
Plasma p-tau217			1	0.812	0.699	< 0.001	0.004	
Tau-PET MTL				1	0.404	< 0.001	0.019	
Tau-PET Neo-T					1	0.002	< 0.001	
Plasma p-tau217 & Tau-PET MTL						1	0.713	
Plasma p-tau217 & Tau-PET Neo-T							1	
			Aβ+ pa	rticipants				
Basic without APOE	1	0.750	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Basic with APOE		1	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Plasma p-tau217			1	0.344	0.287	0.003	0.001	
Tau-PET MTL				1	0.693	0.002	0.051	
Tau-PET Neo-T					1	0.313	0.008	
Plasma p-tau217 & Tau-PET MTL						1	0.760	
Plasma p-tau217 & Tau-PET Neo-T							1	

Extended Data Table 3. Comparison of different models predicting cognitive decline on the mPACC5

Madal	Total D ²	Partial R ²	Partial R ² plasma	Partial R ²	Partial R ²	
widdei	I Otal K	covariates	p-tau217	Tau-PET	shared	
		All par	ticipants			
Basic without APOE	0.23	0.25	-	-	0.00	
Basic with APOE	0.24	0.26	-	-	0.00	
Plasma p-tau217	0.32	0.19	0.1	-	0.03	
Tau-PET MTL	0.32	0.19	-	0.1	0.02	
Tau-PET Neo-T	0.31	0.23	-	0.09	0.00	
Plasma p-tau217 &						
Tau-PET MTL	0.36	0.16	0.05	0.06	0.08	
Plasma p-tau217 &						
Tau-PET Neo-T	0.35	0.19	0.06	0.05	0.05	
		Aβ+ par	rticipants			
Basic without APOE	0.16	0.19	-	-	0.00	
Basic with APOE	0.16	0.19	-	-	0.00	
Plasma p-tau217	0.30	0.10	0.16	-	0.03	
Tau-PET MTL	0.33	0.14	-	0.20	0.00	
Tau-PET Neo-T	0.35	0.18	-	0.22	0.00	
Plasma p-tau217 &						
Tau-PET MTL	0.38	0.1	0.08	0.12	0.09	
Plasma p-tau217 &						
Tau-PET Neo-T	0.39	0.11	0.07	0.13	0.08	

Extended Data Table 4. Variance explained by different models predicting cognitive decline on the mPACC5

a Simple models

ADC

AIBL

-0.05 -0.025 0.00

 β_{std}

Effect sizes (expressed as standardized beta's) for predicting longitudinal changes on the mPACC5 in each of the cohorts. The vertical dotted line represents standardized beta = 0, while the vertical dashed line represent the average standardized beta across all cohorts with the 95% CI indicated in gray. Errorbars represent the 95%CI for each cohort. The size of the diamonds are proportional to the sample size of each cohort. Panel **a** shows the individual tau biomarker models, while **b**,**c** show combined models of plasma p-tau217 and Tau-PET.

ADC

AIBL

-0.05 -0.025 0.00

 β_{std}

n=44

n=179

a Individual biomarker models

c Combined model: Plasma p-tau217 & Tau-PET Neo

Explained variance (expressed as R^2) for predicting longitudinal changes on the mPACC5 in each of the cohorts. The vertical dotted line represents $R^2 = 0$, while the vertical dashed line represent the average R^2 across all cohorts with the 95%CI indicated in gray. Errorbars represent the 95% CI for each cohort. The size of the diamonds are proportional to the sample size of each cohort. Panel **a** shows the individual tau biomarker models, while **b** shows combined models of plasma p-tau217 and Tau-PET.

Cohort	N	Basic without APOE	Basic with APOE	Plasma p-tau217	Tau-PET _{MTL}	Tau-PET _{NEO}	Plasma p- tau217 & Tau- PET _{MTL}	Plasma p- tau217 & Tau- PET _{NEO}
ADC	44	0.078 [0.078,0.078]	0.076 [0.075,0.077]	0.065 [0.062,0.067]	0.065 [0.063,0.066]	0.059 [0.055,0.061]	0.060 [0.058,0.061]	0.056 [0.053,0.058]
AIBL	179	0.066 [0.064,0.068]	0.066 [0.064,0.067]	0.063 [0.062,0.064]	0.061 [0.059,0.062]	0.063 [0.061,0.064]	0.060 [0.058,0.061]	0.061 [0.059,0.062]
BioFINDER-1	37	0.048 [0.045,0.051]	0.048 [0.045,0.051]	0.047 [0.044,0.049]	0.043 [0.039,0.046]	0.046 [0.042,0.050]	0.044 [0.041,0.047]	0.047 [0.043,0.050]
BioFINDER-2	481	0.078 [0.077,0.079]	0.077 [0.076,0.078]	0.073 [0.072,0.074]	0.072 [0.071,0.073]	0.073 [0.072,0.074]	0.071 [0.069,0.071]	0.071 [0.070,0.072]
Knight ADRC	58	0.077 [0.076,0.077]	0.076 [0.075,0.077]	0.064 [0.063,0.065]	0.072 [0.071,0.072]	0.067 [0.066,0.068]	0.065 [0.063,0.065]	0.061 [0.060,0.062]
MCSA	362	0.072 [0.071,0.073]	0.071 [0.070,0.072]	0.066 [0.065,0.067]	0.071 [0.070,0.071]	0.069 [0.068,0.070]	0.067 [0.066,0.068]	0.066 [0.065,0.066]
PREVENT- AD	108	0.049 [0.047,0.050]	0.049 [0.047,0.050]	0.047 [0.046,0.049]	0.049 [0.047,0.050]	0.047 [0.045,0.048]	0.048 [0.046,0.049]	0.046 [0.044,0.047]
TRIAD	113	0.057 [0.056,0.057]	0.058 [0.057,0.058]	0.061 [0.059,0.062]	0.056 [0.055,0.057]	0.056 [0.055,0.056]	0.059 [0.057,0.060]	0.059 [0.057,0.060]
WRAP	58	0.068 [0.067,0.069]	0.068 [0.067,0.069]	0.065 [0.063,0.066]	0.062 [0.060,0.063]	0.063 [0.061,0.064]	0.061 [0.059,0.062]	0.062 [0.060,0.063]

Extended Data Table 5. Performance indicator (RMSE) of different models predicting decline on the mPACC5 by cohort

RMSE = Root-mean-square deviation

Madal	N non-	Ν	HR plasma p-	p plasma	IID Tay DET	p Tau-	Cinder	
Iviouei	progressor	progressor	tau217	p-tau217	ПК Гаu-Гет	PET	C-Index	AICC
			All pa	rticipants				
Basic without								
APOE	1320	172		-		-	0.75	2205
Basic with APOE	1320	172		-		-	0.76	2185
Plasma p-tau217	1320	172	1.57 [1.44, 1.71]	< 0.001		-	0.82	2099
Tau-PET _{MTL}	1320	172		-	1.63 [1.50, 1.77]	< 0.001	0.82	2077
Tau-PET _{NEO}	1320	172		-	1.42 [1.33, 1.51]	< 0.001	0.81	2111
Plasma p-tau217 &				<0.001		< 0.001		
Tau-PET _{MTL}	1320	172	1.37 [1.24, 1.52]	<0.001	1.43 [1.30, 1.57]		0.84	2047
Plasma p-tau217 &				<0.001		< 0.001		
Tau-PET _{NEO}	1320	172	1.42 [1.29, 1.57]	<0.001	1.25 [1.16, 1.34]		0.83	2069
			Αβ+ p	articipants				
Basic without								
APOE	292	111		-		-	0.66	1177
Basic with APOE	292	111		-		-	0.67	1175
Plasma p-tau217	292	111	1.56 [1.37, 1.77]	< 0.001		-	0.75	1133
Tau-PET _{MTL}	292	111		-	1.54 [1.39, 1.70]	< 0.001	0.77	1109
Tau-PET _{NEO}	292	111		-	1.34 [1.25, 1.43]	< 0.001	0.74	1126
Plasma p-tau217 &				<0.001		< 0.001		
Tau-PET _{MTL}	292	111	1.39 [1.21, 1.60]	~0.001	1.42 [1.28, 1.58]		0.78	1092
Plasma p-tau217 &				<0.001		< 0.001		
Tau-PET _{NEO}	292	111	1.40 [1.21, 1.61]	~0.001	1.24 [1.15, 1.33]		0.77	1108

Extended Data Table 6. Performance of different models predicting clinical progression to mild cognitive impairment (MCI)

P-values	Basic without APOE	Basic with APOE	Plasma p-tau217	Tau-PET _{MTL}	Tau-PET _{NEO}	Plasma p-tau217 & Tau-PET _{MTL}	Plasma p-tau217 & Tau-PET _{NEO}			
All Participants										
Basic without APOE	1	0.025	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001			
Basic with APOE		1	< 0.001	< 0.001	0,001	< 0.001	< 0.001			
Plasma p-tau217			1	0.34	0.571	0.005	0.018			
Tau-PET _{MTL}				1	0.046	0.007	0.682			
Tau-PET _{NEO}					1	0.001	0.001			
Plasma p-tau217 & Tau-PET _{MTL}						1	0.072			
Plasma p-tau217 & Tau-PET _{NEO}							1			
	Aβ+ participants									
Basic without APOE	1	0.621	0,01	< 0.001	0,003	< 0.001	< 0.001			
Basic with APOE		1	0.012	< 0.001	0,002	< 0.001	< 0.001			
Plasma p-tau217			1	0.186	0.721	0.002	0.03			
Tau-PET _{MTL}				1	0.177	0.043	0.923			
Tau-PET _{NEO}					1	0.023	0.049			
Plasma p-tau217 &										
Tau-PET _{MTL}						1	0.099			
Plasma p-tau217 &										
Tau-PET _{NEO}							1			

Extended Data Table 7. Comparison (p-values) of different models predicting clinical progression to mild cognitive impairment (MCI)

Extended Data Figure 4. Effect sizes for clinical progression to MCI by cohort

a Individual biomarker models

b Combined model: Plasma p-tau217 & Tau-PET_{MTL}

c Combined model: Plasma p-tau217 & Tau-PET_{Neo}

Effect sizes (expressed as hazard ratios [HR]) for predicting future clinical progression to mild cognitive impairment in each of the cohorts. The vertical dotted line represents HR = 1, while the vertical dashed line represent the average HR across all cohorts with the 95% CI indicated in gray. Errorbars represent the 95%CI for each cohort. The size of the diamonds are proportional to the sample size of each cohort. Panel **a** shows the individual tau biomarker models, while **b**,**c** show combined models of plasma p-tau217 and Tau-PET.

Extended Data Figure 5. C-index for clinical progression to MCI by cohort

a C-index Plasma p-tau217 Plasma p-tau217 Tau-PET_{Neo} Tau-PET_{MTL} Plasma p-tau217 & Tau-PET_{Neo} & Tau-PET_{MTL} WRAP -• n=82 TRIAD n=124 **PREVENT-AD** n=112 **MCSA** n=363 **Knight ADRC** n=109 **BioFINDER-2** n=441 **BioFINDER-1** n=38 ADC ✤ n=44 AIBL n=179 0.5 0.5 0.5 0.5 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 0.5 1.0 0.0 C-index C-index C-index C-index C-index

Model fit (expressed as the C-index) for predicting future clinical progression to mild cognitive impairment in each of the cohorts. The vertical dotted line represents C-index = 0. Errorbars represent the 95%CI for each cohort. The size of the diamonds are proportional to the sample size of each cohort.

Cohort	Ν	Basic without APOE	Basic with APOE	Plasma p-tau217	Tau-PET _{MTL}	Tau-PET _{NEO}	Plasma p- tau217 & Tau- PET _{MTL}	Plasma p- tau217 & Tau- PET _{NEO}
ADC	44	0.689 [0.636,0.747]	0.804 [0.772,0.874]	0.934 [0.913,0.968]	0.912 [0.890,0.935]	0.960 [0.958,0.982]	0.956 [0.947,0.990]	0.965 [0.956,0.977]
AIBL	179	0.622 [0.573,0.670]	0.635 [0.595,0.674]	0.671 [0.641,0.718]	0.640 [0.608,0.668]	0.698 [0.675,0.721]	0.660 [0.625,0.700]	0.699 [0.670,0.730]
BioFINDER-1	38	0.612 [0.527,0.712]	0.762 [0.660,0.852]	0.746 [0.689,0.830]	0.854 [0.804,0.922]	0.854 [0.815,0.893]	0.792 [0.745,0.849]	0.808 [0.763,0.845]
BioFINDER-2	441	0.711 [0.700,0.722]	0.729 [0.720,0.745]	0.828 [0.818,0.848]	0.805 [0.793,0.829]	0.822 [0.812,0.840]	0.835 [0.823,0.855]	0.835 [0.824,0.855]
Knight ADRC	109	0.808 [0.771,0.845]	0.739 [0.696,0.791]	0.825 [0.803,0.854]	0.718 [0.655,0.782]	0.681 [0.627,0.718]	0.789 [0.757,0.815]	0.778 [0.741,0.818]
MCSA	363	0.749 [0.740,0.759]	0.772 [0.760,0.789]	0.831 [0.826,0.843]	0.796 [0.790,0.811]	0.826 [0.818,0.844]	0.835 [0.828,0.848]	0.855 [0.849,0.869]
PREVENT- AD	112	0.705 [0.678,0.744]	0.727 [0.719,0.752]	0.779 [0.766,0.793]	0.776 [0.766,0.799]	0.816 [0.809,0.841]	0.790 [0.782,0.807]	0.805 [0.794,0.820]
TRIAD	124	0.627 [0.613,0.654]	0.634 [0.612,0.662]	0.634 [0.616,0.651]	0.668 [0.649,0.702]	0.590 [0.565,0.616]	0.661 [0.640,0.679]	0.632 [0.617,0.657]
WRAP	82	0.636 [0.622,0.655]	0.595 [0.541,0.620]	0.904 [0.879,0.927]	0.885 [0.861,0.921]	0.843 [0.808,0.877]	0.923 [0.902,0.948]	0.904 [0.875,0.930]

Extended Data Table 8. C-index of different models predicting clinical progression to mild cognitive impairment (MCI)

Extended Figure 6. Two-step approach for clinical trials using mPACC5 decline, with Tau-PET_{NEO}

a, the obtained sample size reduction using different percentiles (75th, 50th and 25th) of the samples' baseline plasma p-tau217 baseline levels using the mPACC5 as the primary endpoint (step 1). Then, we repeated the approach selecting the 75th, 50th and 25th percentiles of the new samples' Tau-PET_{NEO} measures (step 2). Note that 100% in step 2 refers to the participants selected by plasma p-tau217 in step 1. **b** shows the calculated sample size reductions for various plasma p-tau217 and Tau-PET_{NEO} quantile combinations.

Extended Figure 7. Two-step approach for clinical trials using progression to MCI, with Tau-PET_{NEO}

a, the obtained sample size reduction using different percentiles (75th, 50th and 25th) of the samples' baseline plasma p-tau217 baseline levels using progression to mild cognitive impairment as the primary endpoint (step 1). Then, we repeated the approach selecting the 75th, 50th and 25th percentiles of the new samples' Tau-PET_{NEO} measures (step 2). Note that 100% in step 2 refers to the participants selected by plasma p-tau217 in step 1. **b** shows the calculated sample size reductions for various plasma p-tau217 and Tau-PET_{NEO} quantile combinations.

Step 1.	Step 2.	Plasma	Tau-PET _{MTL}	Tau-PET _{NEO}	Tau-PET _{MTL}	Tau-PET _{NEO}
Quantile Plasma	Quantile PET	(%)	(%)	(%)	(%, ref plasma)	(%, ref plasma)
	Modifi	ed Preclinical	Alzheimer Cogni	tive Composite 5	6 (mPACC5)	
	Q2-Q4		50[42, 70]	57[49, 79]	74[62, 94]	84[72, 105]
Q2-Q4	Q3-Q4		35[31, 53]	43[35, 64]	52[44, 73]	63[50, 88]
	Q4	68[59, 86]	17[14, 27]	21[15, 33]	25[19, 37]	31[21, 46]
	Q2-Q4		27[22, 40]	30[24, 44]	74[59, 88]	82[67, 97]
Q3-Q4	Q3-Q4		19[15, 28]	22[18, 33]	50[39, 65]	59[47, 78]
	Q4	37[31, 52]	11[9, 18]	15[11, 23]	31[22, 44]	40[26, 57]
	Q2-Q4		15[12, 23]	17[13, 27]	81[63, 102]	93[76, 110]
Q4	Q3-Q4		10[8, 17]	12[9, 20]	56[40, 76]	66[46, 89]
	Q4	19[14, 28]	8[6, 13]	9[6, 15]	41[30, 63]	47[28, 71]
	С	linical progress	sion to mild cogn	itive impairment	t (MCI)	
	Q2-Q4		59[48, 69]	46[39, 53]	83[71, 94]	65[59, 72]
Q2-Q4	Q3-Q4	71[64, 78]	43[32, 54]	25[20, 30]	61[47, 75]	36[29, 42]
	Q4		25[14, 35]	12[8, 16]	36[21, 49]	17[11, 23]
	Q2-Q4		38[28, 46]	27[22, 33]	85[71, 98]	62[54, 69]
Q3-Q4	Q3-Q4	44[37, 52]	30[19, 39]	16[11, 20]	68[47, 85]	35[28, 43]
	Q4		12[6, 17]	8[4, 11]	27[14, 38]	17[10, 24]
	Q2-Q4		16[10, 22]	10[7, 13]	89[69, 108]	54[45, 63]
Q4	Q3-Q4	18[13, 24]	12[6, 18]	6[3, 9]	66[40, 90]	34[23, 43]
	Q4		4[1, 6]	3[1, 4]	21[7, 32]	14[5, 21]

Extended Table 9. Sample size reductions in a clinical trial following a two-step approach

Extended Figure 8. Two-step approach for trials using mPACC5 decline in $A\beta$ + CU

a,**c** the obtained sample size reduction using different percentiles (75th, 50th and 25th) of the samples' baseline plasma p-tau217 baseline levels using the mPACC5 as the primary endpoint (step 1). Then, we repeated the approach selecting the 75th, 50th and 25th percentiles of the new samples' Tau-PET_{MTL} (**a**) or Tau-PET_{NEO} (**c**) measures (step 2). Note that 100% in step 2 refers to the participants selected by plasma p-tau217 in step 1. **b**,**d** show the calculated sample size reductions for various plasma p-tau217 and samples' Tau-PET_{MTL} (**b**) or Tau-PET_{NEO} (**d**) quantile combinations.

This figure shows how different group compositions based on their baseline plasma p-tau217 and Tau-PET_{NEO} levels are related to various relevant trial metrics, including the proportion of $A\beta$ + individuals (**a**), annual mPACC5 slope (**b**), proportion of initially cognitively unimpaired individuals that progress to mild cognitive impairment during a 4-year trial (**c**), and the proportion of individuals from the entire population that fall within the group definitions described on the x-axis (**d**). Errorbars in **b** represent the 95% CI.

]	INCLUDED POPULATION			EXCLUDED POPULATION			
Plasma	PET	Excluded	Included	Aβ	+	mPACC	Progression to	Αβ+	mPACC	Progression to	
						slope	MCI		slope	MCI	
Q2-Q4	All	360	1080	34.1	%	-0.05 (0.08)	14.1%	7.8%	-0.02 (0.06)	3.8%	
Q2-Q4	Q2-Q4	630	810	39.8	%	-0.06 (0.09)	17.0%	11.7%	-0.02 (0.06)	4.1%	
Q2-Q4	Q3-Q4	900	540	47.2	%	-0.07 (0.09)	21.3%	15.7%	-0.02 (0.06)	5.2%	
Q2-Q4	Q4	1170	270	67.4	%	-0.10 (0.10)	29.5%	18.3%	-0.03 (0.06)	6.4%	
Q3-Q4	All	720	720	46.5	%	-0.06 (0.09)	18.6%	8.5%	-0.02 (0.06)	4.4%	
Q3-Q4	Q2-Q4	900	540	53.0	%	-0.07 (0.09)	21.9%	12.2%	-0.02 (0.06)	4.6%	
Q3-Q4	Q3-Q4	1080	360	61.4	%	-0.09 (0.10)	26.5%	16.2%	-0.03 (0.06)	5.3%	
Q3-Q4	Q4	1260	180	81.1	%	-0.12 (0.11)	35.1%	19.8%	-0.03 (0.07)	6.4%	
Q4	All	1080	360	71.7	%	-0.09 (0.10)	26.0%	12.8%	-0.03 (0.06)	6.7%	
Q4	Q2-Q4	1170	270	78.5	%	-0.10 (0.10)	29.0%	15.7%	-0.03 (0.06)	6.8%	
Q4	Q3-Q4	1260	180	87.2	%	-0.12 (0.11)	32.2%	19.0%	-0.03 (0.07)	7.2%	
Q4	Q4	1350	90	95.6	%	-0.15 (0.12)	40.1%	23.0%	-0.03 (0.07)	7.4%	

Extended Table 10. Combined plasma p-tau217 and Tau-PET_{MTL} group characterizations: A β status and clinical outcomes

		INCLUDED POPULATION				EXCLUDED POPULATION					
Plasma	PET	Age	Females	Education	APOE ɛ4+	Age	% female	Education	APOE ε4+		
Q2-Q4	All	70.5 (10.3)	52.5%	14.0 (3.3)	40.5%	67.4 (10.2)	57.2%	14.2 (3.4)	26.1%		
Q2-Q4	Q2-Q4	71.7 (9.9)	50.6%	14.1 (3.4)	41.7%	67.1 (10.4)	57.6%	14.0 (3.3)	30.6%		
Q2-Q4	Q3-Q4	73.4 (9.1)	51.3%	13.9 (3.3)	44.8%	67.5 (10.4)	55.1%	14.1 (3.4)	32.1%		
Q2-Q4	Q4	74.9 (8.0)	52.2%	13.7 (3.4)	49.3%	68.5 (10.4)	54.0%	14.1 (3.3)	34.0%		
Q3-Q4	All	71.5 (10.4)	50.6%	14.0 (3.4)	46.0%	67.8 (10.0)	56.8%	14.1 (3.3)	27.8%		
Q3-Q4	Q2-Q4	72.9 (9.8)	49.8%	13.9 (3.5)	47.8%	67.7 (10.2)	56.0%	14.1 (3.3)	30.3%		
Q3-Q4	Q3-Q4	74.3 (9.2)	50.3%	13.8 (3.4)	50.8%	68.1 (10.2)	54.8%	14.1 (3.3)	32.2%		
Q3-Q4	Q4	75.7 (7.7)	55.6%	13.6 (3.5)	57.8%	68.8 (10.4)	53.4%	14.1 (3.3)	33.9%		
Q4	All	73.8 (9.5)	52.2%	13.8 (3.5)	51.4%	68.3 (10.3)	54.2%	14.1 (3.3)	32.0%		
Q4	Q2-Q4	75.1 (8.9)	51.1%	13.8 (3.5)	54.4%	68.4 (10.2)	54.3%	14.1 (3.3)	32.8%		
Q4	Q3-Q4	75.6 (8.1)	52.8%	13.5 (3.5)	59.4%	68.8 (10.4)	53.8%	14.1 (3.3)	33.7%		
Q4	Q4	74.1 (7.9)	58.9%	13.4 (3.4)	63.3%	69.4 (10.4)	53.3%	14.1 (3.3)	35.1%		

Extended Table 11. Combined plasma p-tau217 and Tau-PET_{MTL} group characterizations: Demographic information

Extended Figure 10. Projected costs that could be saved in a hypothetical trial with mPACC5 as an endpoint

Figure shows the % of cost reductions that can be achieved when implementing different Tau-PET (Tau-PET_{MTL} in panel **a**, Tau-PET_{NEO} in panel **b**) vs plasma p-tau217 combinations when using the mPACC as an endpoint. The ratio of 1:5 reflects that the cost of 1 Tau-PET scan resembles the cost of 5 plasma p-tau217 assessment.

The % of cost reductions that can be achieved when implementing different Tau-PET (Tau-PET_{MTL} in panel **a**, Tau-PET_{NEO} in panel **b**) vs plasma p-tau217 combinations when using clinical progression to MCI as an endpoint. The ratio of 1:5 reflects that the cost of 1 Tau-PET scan resembles the cost of 5 plasma p-tau217 assessment.

Extended Data Table 12. Cohort descriptions

Cohort	Cohort description	References
BioFINDER-1 &	The Swedish BioFINDER studies are longitudinal studies covering the entire AD continuum in which	3,4
	participants were recruited at Skåne University Hospital and the Hospital of Angelholm, Sweden. The main	
BioFINDER-2	inclusion criteria were absence of cognitive symptoms as assessed by a physician with special interest in	
	cognitive disorders, being fluent in Swedish, having no significant unstable systemic illness that made it	
	difficult to participate in the study, having no current significant alcohol or substance misuse, and no	
	significant neurological or psychiatric illness. For the current study participants above > 50 years old were	
	included. Both cognitively healthy older adults and SCD participants were included. The SCD participants	
	were referred from participating memory clinic because of cognitive complaints, but did not fulfill criteria	
	for MCI (defined using criteria by Petersen and operationalized according to ^{1,2}) following a	
MCSA	The Maye Clinic Study of Aging (MCSA) is a longitudinal nonulation based study of agenitive aging in	5
MCSA	Olmsted County Minnesote. The study was designed to study prevalence, incidence and risk factors for	
	MCL and demential Detential participants are randlomly enumerated from the Olmsted County, MN census	
	and enrolled by age/sex strata. Enumeration is repeated to maintain a sample of approximately 3000 active	
	narticipants. At entry, every person underwent evaluations that included a medical history review and	
	interview with the participant and a study partner, a neurological examination by a physician: and a	
	neuronsychological examination. For this study, participants were considered MCI only if the study	
	coordinator, physician, and neuropsychologist were all in agreement regarding the MCI diagnosis.	
	Participants were judged cognitively normal if they did not meet MCI criteria. Participants aged between	
	50 and 89 years old were included in the current study.	
Knight ADRC	The Charles F. and Joanne Knight Alzheimer Disease Research Center (Knight ADRC) is one of	6
C	approximately 30 Centers funded by the National Institute on Aging (NIA) located at major medical	
	institutions across the United States. Researchers at these Centers are working to translate research	
	advances into improved diagnosis and care for people with Alzheimer disease, as well as working to find	
	a treatment or way to prevent Alzheimer disease and other types of dementia.	
PREVENT-AD	The PREVENT-AD (Pre-symptomatic Evaluation of Experimental or Novel Treatments	7
	for Alzheimer Disease) cohort is composed of cognitively healthy participants over 55 years old, at risk of	
	developing Alzheimer Disease (AD) as their parents and/or siblings were/are affected by the disease. These	

	'at-risk' participants have been followed for a naturalistic study of the presymptomatic phase of AD since 2011 using multimodal measurements of various disease indicators. Two clinical trials intended to test pharmaco-preventive agents have also been conducted.	
AIBL	The Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL) is a longitudinal, prospective cohort with participants coming from two-site study – Melbourne and Perth. To be included in the study, participants were (1) ≥60 years old; (2) fluent in English; (4) had completed at least 7 years of education; (5) did not have any history of neurological or psychiatric disorders, drug or alcohol abuse or dependence, or any other unstable medical condition; and (6) were deemed to be cognitively unimpaired (CU), based on their performance on a battery of cognitive assessments that AIBL participants undergo every 12 to 18 months. A multidisciplinary clinical review panel determines whether an individual is CU, based on the available clinical and neuropsychological information.	8
ADC	The Amsterdam Dementia Cohort (ADC) is a prospective cohort study including (amongst others) individuals with subjective cognitive decline (SCD) presenting at the Alzheimer Center of the VU University Medical Center Amsterdam. All participants have been referred to the memory clinic by their general practitioner, and a neurologist or geriatrician in the case of a second opinion for evaluation of cognitive complaints. They receive standardized dementia screening at the memory clinic, including an interview with a neurologist, physical and neurological examination, neuropsychological assessment. Individuals with SCD can additionally be included in the SCIENCe study, for which the main inclusion criteria are a diagnosis of SCD (i.e., cognitive complaints and normal cognition) and age ≥ 45 years. Exclusion criteria for participation in the SCIENCe study are MCI, dementia, major psychiatric disorder (i.e., current depression, personality disorders, schizophrenia), neurological diseases known to cause memory complaints (i.e., Parkinson's disease, epilepsy), HIV, abuse of alcohol or other substances, and language barrier.	9
WRAP	The Wisconsin Registry for Alzheimer's Prevention is a longitudinal observational cohort study enriched with persons with a parental history (PH) of probable Alzheimer's disease (AD) dementia. Recruitment sources included memory clinics in which a parent was diagnosed or treated, limited radio and newspaper advertisements, and word of mouth. Participants generally meet the following inclusion criteria at study entry: age 40–65 years; fluent English speaker; visual and auditory acuity adequate for neuropsychological testing; good health with no diseases expected to interfere with study participation over time. Participants are excluded from enrollment if they have a prior diagnosis of dementia or evidence of dementia at baseline testing (one was excluded due to baseline dementia).	10

TRIAD	The Translational Biomarkers of Aging and Dementia (TRIAD) cohort study is a longitudinal	11
	observational cohort study in Montréal, Québec, Canada. Participants are recruited from the community	
	and from the the McGill Centre for Studies in Aging. All participants are clinically evaluated by dementia	
	specialists. Participants were excluded from this study if they had systemic conditions which were not	
	adequately controlled through a stable medication regimen. Other exclusion criteria were active substance	
	abuse, recent head trauma, recent major surgery, or MRI/PET safety contraindications. The study was	
	approved by the Montreal Neurological Institute PET working committee and the Douglas Mental Health	
	University Institute Research Ethics Board. Written informed consent was obtained for all participants.	

Extended Data Table 13. Methods to determine	e Amyloid PET	status by cohort
---	---------------	------------------

Cohort	Tracer	Methodology	Cut-off	References
BioFINDER-1	[¹⁸ F]flutemetamol	Global neocortical composite standardized uptake value ratios (SUVR) for	>1.03 SUVR	4
		the 90-110min interval p.i. with whole cerebellum as reference region		
BioFINDER-2	[¹⁸ F]flutemetamol	Global neocortical composite SUVR for the 90-110min interval p.i. with	>1.03 SUVR	4
		whole cerebellum as reference region		_
MCSA	[¹¹ C]PIB	Late uptake amyloid PET images were acquired from 40-60 minutes p.i. A	>1.48 SUVR	5
		meta-ROI was calculated as the voxel-number weighted average of uptake	(>21CL)	
		in a target region including prefrontal, orbitofrontal, parietal, temporal,		
		anterior and posterior cingulate, and precuneus regions divided by the		
		uptake in the cerebellar crus gray matter.		
Knight ADRC	[¹¹ C]PIB	Data were processed using a region of interest approach using Freesurfer.	>20 CL	6
		Amyloid deposition was summarized using the average across the left		
		and right lateral orbitofrontal, medial orbitofrontal, rostral middle frontal,		
		superior frontal, superior temporal, middle temporal, and precuneus		
		regions.		
PREVENT-	[¹⁸ F]NAV4694	A β -PET images were realigned onto their respective MRI, masked to	>1.33 SUVR	12
AD		remove the scalp and CSF in an attempt to avoid contamination by nongray		
		or nonwhite matter voxels, and smoothed using a full width at half		
		maximum Gaussian kernel of 8mm. Resulting images were scaled using		
		whole cerebellum uptake values (whole cerebellum was preferred to		
		cerebellum gray matter to account better for white matter off-target binding		
		variability between tracers). Global neocortical $A\beta$ burden was quantified		
		by extracting, in native space, the mean standardized uptake value ratio		
		(SUVR) of the frontal, temporal, parietal, and posterior cingulate cortex of		
	10	the Desikan-Killiany atlas		
AIBL	[[¹⁸ F]NAV4694	The standard Centiloid (CL) cortical and whole cerebellar volumes of	>24 CL	13
		interest template were applied to the summed and spatially normalised PET		
		images in order to obtain SUVR's. These SUVR were transformed into CL		
		units by linear transformation using the PET tracer-specific equations		
		published for conversion of CL method SUVR to CL units.		

ADC	[¹⁸ F]florbetapir	Visual read following guidelines provided by Avid Radiopharmaceuticals 17 CL	-	14
		corresponding to >17 CL.		
WRAP	[¹¹ C]PIB	Amyloid burden was assessed as a global average ¹¹ C-PiB distribution volume ratio (DVR; Logan graphical analysis, cerebellum gray matter	>1.16 DVR	15
		reference region), taken across 8 onateral contical ROIS. A+ was		
		ascertained using a global ¹¹ C-PiB DVR≥1.16 a threshold previously		
		shown to predict subsequent amyloid accumulation.		
TRIAD	[¹⁸ F]NAV4694	[¹⁸ F]AZD4694 PET images were acquired 40-70 min after bolus injection	>1.55 SUVR	16
		and reconstructed on a 4-dimensional volume with 3 frames (3 x 600s).		
		Amyloid- β SUVR from a neocortical region of interest (ROI) for each		
		participant was estimated by averaging the SUVR from the precuneus,		
		prefrontal, orbitofrontal, parietal, temporal, and cingulate cortices, with		
		amyloid- β positivity defined as an [¹⁸ F]AZD4694 above 1.55.		

CL = Centiloid; DVR = Distribution volume ratio; SUVR = Standardized uptake value ratio.

Centiloid (CL) units were presented when available.

Cohort	Tracer	Scanning interval	Reference region	Reference
BioFINDER-1	[¹⁸ F]flortaucipir	80-100min p.i.	Inferior cerebellar GM	17
BioFINDER-2	[¹⁸ F]RO948	70-90min p.i.	Inferior cerebellar GM	18
MCSA	[¹⁸ F]flortaucipir	80-100min p.i.	Cerebellar crus GM	19
Knight ADRC	[¹⁸ F]flortaucipir	80-100min p.i.	Cerebellar GM	6
PREVENT-AD	[¹⁸ F]flortaucipir	80-100min p.i.	Inferior cerebellar GM	7
AIBL	[¹⁸ F]MK6204	90-110 min p.i.	Cerebellar GM	13
ADC	[¹⁸ F]flortaucipir	80-100min p.i.	Cerebellar GM	20
WRAP	[¹⁸ F]MK6240	70-90min p.i.	Inferior cerebellar GM	15
TRIAD	[¹⁸ F]MK6240	90-100min p.i.	Cerebellar Crus GM	21

Extended Data Table 14. Methods to determine Tau PET status in the medial temporal lobe (MTL) and neocortex (NEO) by cohort

GM = Gray matter; MTL = Medial temporal lobe; NEO = Neocortical; p.i. = Post-injection; SUVR = Standardized uptake value ratio.

The cut-offs were generated in each individual cohort, based on the mean + 2*standard deviation across all A β -negative participants within each cohort. We computed tau PET status for a medial temporal lobe (MTL; unweighted average of bilateral entorhinal cortex and amygdala) and a neocortical (NEO; weighted average of bilateral middle temporal and inferior temporal gyri) region-of-interest.

Cohort	Global Cognition	Episodic Memory	Time executive function	Semantic memory
BioFINDER-1	MMSE	ADAS-COG delayed word recall	Symbol digit modalities test	Animal fluency
BioFINDER-2	MMSE	ADAS-COG delayed word recall	Symbol digit modalities test	Animal fluency
MCSA	MMSE ^a	AVLT delayed recall	WAIS-R Digit Symbol	Sum of animal, fruits and
				vegetables fluency
Knight ADRC	MMSE	CVLT – Delayed recall	Symbol digit modalities test	Animal fluency
PREVENT-AD	MMSE	SRT – Delayed recall	Symbol digit modalities test	Animal fluency
AIBL	MMSE	CVLT – Delayed recall	Symbol digit modalities test	Sum of animal and names
				fluency
ADC	MMSE	RAVLT – Delayed recall	TMT-B	Animal fluency
WRAP	MMSE	AVLT – Delayed recall	WAIS-R Digit Symbol	Animal fluency
TRIAD	MMSE	Logical Memory test - Delayed	Letter fluency	Category fluency
		recall		

Extended Data Table 15. Composition of the mPACC5 for each cohort

Note that the episodic memory test was given double weight and thus accounted for 40% of the mPACC5 score.

^a A 38-point test, the Short Test of Mental Status (STMS)²², was converted to MMSE scores using an in-house developed algorithm²³.

REFERENCES

- 1. Palmqvist, S., *et al.* Discriminative Accuracy of Plasma Phospho-tau217 for Alzheimer Disease vs Other Neurodegenerative Disorders. *JAMA* **324**, 772-781 (2020).
- 2. Petrazzuoli, F., *et al.* Brief Cognitive Tests Used in Primary Care Cannot Accurately Differentiate Mild Cognitive Impairment from Subjective Cognitive Decline. *J Alzheimers Dis* **75**, 1191-1201 (2020).
- 3. Leuzy, A., *et al.* Diagnostic Performance of RO948 F 18 Tau Positron Emission Tomography in the Differentiation of Alzheimer Disease From Other Neurodegenerative Disorders. *JAMA Neurol* **77**, 955-965 (2020).
- 4. Palmqvist, S., *et al.* Accuracy of brain amyloid detection in clinical practice using cerebrospinal fluid beta-amyloid 42: a cross-validation study against amyloid positron emission tomography. *JAMA Neurol* **71**, 1282-1289 (2014).
- 5. Jack, C.R., Jr. & Holtzman, D.M. Biomarker modeling of Alzheimer's disease. *Neuron* **80**, 1347-1358 (2013).
- 6. Gordon, B.A., *et al.* The relationship between cerebrospinal fluid markers of Alzheimer pathology and positron emission tomography tau imaging. *Brain* **139**, 2249-2260 (2016).
- 7. Strikwerda-Brown, C., *et al.* Association of Elevated Amyloid and Tau Positron Emission Tomography Signal With Near-Term Development of Alzheimer Disease Symptoms in Older Adults Without Cognitive Impairment. *JAMA Neurol* **79**, 975-985 (2022).
- 8. Fowler, C., *et al.* Fifteen Years of the Australian Imaging, Biomarkers and Lifestyle (AIBL) Study: Progress and Observations from 2,359 Older Adults Spanning the Spectrum from Cognitive Normality to Alzheimer's Disease. *J Alzheimers Dis Rep* 5, 443-468 (2021).
- 9. Slot, R.E.R., *et al.* Subjective Cognitive Impairment Cohort (SCIENCe): study design and first results. *Alzheimers Res Ther* **10**, 76 (2018).
- 10. Johnson, S.C., *et al.* The Wisconsin Registry for Alzheimer's Prevention: A review of findings and current directions. *Alzheimers Dement (Amst)* **10**, 130-142 (2018).
- 11. Pascoal, T.A., *et al.* Discriminative accuracy of the A/T/N scheme to identify cognitive impairment due to Alzheimer's disease. *Alzheimers Dement (Amst)* **15**, e12390 (2023).
- 12. Gonneaud, J., *et al.* Association of education with Abeta burden in preclinical familial and sporadic Alzheimer disease. *Neurology* **95**, e1554-e1564 (2020).
- Krishnadas, N., *et al.* Rates of regional tau accumulation in ageing and across the Alzheimer's disease continuum: an AIBL (18)F-MK6240 PET study. *EBioMedicine* 88, 104450 (2023).
- 14. Coomans, E.M., *et al.* Performance of a [(18)F]Flortaucipir PET Visual Read Method Across the Alzheimer Disease Continuum and in Dementia With Lewy Bodies. *Neurology* **101**, e1850-e1862 (2023).
- 15. Cody, K.A., *et al.* Characterizing brain tau and cognitive decline along the amyloid timeline in Alzheimer's disease. *Brain* (2024).
- 16. Therriault, J., *et al.* Determining Amyloid-beta Positivity Using (18)F-AZD4694 PET Imaging. *J Nucl Med* **62**, 247-252 (2021).
- 17. Ossenkoppele, R., *et al.* Associations between tau, Abeta, and cortical thickness with cognition in Alzheimer disease. *Neurology* **92**, e601-e612 (2019).
- 18. Coomans, E.M., *et al.* Interactions between vascular burden and amyloid-beta pathology on trajectories of tau accumulation. *Brain* **147**, 949-960 (2024).

- 19. Jack, C.R., *et al.* The bivariate distribution of amyloid-beta and tau: relationship with established neurocognitive clinical syndromes. *Brain* **142**, 3230-3242 (2019).
- 20. Visser, D., *et al.* Tau pathology as determinant of changes in atrophy and cerebral blood flow: a multi-modal longitudinal imaging study. *Eur J Nucl Med Mol Imaging* **50**, 2409-2419 (2023).
- 21. Pascoal, T.A., *et al.* In vivo quantification of neurofibrillary tangles with [(18)F]MK-6240. *Alzheimers Res Ther* **10**, 74 (2018).
- 22. Kokmen, E., Smith, G.E., Petersen, R.C., Tangalos, E. & Ivnik, R.C. The short test of mental status. Correlations with standardized psychometric testing. *Arch Neurol* **48**, 725-728 (1991).
- 23. Tang-Wai, D.F., *et al.* Comparison of the short test of mental status and the minimental state examination in mild cognitive impairment. *Arch Neurol* **60**, 1777-1781 (2003).