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Supplementary Materials 

All experiments were implemented in PyTorch and Pytorch-Lightning, using a NVIDIA 

GeForce RTX 2080 Ti GPU.  

 

S-1. Quantitative Chest Computed Tomography acquisition details 

 

COSYCONET: Paired non-enhanced low-dose chest CT was acquired from several multi-

detector row scanner (Somatom Definition AS 40/64/Flash 128, Siemens Healthineers, 

Erlangen, Germany; GE Lightspeed VCT 64/ GE Optima 64; Philips Brilliance 64/ iCT 256) in 

a standardized fashion in inspiratory and end-expiratory breath-hold with slice collimation 0.6-

0.625 mm, pitch 0.6-1.0, tube voltage 120 kVp, tube current time product 30-35 mAs, and a 

total effective dose <3.5 mSv. Axial volumetric image reconstructions were performed using 

smooth convolution kernel at a slice thickness of 0.625-1.00 mm and a reconstruction interval 

of 0.5-0.75 mm. Dose modulation and iterative reconstruction were not applied. In-depth 

specifications are shown in Supplementary Table 1 and 2, taken from1. 

 

COPDGene: Paired non-enhanced chest CT scans were acquired using CT scanners from 

different manufacturers (GE LS 16, GE VCT-64, GE HD 750, Philips 16 Slice, Philips 40 Slice, 

Philips 64 Slice, Siemens Sensation-16, Siemens Sensation-64, Siemens Definition Dual 

Source 64, Siemens Definition AS++ 128, Siemens Definition Flash 128, Siemens Biograph 

40, and Siemens Definition AS++ 128). The scanning protocol employed in COPDGene 

involved acquiring inspiratory and expiratory breath-hold CT scans. The specific acquisition 

parameters varied depending on the scanner model. However, common parameters included 

a rotation time of 0.5 seconds, detector configurations of 16×0.625, 64×0.625, or 128×0.625, 

pitch values ranging from 0.923 to 1.375, and speeds of 0.5 mm/rotation. The tube voltage 

was consistently set at 120 kVp across all scanners, while the tube current-time product varied 

between 50 and 200 mAs, depending on the specific scan and phase. Dose modulation 

techniques were not used. Regarding the image reconstructions, different algorithms and 

parameters were applied. The reconstructions were performed using various algorithms such 

as BONE, Detail (D), and B, B46f, with slice thicknesses of 0.625 to 0.9 mm and intervals of 

0.45 to 0.5 mm. The field of view (DFOV) was generally tailored to lung imaging. 

The above paragraph is a general description based on the information provided in the original 

COPDGene study publications2. The specific details and variations in the scanning protocols 

might require further analysis of the study documentation for complete accuracy. 

 

S-2. Pre-processing 

Spatial alignment of paired Insp and Exp images: Exp CT scans were registered to the 

correspondent Insp CT scan for each patient resulting in the registered Exp CT Scans (ExpR). 

Having the Insp image as the fixed image, an adaptation of 3 using SimpleElastix 4 was 

employed. SimpleElastix is an open-source deformable image registration library. Our 

adaptation employs a combination of an affine and a nonrigid B-spline transformation to model 

the spatial relationship between the two images, iteratively optimizing with a normalized 

correlation criterion with a bending energy penalty as the objective function. The optimized 

transformation matrix aligns the original Exp image to the Insp image space.  
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Lung parenchyma segmentation: Since both images per patient (Insp and ExpR) are on the 

same physical space, lung parenchyma and lobe masks only needed to be generated on the 

Insp physical space. It’s important to note that the generated masks do not need to be a perfect 

segmentation, as these are only needed to extract 3D patches. Lung masks on the Insp image 

space were obtained by nnU-Net5. nnU-Net is a deep-learning based network designed for 

generic high performance biomedical image segmentation, reflecting a state-of-the-art 

segmentation methodology, well suited for a variety of tasks. It builds on a self-configuration 

framework for data pre-processing, network architecture, model training and segmentation 

postprocessing, thereby surpassing most traditional approaches for handcrafted supervised 

training of segmentation models. Training data segmentation masks were obtained from 

YACTA6–8, an intensity based validated method on the entire COSYCONET dataset. Inference 

was then performed on the COPDGene dataset. 

 

Intensity normalization: Based on9, the inter-site scanner differences were accounted for by 

rescaling the intensities to a range from zero (air) to one (tissue). The air and tissue intensities 

were obtained by taking the median intensity of the trachea and the aorta, after binary eroding 

the masks, respectively. Trachea and aorta mean intensities were obtained by segmenting 

the correspondent areas on Insp scans. These were obtained using the nnU-Net pre-trained 

model Task_055_SegTHOR. Images were then resampled to isotropic resolution (0.5 mm).  

 

Patch extraction: Finally, volumetric patches (50 cubic voxels) containing > 70% of the lung 

were extracted from the lung parenchyma of aligned Insp and ExpR CT images. The chosen 

size covered the secondary pulmonary lobule, the basic unit of lung structure10. 

 

S-3. Self-supervised contrastive learning: From patches to latent representations 

Informative latent representations are obtained with SimCLR11 as a framework for contrastive 

representations using a ResNet34 as encoder. This is based on the principle of contrasting 

samples against each other to learn semantic information. While similar semantic samples are 

attracted to each other, by minimizing a contrastive loss, dissimilar samples are moved away. 

As there are no patch-level labels available, the strategy of this self-supervised setting is 

augmenting a patch twice, using a set of optimal transformations. These were set based on 

the findings from Zhou, Z. et al.12 on chest CT scans: non-linear transformations to model 

abnormal intensity appearance; texture transformations to learn untypical texture and 

boundaries by local pixel shuffling; and context as discontinuity by inner and outer cutouts. 

Training configuration for this pretext task was performed as described by Almeida et al.13 and 

Lueth et al.14: based on the COPDGene training set, a maximum of 100 unlabeled 3D lung 

patches per subject were employed for 100 epochs, using the Adam Optimizer, learning rate 

of 1e-4, Cosine Annealing15, 10 Warm-up Epochs and a weight decay of 1e-6, the temperature 

of the contrastive loss is 0.511. Maximum 100 patches per subject was set based on previous 

experiments that showed that using all patches available per subject can introduce 

redundancy and increased computational costs. 

 

S-4. Modeling the representative distribution model of normal appearing lung 

 

Aiming to explore the potential of normal and unlabeled features, the pretrained contrastive 

model was employed to generate patch-level representations of purely normal patches. Patch 

normality was defined by %Emphysema<1% strictly applied to the “control” group (healthy 

never-smoker individuals and individuals with minimal disease, minimal emphysema and 
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without airflow limitation [GOLD 0]), a very restrictive bound to guarantee that no intensity 

alterations could be present in the definition of normality. %Emphysema was defined as the 

percentage of low attenuation areas less than a threshold of -950 Hounsfield units (%LAA-

950). Then, a generative model is fitted on the feature space of these normal appearing 

patches, as to estimate the representation likelihood.  

We employed a Gaussian Mixture Model (GMM) and Normalizing Flows (NF) as generative 

models, without any transformations. Experiments were done using GMM with 1, 2, 4 and 8 

components (K). Further specifications can be found in 13 and14.  

 

S-5. Detecting COPD as anomalies, patient level prediction, visualization maps 

 

During inference, each patch is given an anomaly score based on the negative log likelihood 

s(xi)=-log(p(f(xi))). Patient-level scores are obtained by aggregating the patch-level scores. 

The following aggregation strategies were experimented: mean, median, third quartile (Q3), 

percentile 95 (p95), percentile 99 (p99) and maximum value (max). Final aggregation strategy 

was chosen based on the highest AUC on three runs on the validation set, for all the input 

configurations (Insp 0%, Insp 20%, InspExpR 0%, InspExpR 20%). Once the aggregation 

strategy per input configuration was chosen, it was applied three times on the internal and 

external test set.  

Lung anomaly maps were constructed based on the negative log likelihood score, normalized 

by the min-max normalization corresponding to the 5th and 95th percentiles of the 

corresponding test set. 

 

S-6. Compared supervised methods (voxel-based and representation-based) 

We compared the performance of our proposed method to four supervised learning methods: 

three voxel-based (PatClass+RNN, MIL+RNN, MIL+Att) and one representation-based 

(ReContrastive). 

 

PatClass+RNN: A supervised end-to-end Patch Classifier with a recurrent neural network 

(RNN) as aggregation to obtain patient-level scores. The model receives as input a 3D patch, 

having the same label as the global patient label (0 or 1). As output, the model produces a 

probability at the patch-level, of being diseased or not. This probability is then aggregated per 

patient. Several aggregation strategies were experimented, but RNN, as described by16, 

showed to be the best performing one on the validation set. Here, the S=10% most suspicious 

patches were sequentially passed to the RNN to predict the final patient-level classification. 

As an encoder we used a 3D ResNet34, which was trained for 100 epochs, with a batch size 

of 64, using the Adam Optimizer, learning rate of 1e-4, Cosine Annealing15, with cross entropy 

loss. As transformations, elastic, rotation, scaling, random cropping, mirroring, gaussian noise 

and gaussian blur were employed with a probability of 5%. 

 

MIL+RNN: A supervised multiple instance learning (MIL) strategy with a recurrent neural 

network as aggregation, as proposed by16. Given a bag of instances (where the bag is a patient 

and the instances are 3D patches), all instances are classified and ranked according to their 

probability of being positive (diseased). If the bag is positive (which means that the patient-

level label is diseased), the probability of being positive of the highest-ranked instance should 

be very close to 1; if the bag is negative (normal), the highest ranked instance should have a 

very low probability, approaching 0. Therefore, the task here is to learn the optimal instance 

(patch) level representation that can linearly discriminate patches that contribute to a diseased 
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global label, from those patches that do not. The implementation details are as described in 

the original paper, with the exception of the encoder (3D ResNet34). S (probability) was set to 

10%. 

 

MIL+Att: A supervised MIL with an attention layer. Similar to the MIL+RNN method, this MIL 

builds on the same strategy but employs a latter layer with an attention mechanism. This layer 

provides a measure of the contribution of each patch to the overall patient label. The overall 

idea is identical to Sun et al. COPD detection model17, except we build on the 3D patch notion, 

while they selected slices from the original CT. Overall configuration details were as described 

by18, with the adaptations to 3D, and using a 3D ResNet34 as encoder. 

 

ReContrastive: A supervised CNN classifier operating on the latent representations produced 

by our proposed contrastive DL model (cOOpD).  Patch-level representations of the two 

classes (“control” and “diseased”) are generated by the pretrained model in S-3. Considering 

that the anatomical context was lost in the creation of these individual unconnected patches, 

we handle this trait by reconstructing the representation vectors to their original location in the 

lung. This produces a 4D image at the patient-level, where the 4th dimension is the length of 

the representation vector. Next, we apply a LeNet19 as our supervised encoder which outputs 

the two possible classes. The assumption is that this image composed of "anatomically-

composed" representations is highly informative, therefore a simple encoder should be able 

to capture the critical features for the classification. This was performed for 500 epochs using 

the Stochastic Gradient Descent Optimizer, a learning rate of 1e-2, Cosine Annealing and a 

weight decay of 3e-5. As transformations on the reconstructed latent representation image, 

we employed a combination of random cropping, random scaling, random mirroring, rotations, 

and Gaussian blurring. 

 

S-7. Model performance 

 

Model performance for COPD binary classification was assessed using Area Under Receiver 

Operator Curve (AUC) and Area Under Precision Recall Curve (AUPRC) as the default multi-

threshold metric for classification. AUC is used as the main evaluation metric since it is less 

sensitive to class balance changes. Final method configurations were tuned on the evaluation 

set, based on the highest AUC on three experiment runs. Supplementary Table 3 further 

shows all methods’ performance on the internal and external test sets, for all inputs. 
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Supplementary Figure Captions 

 

Supplementary Figure 1: Paired inspiratory and expiratory CT images were acquired per 

subject. Pre-processing comprises image registration, image segmentation, image 

normalization and patch-extraction. Expiratory images are aligned to inspiratory ones, so that 

both are in the same physical space. Lung, trachea and aorta are segmented using masks 

from YACTA to train nnU-Net models (lung) and using nnU-Net pretrained model for the 

trachea and aorta. Intensity normalization and resampling was applied. Volumetric patches 

(50 cubic voxels) were extracted from the lung parenchyma under four configurations: Insp 

0% (overlapping patches), Insp 20%, InspExpR 0% and InspExpR 20%.  
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Supplementary Figure 2: COSYCONET forest-plots of standardized beta values of the linear 

mixed effects models to predict the St. George’s Respiratory Questionnaire (A), 6-minutes 

walking test (B), FEV1 (C), FEV1/FVC (D), %Emphysema (E) and %Air Trapping (F). Baseline 

models (without the anomaly score) are colored in gray, while baseline + anomaly score 

models are colored in black. (p<0.05*/0.01**/0.001***). 

BMI = Body Mass Index; FEV1 = Forced Expiratory Volume in 1 second; FEV1/FVC = FEV1-

to-forced vital capacity ratio. 
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Supplementary Figure 3: Distribution of patient-wise anomaly scores from COSYCONET 

versus %Emphysema (A) and %Air Trapping (B), with reported Pearson’s correlation 

coefficient (r), colored by GOLD stage. Subjects who experienced severe exacerbations in the 

past year were significantly different than those who did not experience in terms of the anomaly 

score (p<0.01, Wilcoxon test) (C). The distribution of the anomaly score did not differ among 

the mMRC dyspnea classes (p=0.1144, Jonckheere-Terpstra) (D).  

 

 

 

 
 

 

 

 



Eur Radiol (2023) Almeida SD, Norajitra T, Lüth CT et al 9 

Supplementary Tables Captions 
 

Supplementary Table 1: COSYCONET study protocol.  

 

Acquisition Orientation FOV Slice 

thickness 

(mm) 

Interval 

(mm) 

Convolution 

kernel* 

Inspiratory axial lung 1.25-1.50 0.70-0.75 B70f/LUNG/L 

Inspiratory axial lung 0.625-1.00 0.50 B30f/SOFT/B 

Inspiratory axial including 

soft tissue 

of torso  

0.625-1.00 0.50 B30f/SOFT/B 

Expiratory axial lung 0.625-1.00 0.50 B30f/SOFT/B 
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Supplementary Table 2: Details on the scanner models for COSYCONET. Vendor-specific 

generic names for Siemens/GE/Philips. 

 

Scanner models Siemens Definition AS 40/ 64/ Flash 128 
GE Lightspeed VCT 64/ GE Optima 64/ Philips Brilliance 64/ iCT 
256 

Scan Type Spiral 

Rotation Time (s) 0.33 – 0.50 s 

Collimation 40 / 64 / 128 x 0.6-0.625 mm 

Pitch 0.6-1.0 

kVp 120 kVp 

mA 30 - 35 eff. mAs 

Dose modulation Off 

Matrix 512 x 512 

Calibration phantom Air / water phantom / CatPhan 

Max. eff dose/scan < 1.75 mSv 

Max. eff. overall dose  < 3.50 mSv 
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Supplementary Table 3:  Classification performance on the internal and external test sets for 

all inputs and for all compared methods. Note - Mean ± standard deviation of the Area Under 

the Receiver Operating Curve (AUC) and Area Under the Precision Recall Curve (AUPRC) in 

% of 3 runs on the internal (COPDGene) and external (COSYCONET) test sets. Compared 

methods are the anomaly detection method (cOOpD), Performance metric (AUC) for the 

internal (COPDGene) and external (COSYCONET) test sets, for four different input 

configurations, for the anomaly detection method (cOOpD) and four supervised deep-learning 

methods: end-to-end Patch Classifier with a recurrent neural network [PatClass+RNN], a 

multiple instance learning [MIL] with RNN as aggregation [MIL+RNN], an attention based MIL 

[MIL+Att]) and one representation-based [ReContrastive]. The best performing generative 

model for cOOpD is shown: Normalizing Flow (NF), Gaussian Mixture Model with two or four 

components (GMM2, GMM4). The best performing aggregation strategy is shown: mean, third 

quartile (Q3). Best results are highlighted in bold. 

 

Input Method 
COPDGene COSYCONET 

AUC AUPRC AUC AUPRC 

Insp 0% 

PatClass + RNN 0.63 ± 0.05 0.78 ± 0.01 0.64 ± 0.05 0.96 ± 0.00 

MIL + Att 0.54 ± 0.02 0.73 ± 0.02 0.54 ± 0.05 0.94 ± 0.01 

MIL + RNN 0.59 ± 0.03 0.76 ± 0.01 0.64 ± 0.05 0.96 ± 0.01 

ReContrastive 0.78 ± 0.00 0.88 ± 0.00 0.74 ± 0.01 0.97 ± 0.00 

cOOpD (NF Q3) 0.83 ± 0.00 0.89 ± 0.00 0.76 ± 0.00 0.96 ± 0.00 

Insp 20% 

PatClass + RNN 0.68 ± 0.01 0.81 ± 0.01 0.72 ± 0.02 0.97 ± 0.00 

MIL + Att 0.50 ± 0.02 0.72 ± 0.01 0.52 ± 0.06 0.93 ± 0.01 

MIL + RNN 0.63 ± 0.02 0.78 ± 0.01 0.68 ± 0.08 0.96 ± 0.01 

ReContrastive 0.78 ± 0.00 0.88 ± 0.00 0.68 ± 0.02 0.96 ± 0.00 

cOOpD (NF median) 0.84 ± 0.00 0.90 ± 0.00 0.76 ± 0.01 0.98 ± 0.00 

InspExpR 0% 

PatClass + RNN 0.77 ± 0.01 0.86 ± 0.01 0.56 ± 0.01 0.82 ± 0.22 

MIL + Att 0.60 ± 0.03 0.77 ± 0.02 0.55 ± 0.01 0.94 ± 0.01 

MIL + RNN 0.75 ± 0.01 0.84 ± 0.00 0.64 ± 0.03 0.96 ± 0.00 

ReContrastive 0.79 ± 0.00 0.87 ± 0.00 0.53 ± 0.01 0.95 ± 0.00 

cOOpD (GMM2 

mean) 0.84 ± 0.01 0.87 ± 0.02 0.73 ± 0.01 0.95 ± 0.00 

InspExpR 20% 
PatClass + RNN 0.76 ± 0.00 0.86 ± 0.00 0.56 ± 0.01 0.95 ± 0.00 

MIL + Att 0.66 ± 0.03 0.81 ± 0.02 0.58 ± 0.01 0.95 ± 0.01 
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MIL + RNN 0.73 ± 0.01 0.85 ± 0.00 0.60 ± 0.04 0.96 ± 0.00 

ReContrastive 0.80 ± 0.00 0.89 ± 0.00 0.53 ± 0.01 0.95 ± 0.00 

cOOpD (GMM4 

mean) 0.84 ± 0.00 0.90 ± 0.00 0.68 ± 0.01 0.95 ± 0.00 
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Supplementary Table 4: Decomposition of the Explained Variation in the Linear Mixed 

Effects Model for COPDGene. Note - Percentages of explained variance (R2) for the individual 

predictors to the corresponding linear mixed effects models. Confidence intervals (CI) are also 

reported (95%). * %Emphysema and %Air Trapping were skewed, so a log-transformation 

was applied. R package: explainedVariance with 500 simulations. 

BMI = Body Mass Index; SGRQ = St. George 's Respiratory Questionnaire; 6MWT = 6-

minutes-walking-test; FEV1 = Forced Expiratory Volume in 1 second; FEV1/FVC = FEV1-to-

forced vital capacity ratio. 

 

Proportion of explained variation by fixed effects 

Dependent 

variable 

individual explained 

variance R2 (%) CI 2.5 (%) CI 97.5 (%) 

SGRQ 

gender 0,01 -0,07 0,56 

BMI 0,09 -0,18 0,84 

age -0,49 -0,71 -0,10 

smoking status 1,05 0,06 2,76 

smoking duration 3,41 1,44 5,89 

anomaly score 19,28 15,78 24,68 

total 23,34 20,24 29,34 

6MWT 

gender 1,57 0,57 2,77 

BMI 2,53 1,23 4,21 

age 4,11 2,14 6,31 

smoking status -0,62 -0,74 -0,14 

smoking duration 4,49 2,26 6,64 

anomaly score 11,62 8,10 14,63 

total 23,70 17,66 28,23 

FEV1 

gender -0,05 -0,06 0,19 

BMI -0,15 -0,18 0,17 

age -0,36 -1,45 0,85 

smoking status 0,11 -0,50 1,12 

smoking duration 5,80 3,42 8,50 

anomaly score 38,51 34,81 43,68 
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total 43,86 40,51 49,06 

FEV1/FVC 

gender 0,22 -0,04 0,82 

BMI 1,69 0,79 3,02 

age 2,15 0,66 4,07 

smoking status 0,14 0,47 1,19 

smoking duration 5,55 3,26 8,04 

anomaly score 41,22 37,90 45,37 

total 50,97 48,19 55,36 

% Emphysema* 

gender 4,16 2,70 5,95 

BMI 3,33 1,93 4,69 

age 0,71 -0,73 2,45 

smoking status 5,41 3,27 7,45 

smoking duration 1,61 0,32 3,03 

anomaly score 27,77 22,77 31,62 

total 42,98 36,51 47,33 

% Air Trapping* 

gender 1,84 0,97 2,96 

BMI 2,85 1,81 4,43 

age 6,76 4,56 9,70 

smoking status 2,63 1,43 4,22 

smoking duration 0,71 -0,56 2,35 

anomaly score 40,19 36,65 44,50 

total 54,98 52,23 59,39 
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Supplementary Table 5. Linear mixed effects model to predict several clinical (SGRQ, 

6MWT, FEV1, FEV1/FVC) and radiological (%Emphysema, %Air Trapping) dependent 

variables using the produced anomaly score as a predictor, for the COSYCONET test cohort 

(n=446). Note - Models are adjusted for age, gender, BMI, smoking status, smoking duration 

and a random term for the study site. This model was compared with a baseline model that 

omits the anomaly score. Conditional R2 is adjusted for the number of regressors added. p-

values are reported per model and for the comparison between them and are corrected for 

multiple comparisons. 

R2 = overall conditional coefficient of determination; BMI = Body Mass Index; SGRQ = St. 

George 's Respiratory Questionnaire; 6MWT = 6-minutes-walking-test; FEV1 = Forced 

Expiratory Volume in 1 second; FEV1/FVC = FEV1-to-forced vital capacity ratio. 

 

dependent 

variable 
predictor 

adjusted 

conditional 

R2 

p-value  

SGRQ 

age, gender, BMI, smoking status, smoking 

duration, (center) 
0.08 p > .001 

p > .001 
age, gender, BMI, smoking status, smoking 

duration, anomaly score, (center) 
0.11 p < .001 

6MWT 

age, gender, BMI, smoking status, smoking 

duration, (center) 
0.24 p < .001 

p > .001 
age, gender, BMI, smoking status, smoking 

duration, anomaly score, (center) 
0.24 p < .001 

FEV1  

age, gender, BMI, smoking status, smoking 

duration, (center) 
0.07 p > .001 

p < .001 
age, gender, BMI, smoking status, smoking 

duration, anomaly score, (center) 
0.17 p < .001 

FEV1/FVC 

age, gender, BMI, smoking status, smoking 

duration, (center) 
0.13 p < .001 

p < .001 
age, gender, BMI, smoking status, smoking 

duration, anomaly score, (center) 
0.27 p < .001 

Emphysema 

% 

age, gender, BMI, smoking status, smoking 

duration, (center) 
0.22 p < .001 

p < .001 
age, gender, BMI, smoking status, smoking 

duration, anomaly score, (center) 
0.43 p < .001 

Air Trapping 

% 

age, gender, BMI, smoking status, smoking 

duration, (center) 
0.22 p < .001 

p < .001 
age, gender, BMI, smoking status, smoking 

duration, anomaly score, (center) 
0.41 p < .001 
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Supplementary Table 6: Decomposition of the Explained Variation in the Linear Mixed 

Effects Model for COSYCONET. Note - Percentages of explained variance (R2) for the 

individual predictors to the corresponding linear mixed effects models. Confidence intervals 

(CI) are also reported (95%) * %Emphysema and %Air Trapping were skewed, so a log-

transformation was applied. R package: explainedVariance with 500 simulations. 

BMI = Body Mass Index; SGRQ = St. George 's Respiratory Questionnaire; 6MWT = 6-

minutes-walking-test; FEV1 = Forced Expiratory Volume in 1 second; FEV1/FVC = FEV1-to-

forced vital capacity ratio. 

 
 

Proportion of explained variation by fixed effects 

Dependent 

variable individual explained variance R2 (%) CI 2.5 (%) CI 97.5 (%) 

SGRQ 

gender 1,33 -0,06 4,42 

BMI 5,11 1,80 9,94 

age -0,27 -0,35 0,91 

smoking status -0,24 -0,52 2,21 

smoking duration -0,27 -0,63 1,11 

anomaly score 2,22 0,16 5,95 

total 7,89 4,21 15,04 

6MWT 

gender 4,88 1,37 8,78 

BMI 1,91 0,20 4,94 

age 3,57 0,85 7,37 

smoking status -0,51 -0,73 1,11 

smoking duration 1,45 -0,20 4,42 

anomaly score 1,21 -0,17 4,01 

total 12,50 8,09 19,87 

FEV1post 

gender -0,18 -0,21 0,97 

BMI 0,67 -0,21 2,88 

age 0,31 -0,21 2,35 

smoking status 0,88 -0,30 4,22 

smoking duration -0,27 -0,61 0,98 
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anomaly score 13,18 7,21 19,48 

total 14,60 9,95 22,66 

FEV/FVC 

gender -0,21 -0,23 0,86 

BMI 5,70 2,28 10,37 

age 1,46 0,00 4,15 

smoking status 0,51 -0,82 3,19 

smoking duration 0,43 -0,46 2,78 

anomaly score 14,35 7,99 20,34 

total 22,23 15,70 30,15 

% 

Emphysema

* 

gender 1,09 -0,06 2,99 

BMI 9,14 4,84 13,19 

age -0,13 -0,28 0,86 

smoking status 5,76 2,58 9,62 

smoking duration -0,25 -0,67 0,78 

anomaly score 21,19 12,94 26,96 

total 36,80 27,39 42,93 

% Air 

Trapping * 

gender 0,00 -0,19 1,02 

BMI 9,53 4,97 13,84 

age 1,46 -0,02 3,74 

smoking status 2,69 0,44 6,13 

smoking duration 0,88 -0,15 3,28 

anomaly score 20,70 14,24 27,11 

total 35,26 28,18 42,74 

 


