
Ultra-high-resolution photon-counting detector CT in evaluating coronary stent patency: a comparison to invasive coronary angiography

Electronic Supplementary Material (ESM)

Supplementary Table 1: Technical parameters detector CT-angiography	for ultra-high-resolution photon-counting
Technical	Values

parameters	Values
Scan mode	ECG-synchronized retrospective spiral CTA
z-coverage	120 x 0.2 mm
Spatial resolution	0.11 mm in-plane
Gantry rotation time	250 ms
Pitch	Depending on the patient's heart rate, preset at 0.2
Spectral information	Not available at ultra-high-resolution scan
Dose modulation	ECG-pulsing set at 15 – 80 % of the R–R interval
Tube voltage	Automatically determined (Care kV), either 120kV or 140 kV
Tube current	Automatic tube current modulation (CareDose mAs)

Abbreviations: *ECG* electrocardiogram, *CTA* computed tomography angiography, *R*– *R interval* time elapsed between two consecutive R waves of a patient's electrocardiogram.

Supplementary Figure 1. Ultra-high-resolution photon-counting CT-angiography of an 85year-old patient with previous stent implantation in the right coronary artery. A: Threedimensional cinematic rendering showing the stent in segment 2 of the right coronary artery (RCA). B: Multiplanar reformation of the right coronary artery.

To quantify the stent-induced effect on the in-stent lumen attenuation ($\Delta HUin_stent$), manually drawn regions of interest (ROI) are placed in the stent lumen (ROI_{in_stent}) and ROIs of the same size (here: 10mm²) in the proximal (ROI_{prox}) and distal (ROI_{dist}) adjacent coronary vessel. The average Hounsfield Units (HU) are noted and $\Delta HUin_stent$ is calculated as follows: $\Delta HUin_stent = ROIin_stent HU - \frac{ROIprox HU+ROIdist HU}{2} \implies 371 HU - \frac{(358 HU + 340 HU)}{2} = +22 HU.$