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Fig. S1. For clarity, we replotted the ternary phase diagram of La-Sc-H system with 
LaH2, ScH3, and H as corners (A) without and (B) with inclusion of considering zero-
point energy (ZPE) within the harmonic approximation at 300 GPa. Red solid circles 
and colored squares indicate thermodynamically stable and unstable phases, 
respectively. 
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Fig. S2. (A) The enthalpy comparison between LaSc2H24 and selected decomposition 
routes under different pressure without considering zero-point energy (ZPE), in which 
the enthalpy of LaSc2H24 at each pressure is set to zero. (B) Calculated relative 
enthalpies as a function of pressure with considering ZPE at the anharmonic level by 
using the stochastic self-consistent harmonic approximation (SSCHA) approach.  
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Fig. S3. Harmonic phonon spectra, where orange solid circles show the phonon 
linewidth with a radius proportional to its strength (left), projected phonon density of 
states (phDOS) (middle), Eliashberg spectral function α2F(), and the electron-phonon 
integral λ() (right) of LaSc2H24 at (A) 290 GPa and (B) 350 GPa. 
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Fig. S4. Phonon spectra of LaSc2H24 at different pressures both at the harmonic and 
anharmonic levels. The area under the black dotted line marks the region with 
imaginary phonon frequencies, which are depicted as negative frequencies.  
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Fig. S5. (A) The mean square displacements (MSDs) from ab initio molecular dynamics 
(AIMD) simulations for the La, Sc and H atoms in LaSc2H24 at 150 GPa and 300 K. (B) 
The projection of atomic trajectories along the [110] direction in LaSc2H24 from the last 
15 ps, in which green, blue and pink symbols represent the atomic trajectories of La, 
Sc and H atoms, respectively.  

As shown in Fig. S5, the oscillations of the La, Sc and H atoms with respect to 
their equilibrium positions indicate that LaSc2H24 is stable at 150 GPa and 300 K, hence 
it maintains a solid phase without any change. Accordingly, our calculated results show 
that the stability of our predicted structure is robust. 
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Fig. S6. Pressure dependence of Tc values for typical superconductors. The green filled 
circles represent the Tc values of well-known superconductors from experiments (1-17). 
The blue half-filled (unfilled) rhombuses represent the Tc values of the predicted 
thermodynamically stable (metastable) hydrides (18-25). The red half-filled (unfilled) 
stars mark the Tc values (with μ* of 0.1) of the thermodynamically stable (metastable) 
LaSc2H24 by considering anharmonic effects within a pressure range of 150-300 GPa. 
The carmine dashed lines are plotted according to the figure of merit 𝑆 ൌ

ሺ𝑇 ට𝑃ଶ  𝑇,ெమ
ଶൗ ሻ used to evaluate the significance of a particular superconductor 

(26). 
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Table S1. The calculated crystal structural parameters of thermodynamically stable La-
Sc and La-Sc-H compounds at 300 GPa. 

Compound 
Space 

group 

Lattice Parameters 

 (Å, degree) 

Atomic coordinates (fractional) 

Atoms X Y Z 

LaSc2 Fddd a = 4.248 

b = 6.845 

c = 7.682 

 = 90 

 = 90 

 = 90 

La (8b) 

Sc (16f) 

0.000 

0.000 

0.000 

0.843 

0.500 

0.000 

LaSc2H24 P6/mmm a = 4.712 

b = 4.712 

c = 3.236 

 = 90 

 = 90 

 = 120 

La (1b) 

Sc (2c) 

H (6m) 

H (6j) 

H (12n) 

0.000 

0.333 

0.759 

0.762 

0.614 

0.000 

0.667 

0.519 

0.000 

0.000 

0.500 

0.000 

0.500 

0.000 

0.289 
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Table S2. Calculated structural parameters and H-H bond lengths of the P6/mmm-
LaSc2H24 within the harmonic and annarmonic approximation at different pressures. 

Calculation Pressure (GPa) 
Lattice Parameters (Å) 

H-H distance (Å) 

  a = b   c 

Harmonic 

290 4.751 3.229 1.068-1.209 

300 4.735 3.216 1.076-1.204 

350 4.659 3.157 1.053-1.183 

Anharmonic 

150 5.084 3.528 1.156-1.307 

167 5.033 3.490 1.147-1.293 

200 4.943 3.425 1.133-1.268 

250 4.831 3.341 1.113-1.237 

300 4.741 3.271 1.096-1.212 
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