iScience, Volume 27

Supplemental information

Human gut Actinobacteria boost drug

absorption by secreting P-glycoprotein

ATPase inhibitors

Than S. Kyaw, Chen Zhang, Moriah Sandy, Kai Trepka, Shenwei Zhang, Luis A. Ramirez Hernandez, Lorenzo Ramirez, Janice J.N. Goh, Kristie Yu, Vincent Dimassa, Elizabeth N. Bess, Jacob G. Brockert, Darren S. Dumlao, Jordan E. Bisanz, and Peter J. Turnbaugh

SUPPLEMENTAL INFORMATION

SUPPLEMENTAL FIGURES AND LEGENDS

Figure S1, related to Figure 2. Validation of the *ABCB1* knockout monoclonal cell line. (A) T84 cells were transduced with lentiviral particles carrying cas9 gene and small guide RNA (sg-RNA) against *ABCB1* gene. The transfected cells were sorted into a single cell per well and expanded to generate a monoclonal cell line. DNA was extracted and PCR amplified using primers flanking the sg-RNA target site. (B) The two visible bands in the gel were extracted, sequenced, and aligned to the parental T84 PCR product using NCBI multiple alignments tool. (C) Western blot of untreated (none), BHI⁺ media, or *E. lenta* CFS treated *ABCB1^{-/-}* cell lysates. T84 parental cells and Caco-2 cells were included as controls. (D) P-gp effluxes doxorubicin (DOX) rendering cells with functional P-gp more resistant. Cells without functional P-gp are therefore more sensitive to DOX. Using these principles, P-gp function in *ABCB1^{-/-}* cells was tested in a DOX sensitivity assay and growth was normalized to DMSO vehicle (Veh) control (n=4/condition, Wilcoxon test).

Figure S2, related to Figure 3. *E. lenta* CFS synergizes with PXR agonists to activate **PXR.** To test how P-gp transcription is induced, pregnane X receptor (PXR) luminescence reporter cell line was treated with *E. lenta* CFS cultured in BHI⁺. PXR agonist rifampicin or DMSO vehicle control was added to test for synergistic activity. Luminescence measurements were normalized to the untreated control to calculate the fold change.

Figure S3, related to Figure 4. The *modAB* cluster in *E. lenta* is not required for P-gp inhibition. (A) Scheme of primer design to confirm *modAB* gene deletion in *E. lenta* DSM 2243: flanking primers p3 and p4 yield a 3.80-kb fragment from wildtype (wt) and a 1.38-kb fragment from the $\Delta modAB$ mutant, respectively. Internal primers P1 and P2 anneal only to the *modAB* genes of wt and do not anneal to the $\Delta modAB$ mutant, yielding a 0.56-kb fragment from wt. Primer sequences are listed in Table S7. (B) Colony PCR confirmed deletion of *modA* and *modB* genes from *E. lenta* DSM 2243 wt. (C) wt and $\Delta modAB$ strains were cultured in BHI⁺ media with and without 2 mg/L ammonium molybdate supplement. CFS was tested for P-gp inhibitory activity in our T84 cell-based assay. Verapamil (10 µM) was used as a positive control. n=4/condition and ANOVA with Tukey's correction. ***p<0.001, ****p<0.0001, ns, p>0.05.

Figure S4, related to Figure 5. P-gp inhibitory activity is detected in *E. lenta* CFS cultured in EDM. *E. lenta* DSM2243 CFS from EDM cultures was processed through the activity-guided biochemical fractionation pipeline shown in Fig. 5A (n=4/group; two-way ANOVA with Tukey's correction). Vehicle (0.02% DMSO) and 10 μ M verapamil were included as controls. Filter-sterilized CFS cultured in EDM and BHI⁺ were included as controls for fractionations. **p<0.01 ***p<0.001, ****p<0.0001, ns, p>0.05.

Figure S5, related to Figure 6. Citrulline, ornithine, and N-acetylglutamate do not inhibit P-gp at high concentrations. Citrulline and ornithine, byproducts of arginine metabolism in *E. lenta*, and *N*-acetylglutamate were tested for P-gp inhibitory activity using T84 Rh123 assay at a wide range of concentrations. Verapamil and vehicle were used as positive and negative controls, respectively. We observed cell death for 10mM verapamil incubation. n=4/condition, mean±SEM, ANOVA with Tukey's correction. *****p<0.0001, ns >0.05.

SUPPLEMENTAL TABLES

Mechanism	Literature evidence (PMID)
Decreased P-gp expression	23822562, 23621869, 23956061, 23967153
Impaired localization to the cell surface	23261525, 20460432, 27840996
Increased ATPase activity	9073309, 27531061, 24853187
Decreased ATPase activity	10510451, 28283574
Increased P-gp degradation	27452236, 15322230

Table S1. Literature review of mechanisms of P-gp inhibition, related to Figure 3.

Table S3. Comparative genomics hit annotations and gene expression in *E. lenta* DSM2243, related to Figure 4.

Orthologous gene cluster number	Annotation (<i>E. lenta</i> DSM2243)	Gene (<i>E. lenta</i> DSM2243)	PSIBLAST Annotation	Mean RPKM (<i>E. lenta</i> DSM2243)
264	hypothetical protein	DSM2243REF_00393	YerC/YecD family TrpR- related protein	227.578649
296	ATP synthase subunit b	DSM2243REF_01054	F0F1 ATP synthase subunit B	1545.93271
360	hypothetical protein	DSM2243REF_02238	molybdate ABC transporter permease subunit	38.7108297
362	Molybdate-binding protein ModA	DSM2243REF_02239	molybdate ABC transporter substrate- binding protein	142.585188
536	Iron-dependent repressor IdeR	DSM2243REF_00584	metal-dependent transcriptional regulator	776.663859
556	hypothetical protein	DSM2243REF_01460	nucleoid-associated protein	147.534337
770	hypothetical protein	DSM2243REF_02036	chloride channel protein	82.4496332

Component	Amount per L
Calcium chloride	8mg
Sodium chloride	1.5g
Ferrous sulfate heptahydrate	1.5mg
Copper(II) sulfate anhydrous	0.088mg
Cobalt(II) chloride hexahydrate	0.19mg
Ammonium molybdate tetrahydrate	0.19mg
Boric acid	0.65mg
Zinc(II) sulfate heptahydrate	4mg
Potassium sulfate	23mg
Magnesium chloride	0.386g
Sodium bicarbonate	0.4g
ATCC mineral mix	10mL
Potassium phosphate monobasic	13.6g
Potassium phosphate dibasic	6.48g
Uracil	23mg
Citric acid	1.56g
Hematin	1.72mg
ATCC vitamin mix	10mL
Ascorbic acid	0.56g
NAD	2mg
Pyridoxamine 2HCI	5mg
Menadione	1mg
Arginine	10g
Cysteine	0.5g
Histidine	0.15g
L-isoleucine	0.24g
L-leucine	1g
L-lysine	0.5g
L-methionine	0.125g
L-phenylalanine	0.4g
L-serine	0.5g
L-threonine	0.5g
L-tryptophan	0.2g
L-tyrosine	0.3g
L-valine	0.7g
Proline	0.7g
Potassium acetate	0.9g
Water	Fill to 1L total

Table S4. Media composition of *E. lenta* -specific defined media (EDM), related to Figure 5.

Table S7. List of primers used in this study, related to Figures 1 and 3.

Primer target	Primer name	Primer sequence (5' \rightarrow 3')
mACTB (NM 007303)	mACTB_f	AGATCAAGATCATTGCTCCTCCT
TIAC TB (1007393)	mACTB_r	CAGGTAAGCAAACTTTCTGG
mPp113A (NIM_009438)	mRpl13A_f	CCTATGACAAGAAAAAGCGG
MRPH3A (NM_009438)	mRpl13A_r	CAGGTAAGCAAACTTTCTGG
mB2m (NM_009735)	mB2m_f	GTATGCTATCCAGAAAACCC
	mB2m_r	CTGAAGGACATATCTGACATC
mAbcb1a (NM_011076)	mAbcb1a_f	ACGTGAGGTCGTGATGGAAC
	mAbcb1a_r	CTGTCCAGCCAACCTGCATA
mCvp2o11 (NM_007818)	mCyp3a11_f	CCTGGGTGCTCCTAGCAATC
mCyp3a11 (NM_007818)	mCyp3a11_r	TGTCGAATTTCCATAAACCCTTGT
hGapdh (NM_002046)	hGapdh_f	GCTCTCTGCTCCTGTTC
	hGapdh_r	GACCAAATCCGTTGACTCCG
NOTE (NM 001101)	hACTB_f	ATGATGATATCGCCGCGCTC
	hACTB_r	CCACCATCACGCCCTGG
hDate (NM 001003)	hRplp0_f	TCCTCGTGGAAGTGACATCG
	hRplp0_r	TGTCTGCTCCCACAATGAAAC
	hAbcb1 f	CCATGCTCAGACAGGATGTGA
hAbcb1 (NM_000927)	hAbcb1 r	ATCATTGGCGAGCCTGGTAG
	elnmrk1 f	GTACAACATGCTCCTTGCGG
E. lenta (elnmrk1)	elnmrk1 r	CGAACAGAGGATCGGGATGG
	elnmrk1 p	I6FAMITTCTGGCTGCACCGTTCGCGGTCCAIBHQ11
	modABUPRT f	aatgaccttccctcgctctc
modAB upstream repair template	modABUPRT r	ggatacgatcgtccgcagaa
	modABDNRT f	cttcaagtacgccgtcgag
modAB downstream repair template	modABDNRT_r	gcgtaatgggccctgtcat
	pLRHbb f	
pLRH3 shuttle plasmid backbone	pLRHbb r	ctgtcagaccaaotttactc
	BO 1	
bridging oligo for pLRH3 backbone and modAB repair template	BO 2	
	pLRHmodABKOs1 f	cttttctacagagtctgacg
pLRHmodABKOs1 screening primer	pLRHmodABKOs1 r	gtatgacattgccttctgcgtccg
	ablock1 f1	TTCCTCGGTCTCCgtcgaaacgattcggatcctgtattact
pLRHmodABKO CRISPR array gblock1	ablock1 r1	aggeograacactegtae
	ablock1_r2	
	ablock2 f	TTCCTCGGTCTCGtacgaggatgatgacgaggatgat
pl RHmodABKO CRISPR array gblock2	ablock2 r1	TTCCTCGGTCTCCacccatcacgaggtcattcttg
	gblock2_r2	TTCCTCGGTCTCCacccacgagcaactocttga
	gblock3 f	
pLRHmodABKO CRISPR array gblock3	gblock3_r	
	s1 f	tacaggateggateggategategategategategategate
pLRHmodABKOs1 backbone		
	crisprablock f	ttetacanacaateratecateaactttanaaaaatta
ibson assembly for CRISPR gBlock and pLRHmodABKOs1 ligati	crisprablock_r	ttattttagatogatogatogatogatogatogagagaga
pLRHmodABKO screening primer	nl RHmodABKO f	
	pl.RHmodABKO_r	
E. lenta DSM 2243 ∆modAB screening primer, internal		taacctocatagaggecout
		naconactaconactacat
E. lenta DSM 2243 ∆modAB screening primer, flanking		
		aatayytiyatyayyiitiy
		Ιθαοποθαοπόθορδηρ