9 Supporting Information

Supporting Methods

Protein	GAFF2		NNP/MI	M ANI2x	FEP+		
	$\% \mathrm{MAE} < 1$	$\parallel\%~{ m MAE} < 1.5$	$\% \mathrm{MAE} < 1$	$\parallel\%~{ m MAE} < 1.5$	$\% \mathrm{MAE} < 1$	$\parallel\%~{ m MAE} < 1.5$	
CDK2	54.6 ± 4.9	71.1 ± 4.5	64.0 ± 9.3	96.0 ± 3.9	54.5 ± 10.3	86.4 ± 7.2	
JNK1	54.9 ± 4.7	79.6 ± 3.7	74.1 ± 8.3	88.9 ± 6.0	70.4 ± 8.9	85.2 ± 6.8	
p38	49.9 ± 2.5	65.4 ± 2.4	55.9 ± 6.2	81.4 ± 5.0	64.3 ± 6.3	83.9 ± 4.8	
TYK2	48.0 ± 3.6	68.4 ± 3.3	85.0 ± 5.6	97.5 ± 2.5	87.5 ± 7.9	87.5 ± 7.9	
hif2a	36.0 ± 4.6	55.9 ± 4.9	41.9 ± 8.6	58.1 ± 8.8	55.2 ± 8.9	75.9 ± 8.1	
pfkfb3	41.8 ± 3.6	60.4 ± 3.6	42.9 ± 6.2	65.1 ± 6.2	61.3 ± 6.1	80.6 ± 5.1	
syk	40.4 ± 4.6	61.4 ± 4.6	59.5 ± 8.0	78.4 ± 6.8	42.1 ± 8.0	73.7 ± 7.1	
tnks2	55.8 ± 5.2	70.5 ± 4.7	66.7 ± 7.1	77.8 ± 6.3	75.6 ± 6.2	88.9 ± 4.2	

Table S1: Percentage of preditcions that have a MAE lower than 1 or 1.5 kcal/mol for each system.

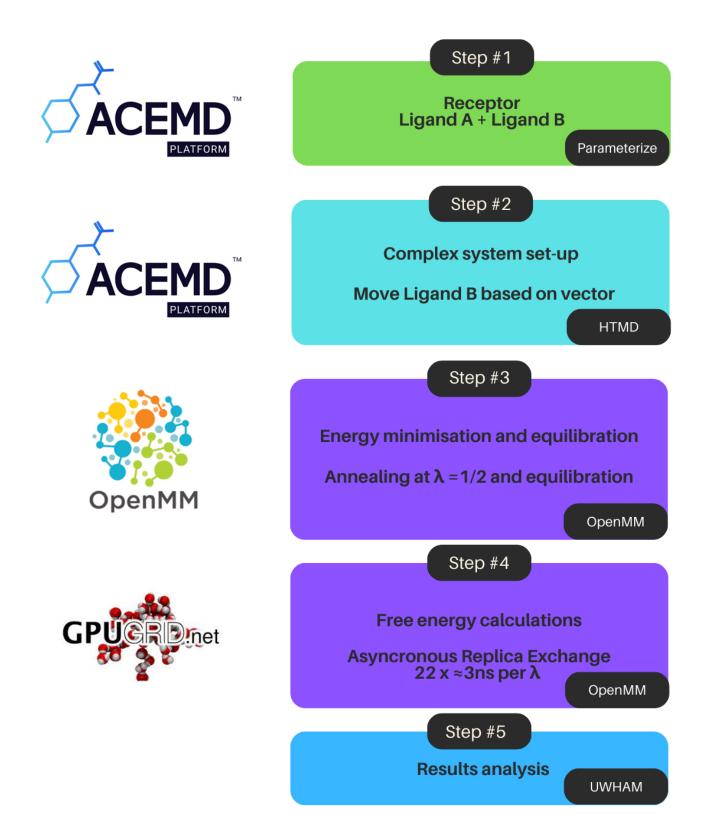


Figure S1: The ATM workflow used in this work. Ligands topologies are calculated with *parameterize* with GAFF2 and Sage force fields. (2) System complexes are prepared and built with htmd¹⁹. Protein topologies are prepared with the Amber ff14SB force field. Next ligand B is displaced based on a vector. (3) Energy minimization and equilibration is performed. Later an annealing and equilibration at $\lambda=1/2$ is performed. (4) Replica Exchange simulations are performed for a total sampling of 60ns. ATM simulations were run in GPUGRID were as ATM-NNP calculations were performed in our local cluster.(5) After the simulations were finished, these were analyzed with the UWHAM package to obtain the calculated $\Delta\Delta G$ estimates.

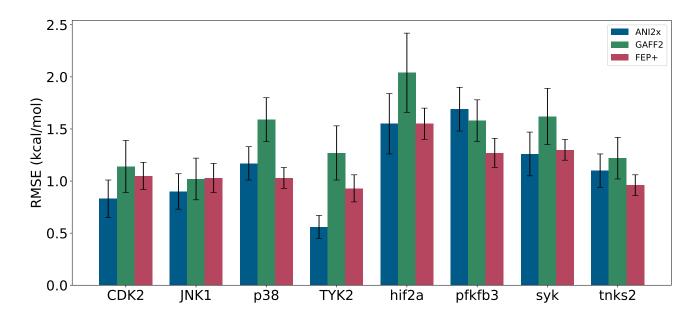


Figure S2: Pearson correlation for each protein-ligand system calculated in combination with different force fields and reported estimates using FEP+

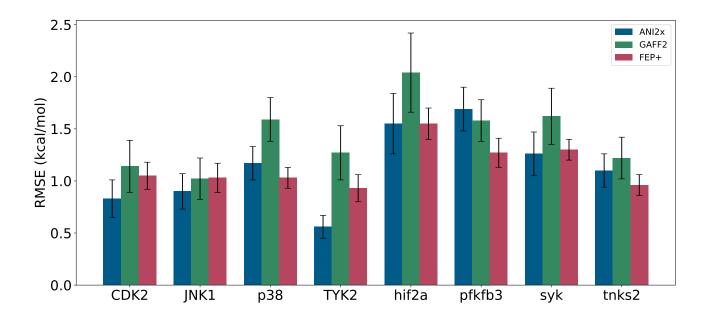


Figure S3: Root Mean Square Error (RMSE) in kcal/mol for each protein-ligand system calculated in combination with different force fields and reported estimates using FEP+

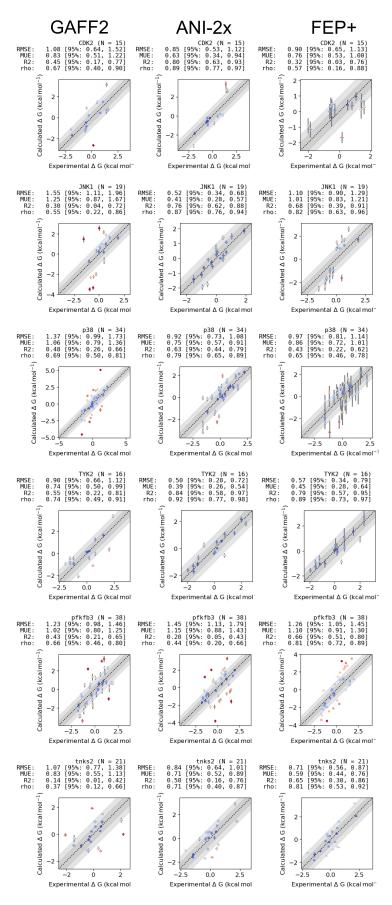


Figure S4: Scatterplots for the ΔG calculated on all the connected systems. Comparison between GAFF2, NNP/MM and FEP+. On top of each plot are the corresponding statistics.

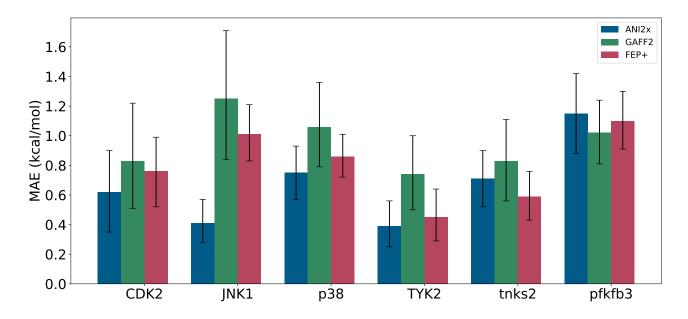


Figure S5: MAE (kcal/mol) for the ΔG values on all the connected systems

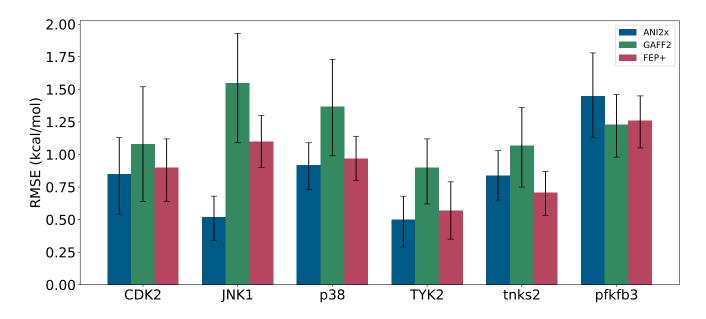


Figure S6: RMSE (kcal/mol) for the ΔG values on all the connected systems

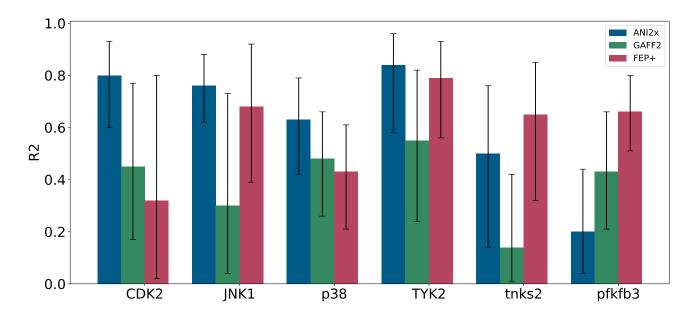


Figure S7: R2 correlation for the ΔG values on all the connected systems

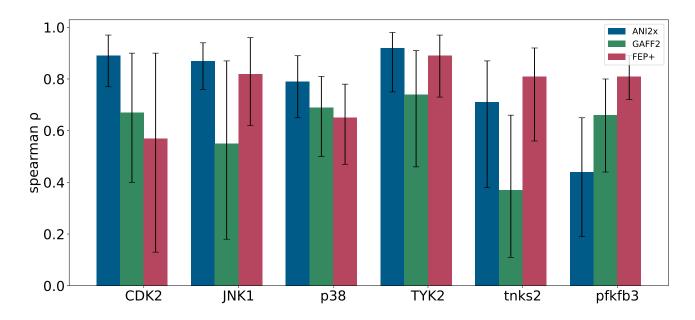


Figure S8: Spearman correlation for the ΔG values on all the connected systems

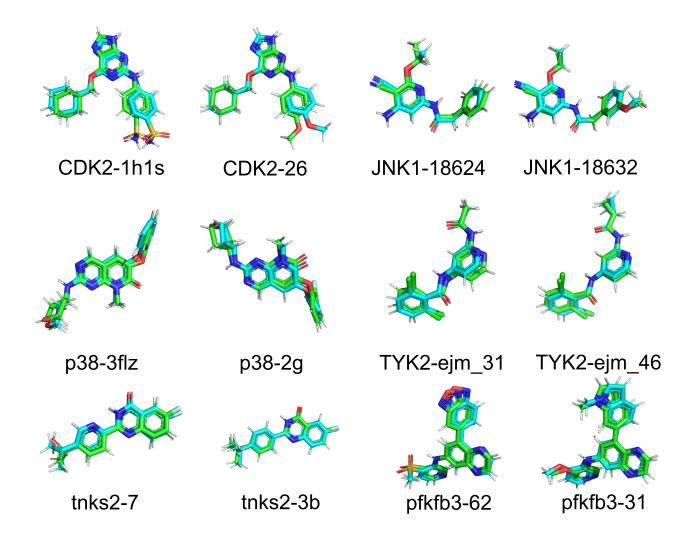


Figure S9: Generated conformers after equilibration for runs performed with GAFF2 (cyan) and ANI-2x (green).

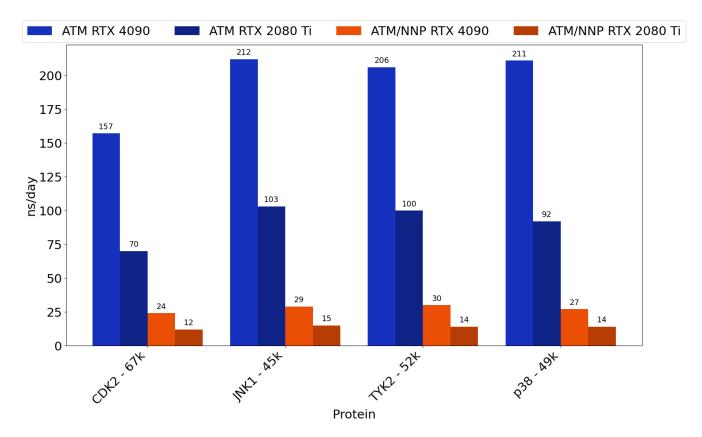


Figure S10: Performance of ATM and ATM/NNP on RTX 2080Ti and RTX 4090 graphics cards with OpenMM 7.7 MD engine and the ATM Meta Force plugin using the CUDA platform

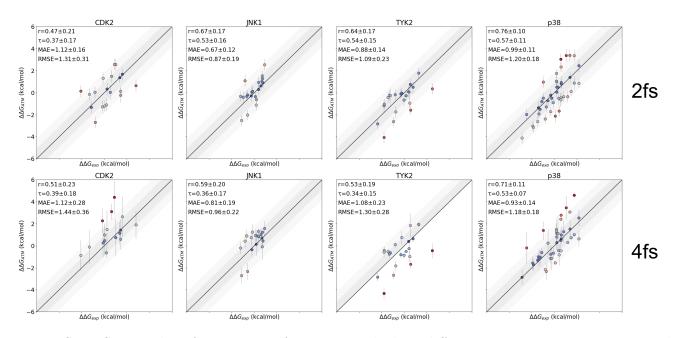


Figure S11: Scatterplots for a series of targets studied at different timesteps. Top row are the relevant ligand pairs studied in our previous work, which we realized with a 2fs timestep. Bottom row are the calculations done for these targets at a 4fs timestep.

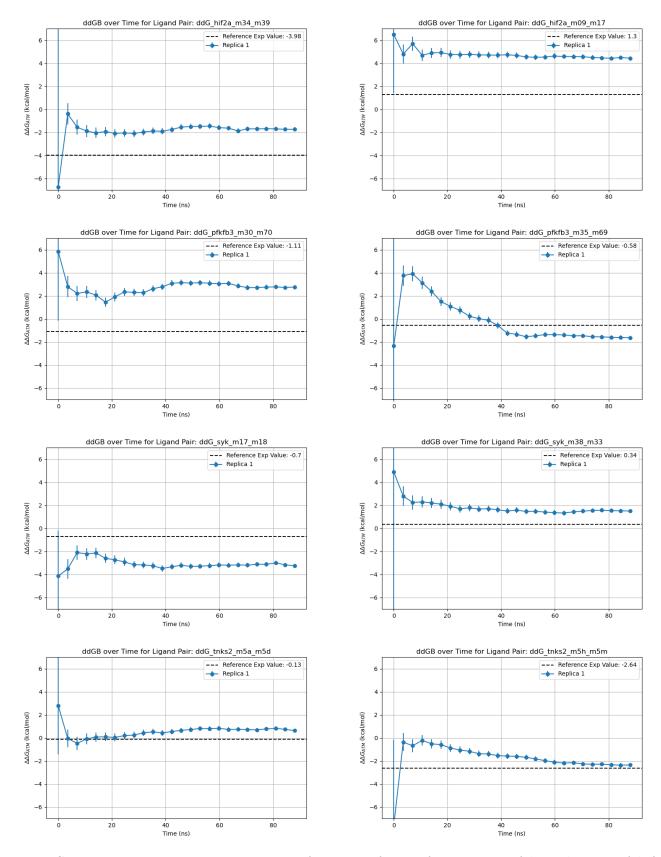


Figure S12: Free energy convergence as a function of time for a series of ligand pairs of hif2a, pfkfb3, syk and tnks2

Protein: TYK2			NNP/MM ANI2x			GAFF2		
ligand1	ligand2	exp_ddG	ATM_ddG	error	MAE	ATM_ddG	error	MAE
ejm_31	ejm_46	-1.77	-2.27	0.25	0.50	-0.42	0.24	1.35
ejm_31	ejm_43	1.28	1.36	0.22	0.07	1.94	0.23	0.66
ejm_31	jmc_28	-1.44	-1.33	0.22	0.11	-0.54	0.23	0.90
ejm_31	ejm_45	-0.02	0.17	0.23	0.19	-0.86	0.23	0.84
ejm_31	ejm_48	0.54	-0.56	0.24	1.10	1.84	0.24	1.30
ejm_50	ejm_42	-0.80	-0.37	0.22	0.43	0.10	0.22	0.90
ejm_55	ejm_54	-1.32	-0.55	0.22	0.77	-0.76	0.23	0.56
ejm_43	$ejm_{-}55$	-0.95	-0.33	0.23	0.62	-2.68	0.23	1.73
jmc_28	jmc_30	0.04	0.57	0.26	0.53	-1.07	0.28	1.11
jmc_28	jmc_27	-0.30	-0.50	0.22	0.20	-0.80	0.22	0.50
ejm_49	ejm_31	-1.79	-2.57	0.24	0.78	-0.57	0.24	1.22
ejm_49	ejm_50	-1.23	-0.86	0.24	0.38	-0.64	0.24	0.59
ejm_45	ejm_42	-0.22	-0.96	0.22	0.74	0.75	0.23	0.97
ejm_44	ejm_55	-1.79	-2.11	0.24	0.32	-4.33	0.23	2.54
ejm_44	ejm_42	-2.36	-1.65	0.27	0.71	-2.85	0.24	0.49
ejm_47	ejm_31	0.16	0.09	0.22	0.07	-0.51	0.23	0.67
ejm_47	ejm_55	0.49	0.04	0.22	0.44	-0.98	0.23	1.47
jmc_23	jmc_30	0.76	0.87	0.27	0.11	-0.25	0.25	1.01
jmc_23	ejm_46	0.39	0.33	0.22	0.06	0.40	0.22	0.01
jmc_23	ejm_55	2.49	1.77	0.23	0.72	-0.44	0.23	2.93
jmc_23	jmc_27	0.42	-0.67	0.24	1.09	-0.25	0.22	0.67
ejm_42	ejm_55	0.57	1.14	0.22	0.57	-1.68	0.22	2.25
ejm_42	ejm_48	0.78	0.53	0.22	0.25	0.64	0.23	0.14
ejm_42	ejm_54	-0.75	-0.12	0.22	0.62	-1.83	0.22	1.08

Table S2: Case study example of the $\Delta\Delta$ Gs obtained with NNP/MM and GAFF2. We observe how the transformations with the ligand ejm_ 55 give poor results with the GAFF2 (highlighted red) calculations but in the case of NNP/MM (highlighted green) the MAE is below 1kcal/mol.

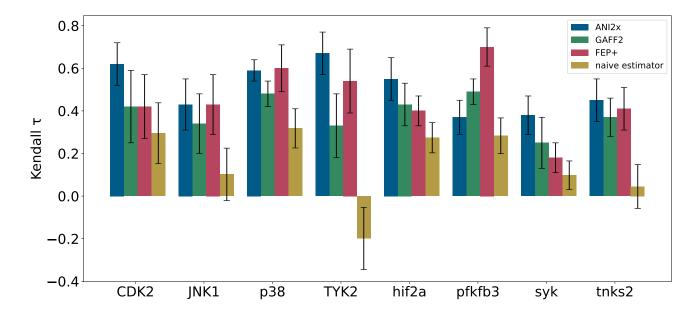


Figure S13: Comparison of Kendall tau for the $\Delta\Delta G$ s of each protein-ligand system calculated and compared against a naive estimator based on the difference of molecular weight between ligands