Supplemental Materials and Methods

Drosophila lines

All Set8, H4%%’, and His4r mutant genotypes were described in Crain et al. 2022 (Crain et al. 2022).
1(3)mbt®™7% and Df*P1"°% were generous gifts from Ruth Lehmann. 4HisC““"“is described in (Crain et al.

2024).

[(3)mbt CRISPR-Cas9 genome editing

The CRISPR-based Scarless Gene Editing System (Gratz et al. 2015) was used to generate the N-terminal
epitope-tagged alleles of /(3)mbt. Homology arms consisted of 1 kb upstream and downstream of the
[(3)mbt start codon were cloned into either pScarlessHD-sfGFP-DsRed (Addgene plasmid #80811) or
pScarlessHD-3xFLAG-DsRed (Addgene plasmid # 80820), which were gifts from Kate O'Connor-Giles.
[(3)mbt gRNA (GCCGTTTATGCTTAGAGCTATGG,; selected using the CRISPR Fly Design protocol
(Gratz et al. 2015; Bier et al. 2018) was cloned into pCFD2-dU6:2gRNA (Addgene plasmid # 49409; a
gift from Simon Bullock). Co-injection of repair template and gRNA plasmids into yw; nanos-Cas9/CyO
and screening for dsRed+ transformants was performed by BestGene (Chino Hills, CA). Excision was
performed by crossing to w*; PBac{GFP{ECFP.3xP3]=5pBlueEye.hsp70-PBac\T} (BDSC #32175) to
generate /(3)mbt“*" and 1(3)mbt™ ¢ alleles and confirmed by PCR and Sanger sequencing.
1(3)mbi"BactScarless-ds-Red} qegcribed here is I(3)mbt®™" prior to excision by PBac transposase, which results in

a 1810kb insertion between at the 1(3)mbt TSS (chr3R:27,271,759).
K-means clustering

K-means clustering was performed with a value of 6 as determined by identifying the elbow region using

within-cluster sum of squares (WCSS) method.

Gene ontology (GO) analysis
GO term analysis was performed using gost function in gprofiler2 (Raudvere et al. 2019; Kolberg et al.

2020). Semantic similarity graphs were generated using rrvgo (Sayols 2023).
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Transposon and piRNA analysis

Transposon and piRNA cluster expression was quantified with Salmon (Patro et al. 2017) as in the protein-
coding gene analysis except transcript indexes were built using Drosophila melanogaster transposon
(FlyBase), and piRNA cluster database (Rosenkranz 2016; Rosenkranz et al. 2022) sequences in addition
to protein-coding transcripts to ensure changes in transposon or piRNA clusters were not due differences
in sequences depth. Differential expression analysis was performed the same as with protein-coding genes.
Results tables were filtered for transposons and piRNAs and volcano plots were generated using ggplot

(Wickham 2016).
Set8"™" RNA-seq comparison

Paired-end FASTAQ files from 3 replicates of Set8™" (GSE217728) were passed to the quant function within
Salmon (Patro et al. 2017) for protein-coding genes, as in main text. Imported counts were normalized along
with counts from Set8™" (this study) using DESeq2 with a variance stabilizing transformation. Normalized
counts of Set8™" (GSE217728) and Set8™" this study were plotted using ggscatter with parameters add =
"reg.line" and cor.coef = TRUE using ggpubr R package. Plotted R-squared value and p-statistic calculated

via a Pearson correlation.
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Supplemental Tables

Supplemental Table S1. DEGs Figure 3

DEGs
abs(log2FoldChange) > 1 & p adj < 0.01
Genotype
Up Down Total
Set8"™" 962 (64.5%) 529 (35.5%) 1491
Set8R¢ 88 (68.2%) 41 (31.8%) 129
H4% 43 (47.3%) 48 (52.7%) 91
H4R 941 (77.9%) 267 (22.1%) 1208
Supplmental Table S2. DEGs Figure 3 overlap with H4K20mel
DEGs
K20mel
t
Genotpe status Percent of 7o of
Up Down Total total DEGs H4K20mel
genes
Sergl! K20mel 18 (38.8%) | 68 (61.2%) 86 5.8% 3.7%
Vs
Oregon-R
No K20mel | 944 (71.3%) | 461 (28.7%) 1405 94.2%
Set§RC K20mel 2 (46.7%) 2 (53.3%) 4 3.1% 0.2%
Vs
Set8""
No K20mel | 212 (62.2%) | 129 (47.8%) 125 96.9%
K204 K20mel NA NA 0 0% 0%
Vs
H4WT
No K20mel | 43 (42.5%) | 48 (57.5%) 91 100%
H4K20R
Vs K20mel 20 (55.9%) | 27 (44.1%) 47 3.9% 2.0%
H4""




No K20mel | 921 (82.4%) | 240 (17.6%) 1161 96.1%
Supplemental Table S6. DEGs Figure 5
DEGs
abs(log2FoldChange) > 1 & padj < 0.01
Genotype
Up Down Total
1(3)mbt“™%/Df
Vs 1519 (80.9%) 358 (18.1%) 1877
Oregon-R
I (3 ) m btPBac{Scar[ax‘x-dsRed/ /Df
Vs 2938 (83.9%) 564 (16.1%) 3502
Oregon-R
1(3)mbt""
Vs 1716 (92.2%) 146 (7.8%) 1862
Oregon-R
Supplemental Table S7. DEGs Figure 5 overlap with H4K20mel
DEGs
K20mel
renetype status Percent of 7 of
Up Down Total total DEGs H4K20mel
genes
K20mel | 50(67.6%) | 24 (32.4%) 74 3.9% 3.2%
1(3)mbt“™ 0 ys
Oregon-R
No 1469 o o
K20mel (81.5%) 334 (18.5%) 1803 96.1%
bac{Scarl
HEmbt e K20mel | 189 (76.2%) | 59 (23.8%) 248 7.1% 10.7%
Vs
Oregon-R No 2749 0 0
K20mel (84.5%) 505 (15.5%) 3254 92.9%




1(3)mbt""
Vs
Oregon-R

K20mel | 104 (93.7%) | 7 (6.3%) 11 6.0% 4.8%
No 1612 ) 0
K20mel | (92.1%) | 139(79%) 1751 94.0%
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Supplemental Fig. S1. A) Comparision of protein-coding gene counts from whole larval RNA-seq in
Set8™" (this study) and Set8™" (GSE217728). Each black dot indicates a single gene. Red line indicates
the regression line. R-square value and p-statistic calculated using a Pearson correlation. B-E) Volcano
plots depicting the relationship between log.FoldChange (x-axis) and logio adjusted p-value (y-axis) of
transposon (red) and piRNA cluster (blue) expression in indicated comparisons. Colored dots indicate
significantly increased or decreased transposon or piRNA cluster expression (log:FC < -1, FDR < 0.01)
relative to control and grey dots are unchanged relative to control. Text on the right and left of the plots
show number and percentage of transposons or piRNA clusters that are significantly increased or
decreased relative to control, respectively. Text in the middle of the plots shows number and percentage
of transposons and piRNA clusters that are unchanged relative to control.
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Supplemental Fig. S2. Semantic similarity tree map plot of terms from gene ontology analysis of HIGH
H4K20mel gene clusters in Figure 3.
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Supplemental Fig. S3. Semantic similarity tree map plot of terms from gene ontology analysis of LOW
H4K20mel gene clusters in Figure 3.
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Supplemental Fig. S4. Semantic similarity tree map plot of terms from gene ontology analysis of ALL

GENES gene clusters in Figure 3.



