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SUPPLEMENTAL METHODS 

Generating the simulated NA12878 dataset 

The simulated NA1278 dataset was generated using Squigulator, with the intention to emulate the real experimental 
dataset above. BCFtools consensus (v1.16) was used to incorporate high-confidence NA12878 variants (SNVs and 
indels) from Genome in a Bottle (v3.3.2) into the human reference genome sequence (hg38; FASTA format). To 
minimise computational resources for resulting benchmark experiments, we restricted this to Chr22. The commands 
used were as follows: 
bcftools consensus --haplotype 1 -f chr22.fa giab_na12878.vcf > hap1.fa 

bcftools consensus --haplotype 2 -f chr22.fa giab_na12878.vcf > hap2.fa 

cat hap1.fa hap2.fa > na12878_chr22.fa 

These commands generate two separate Chr22 reference sequences with variants incorporated from NA12878 
haplotype 1 and haplotype 2, respectively (homozygous variants are incorporated into both references). We then used 
Squigulator to generate simulated nanopore signal data from this custom diploid reference. To match the data to the 
NA12878 experimental dataset, we used the -x dna-r9-prom pre-set parameter configuration. We adjusted the read-
length mean, read-length standard deviation and sequencing depth so as to approximate the equivalent metrics 
measured from the experimental dataset. The command used was as follows: 
squigulator na12878_chr22.fa -o reads.blow5 -n 135000 -r 10800 -x dna-r9-prom -t 8 -K 4096 

Details of analysis workflow and evaluation with RTG 

Signal data was basecalled with ONT’s Guppy software (using the Buttery-eel wrapper for SLOW5 data access; Buttery-
eel v0.0.1 on Guppy v6.0.6). Basecalled reads were aligned to the hg38 reference genome with no alternate contigs 
using minimap2 (v2.17). Alignment statistics were derived with SAMtools stats (v1.9). Reference:read identity scores 
were retrieved using PAFtools, which is a companion tool in the minimap2 repository: 
samtools view reads.bam -h chr22 | paftools.js sam2paf -p - | awk '{print $10/$11}' 

Variant calling was performed separately using Nanopolish (v0.14.0) and Clair3 (v0.1-r11; r941_prom_sup_g5014). 
Variant evaluation was performed using rtg vcfeval against the GIAB NA12878 high confidence truth-set (the same 
callset that was used during the simulation) with QUAL field as the --vcf-score-field. The commands used for 
basecalling, alignment, variant calling and evaluation were as follows: 
buttery-eel -i reads.blow5 -o reads.fastq --guppy_bin ont-guppy-6.0.6/bin --port 5887 --config 
dna_r9.4.1_450bps_${MODEL}_prom.cfg  -x cuda:all --chunk_size 1500 --max_queued_reads 1000 # 
MODEL is fast or hac or sup 
 
minimap2 -x map-ont -a -t32 --secondary=no hg38noAlt.fa reads.fastq  > reads.sam 
$samtools sort -@32 reads.sam > reads.bam 
$samtools index reads.bam 
 
run_clair3.sh --threads=32 --include_all_ctgs --bam_fn=reads.bam --ref_fn=hg38noAlt.fa  --
platform=ont 
--model_path=r941_prom_sup_g5014/ --output=out/ --sample_name=reads --enable_phasing --
longphase_for_phasing 
  
nanopolish variants -o output.vcf -w ${1}  -r  reads.fastq -g hg38noAlt.fa -b reads.bam -p 2 -t 4 
-q cpg --fix-homopolymers 
  
 rtg RTG_MEM=32G vcfeval  -b highconf_PGandRTGphasetransfer.vcf.gz  -c merge_output.vcf.gz  -t 
hg38noAlt.sdf -o compare_clair --region chr22:1-50818468  -e 
highconf_nosomaticdel_noCENorHET7.bed  --vcf-score-field QUAL 
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Details of parameter exploration experiment 

For the parameter exploration experiments presented in Fig3 and Supplemental FigS3, we repeated the simulation 
and analysis workflows described above, each time varying the simulation parameters. We independently varied the 
dwell-time mean (--dwell-mean), dwell-time standard deviation (--dwell-std) and amplitude noise factor (--amp-noise), 
whilst holding the other parameters at the default value. Example commands are as follows: 
squigulator na12878_chr22.fa -o reads.blow5 -n 135000 -r 10800 -t 8 -K4096  -x dna-r9-prom  --amp-
noise <FACTOR> --dwell-mean <MEAN> --dwell-std <STD> 

For each simulation, the analysis workflow and evaluation was described exactly as above. 
  
Details for DeepSimulator comparison 

DeepSimulator generates simulated signal data via either of two approaches. The main mode is the ‘context-
dependent’ moded which uses a Bi-LSTM trained model to generate realistic nanopore signal data. The alternative 
mode is the ‘context-independent’ mode, which utilises a k-mer model provided by ONT. The context-independent 
mode has some methodological similarity to Squigulator, in that it uses a k-mer pore model, then applies noise to 
emulate real data. The two algorithms differ significantly in the way they apply noise to the data: 

1. Squigulator uses both the signal-level mean and signal-level standard deviation of the pore-model, where as 
DeepSimulator relies on the level mean only. 

2. Squigulator uses the standard deviation of each k-mer in the pore-model to generate noise, so the noise is k-mer 
specific. DeepSimulator applies noise at two levels: at the signal level and event level. However, this noise is determined 
by a single standard deviation for each of the two levels of noise and is not k-mer specific. This is an important 
difference, as we observe that different k-mers have quite different noise characteristics. 

3. DeepSimulator applies a low-pass signal to the signal, whereas Squigulator does not. 

4. The dwell time distribution in Squigulator uses a normal distribution, whereas DeepSimulator uses a mixture alpha 
distribution. 
 
DeepSimulator 1.5 main branch on Github (https://github.com/liyu95/DeepSimulator) has an install.sh script  for 
building a conda environment and setting up various other tools required. This script does not work with conda v4+ 
and thus modifications were made to successfully install DeepSimulator. Similarly, the deepsimulatr.sh script for 
running the DeepSimulator pipeline needed modifications to work with conda v4+. Basecalling was excluded from the 
pipeline when running benchmarks. 
To generate simulated libraries for comparison with Squigulator, the following commands were run: 
  
## for context-independent mode: 
deep_simulator.sh -i na12878_chr22_1.fa -o chr22_1_context_ind -n 67500 -l 10800 -c 16 
deep_simulator.sh -i na12878_chr22_2.fa -o chr22_2_context_ind -n 67500 -l 10800 -c 16 
## for context-dependent mode: 
deep_simulator.sh -i na12878_chr22_1.fa -o na12878_chr22_1_context_dep -n 67500 -l 10800 -M 0 
deep_simulator.sh -i na12878_chr22_2.fa -o na12878_chr22_2_context_dep -n 67500 -l 10800 -M 0 

  
The modified deep_simulator.sh scripts can be found here: https://github.com/Psy-Fer/DeepSimulator_benchmark 
  
 
  

https://github.com/Psy-Fer/DeepSimulator_benchmark
https://github.com/Psy-Fer/DeepSimulator_benchmark
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Supplemental Table S1: Comparison of minimap2 alignment statistics for experimental vs Squigulator NA12878 
datasets. 
Basecalled data was generated using Guppy HAC model. 
  

  NA12878 
experimental 

NA12878 
simulated 

sequences 135,083 134,999 

reads mapped 134,001 134,987 

reads unmapped 1,082 12 

reads MQ0 661 153 

total length 1,458,924,348 1,430,013,633 

bases mapped (cigar) 1,491,898,469 1,430,001,381 

mismatches 154,930,196 76,290,809 

error rate 1.04E-01 5.34E-02 

average length 10800 10592 

maximum length 187345 87341 

average quality 20.1 18 

insertions (1-base) 11,508,645 10,218,115 

deletions (1-base) 16,023,165 16,965,569 
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Supplemental Table S2: Comparison of Clair3 and Nanopolish SNV detection statistics for experimental vs 
Squigulator NA12878 datasets 
Basecalled data was generated using Guppy SUP model. 
  

Data Variant 
caller 

Score 
threshold 

True 
positives 
baseline 

False 
positives 

True 
positives 

False 
negatives 

precision recall f_score 

Experimen
tal data 

Clair3 None 34302 118 34304 160 0.9966 0.9954 0.996 

2.15 34302 118 34304 160 0.9966 0.9954 0.996 

Nanopolish None 32743 1532 32735 1719 0.9553 0.9501 0.9527 

20.9 32713 1479 32705 1749 0.9567 0.9492 0.953 

Simulated 
  

Clair3 None 33881 403 33883 581 0.9882 0.9831 0.9857 

6.48 33804 255 33807 658 0.9925 0.9809 0.9867 

Nanopolish None 33418 317 33409 1044 0.9906 0.9697 0.98 

21.7 33418 316 33409 1044 0.9906 0.9697 0.9801 
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Supplemental Table S3: Comparison of Squigulator and DeepSimulator run-time and memory usage. 
Run times and peak RAM usage were measured during simulations of NA12878 data from Chr22 at ~30X using 16 CPUs. 
  

  Squigulator Deep Simulator (context 
independent) 

Deep Simulator (context 
dependent) 

Execution time 156.194 
seconds 

3939.58 seconds 130.8 hours 

Peak RAM usage 0.477 GB 2.117 GB 49.39 GB 

  
  
  



 

 6 

 

Supplemental FigS1. Comparison of Squigulator and DeepSimulator to real experimental ONT data. Genome browser view shows basecalled 
reads (Guppy SUP model) aligned to the human reference genome (hg38). For each view, the top track shows real experimental data from ONT 
sequencing of NA12878 genomic DNA (R9.4.1 PromethION flow cells). The middle track shows simulated NA12878 data from Squigulator with -
x dna-r9-prom pre-set configuration. The bottom track shows simulated NA12878 data from DeepSimulator running in context-independent 
mode. Blue triangle markers show the location of NA12878 SNVs that were incorporated into the simulation, and are correctly detected by Clair3. 
Red triangle markers show the presence of reproducible errors in basecalled reads from DeepSimulator, which are erroneously detected as SNVs 
by Clair3. Purple triangle markers show the presence of reproducible errors in basecalled reads from Squigulator and experimental data, which 
are erroneously detected as SNVs by Clair3. (A) Shows examples of false-positive SNVs in DeepSimulator data, which are not apparent in real 
experimental data, nor Squigulator data. (B) shows examples of false-positive SNVs that are apparent in real experimental data and Squigulator 
data, but not present DeepSimulator data. 
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Supplemental FigS2. Comparison of SNV detection between Squigulator, DeepSimulator and Badread. (A) ROC curves evaluate accuracy of SNV 
detection with Clair3 with real experimental NA12878 dataset (orange) vs simulated data from Squigulator (red), DeepSimulator (purple) or 
Badread (green). (B) ROC curves evaluate concordance of SNVs detected with real experimental NA12878 dataset vs simulated data from 
Squigulator (red), DeepSimulator (purple) or Badread (green). Left vertical axes in ROC curves show absolute numbers of detected SNVs and right 
vertical axes show fraction of true-positives detected (i.e. recall or sensitivity). 
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Supplemental FigS3. Parameter exploration regarding Guppy basecalling sequencing accuracy. (A) Guppy basecalling accuracy, as measured by 
read:reference identity score distributions, on real experimental NA12878 data with Guppy’s FAST, HAC or SUP models. (B) Guppy basecalling 
accuracy, as measured by read:reference identity score medians, for repeated experiments in which the mean dwell time (--dwell-mean) is varied, 
while other parameters are held at default. Experiment was repeated with FAST, HAC and SUP basecalling models. Default value --dwell-mean=9 
(for R9.4.1 flow cell). (C) Accuracy of SNV detection, as measured by F-score, by Clair3 on the same datasets and basecalling models as above 
(colours are matched). 


