
1 
 

GeneMark-ETP significantly improves the accuracy of automatic annotation of 

large eukaryotic genomes  

Tomas Bruna 1,#,†, Alexandre Lomsadze 2,† and Mark Borodovsky 1,2,3,*  
1 School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA 
2 Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 

Atlanta, GA 30332, USA 
3 School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, 

GA 30332, USA 
# current address: U.S. Department of Energy, Joint Genome Institute, Lawrence Berkeley 

National Laboratory, Berkeley, CA 94720, USA 
* To whom correspondence should be addressed. Tel: +1 404 894 8432; Email: 

borodovsky@gatech.edu 
† The authors wish it to be known that, in their opinion, the first two authors should be 

regarded as Joint First Authors. 

 

Supplemental Material  

 

Supplemental Methods 

S1. GeneMarkS-TP: predicting genes in RNA transcripts with protein database support.  

S1.1 Corrections of the 5’ end gene predictions  

The CDS prediction in assembled transcripts is done by GeneMarkS-T (Tang et al. 2015). We have 
observed that GeneMarkS-T made very few errors when predicting 5’ complete CDSs, those 
having start codons within transcripts. On the other hand, the 5’ incomplete CDSs predicted by 
GeneMarkS-T with the start codons residing near the first nucleotide of a transcript carry more 
frequent errors that should be corrected. We need to discriminate between a correctly predicted 
5’ incomplete CDS and an incorrect 5’ incomplete CDS with a true complete CDS residing inside.  

Incomplete CDSs predicted by GeneMarkS-T in transcripts serve as queries in searches for 
homologous proteins (targets) in a reference protein database (e.g., by DIAMOND (Buchfink et 
al. 2015)). If among the similarity search hits (targets) exists at least one target that i/ is common 
for both queries and ii/ shows better support for the 5’ partial CDS, the 5’ partial CDS is predicted. 
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Otherwise, the CDS starting with the internal ATG is selected as the predicted complete CDS. If 
the sets of protein targets in the two searches (those with 25 best scores, the default setting) do 
not overlap, the 5’ partial CDS is selected. If both similarity searches do not produce targets, then 
the transcript is removed from consideration. 

The quantitative meaning of the better support provided by the protein alignment data is 
formalized by the following condition: 

(𝑏 − 𝑎) − (𝑎 − 1) > 1000 ∗ ln !!"!"#$%&'&

!!"$()'*(%
                        (S1)  

Here, a and b are the starting positions of the local alignments within the target protein for the 
longer and shorter protein queries respectively (see Supplemental Fig. S10 and S11). 𝐴𝐴𝐼#$%&'$(  
and 𝐴𝐴𝐼)*+#(,&, are, respectively, the percentages of amino acid identities in the alignments of 
the longer and shorter query proteins with the target protein. 𝐴𝐴𝐼#$%&'$(  is defined within the 
range “a-c”, 𝐴𝐴𝐼)*+#(,&, is defined within the range “b-c”, where c is the common end position 
of the two local pairwise alignments (Supplemental Figs. S10 and S11). 

If condition (S1) is fulfilled, the longer query is selected, the 5’ partial CDS. 
If condition (S1) is not fulfilled, the shorter query, a complete CDS is selected.  

Notably, “a-1” is the length of the unaligned N proximal part of the long query. 
A large “a-1” is likely to indicate the presence of a translated 5’ UTR region situated upstream of 
a complete gene. A small “b-a” indicates that an extension of the complete gene candidate does 
not extend the zone of two proteins similarity, again a support for the complete gene prediction.  

The larger value of the AAI ratio, the more conservation exists between query and target protein 
subsequences in the range “b-a”. Therefore, the increase in the AAI ratio favors the 5’ partial 
candidate. The AAI ratio is scaled using a logarithm with a factor of 1,000, i.e., 1,000*log(…). 

S1.2 Removal of the 3’ partial CDS predictions 

The 3' partial predictions were rarely observed. This low frequency could be expected since RNA-
Seq libraries used in our experiments, prepared with the poly-A tail enrichment of mRNA 
transcripts, should predominantly carry 3’ end complete transcripts (Zhao et al. 2014). Therefore, 
all the 3' partial genes were removed from the list of candidates for high-confidence CDSs. 

S1.3. Extensions of GeneMarkS-T CDS predictions to the longest ORFs 

Most eukaryotic genes are translated from the ATG start codon closest to the transcript 5' end 
(Kozak 1999). Still, the translation can be initiated at one of the downstream ATG starts, e.g., 
when the most upstream start has a weak translation initiation signal known as the Kozak pattern 
(Kozak 1987). GeneMarkS-T computes Kozak pattern score (with respect to the model with 
parameters derived in species-specific self-training) to account for the possibility of non-5'-most 
translation start codons. However, the Kozak pattern is relatively weak. We have observed that 
the predictions of CDSs with non-5'-most start codons carry a higher false-positive rate than the 
predictions of CDSs with 5'-most start codons. Therefore, we use the following rule. If a CDS 
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predicted in a transcript could be extended to the 5’-most start codon, and the translation of this 
extension is supported by alignment to a target protein, the extended predicted CDS is 
considered a candidate for an HC CDS along with the one with non-5'-most start.  

S1.4 Complete genes with uniform protein support 

In the described above similarity searches we have dealt with local pairwise alignments. Still, 
being interested in the accurate prediction of all protein-coding exons, we are concerned about 
uniform protein support showing evolutionary conservation over the whole protein-coding 
region. We say that a uniform protein support exists for a predicted complete CDS if there is a 
significant BLASTp alignment (with E-value better than 10-3) of the translation of the predicted 
CDS Q to a protein in a database T and the following condition is satisfied: 

(|𝑄-&$%& − 𝑇-&$%&| ≤ 5) ∧ (|(𝑄(,. − 𝑄,./) − (𝑇(,. − 𝑇,./)| ≤ 20)        (S2) 

Here, 	𝑄-&$%& , 𝑄,./, (𝑇-&$%& , 𝑇,./) are, respectively, the positions of the start and end of the 
alignment within the query protein (within the target protein); 𝑄(,., 𝑇(,. are the lengths of the 
query and target proteins, respectively (Supplemental Fig. S9). 

Experiments with multiple sequence alignments (MSA) of orthologous proteins demonstrated 
that internal sections of MSA were usually most conserved, while the N-proximal regions of the 
proteins were less conserved, and the least conserved regions in MSA were usually C-proximal 
regions. Therefore, testing for conservation of the N- and C- proximal regions provided sufficient 
evidence of evolutionary conservation across the pair of proteins. Condition S2 allows some 
misalignment at the alignment start and even to a larger degree at the alignment end. Predicted 
CDS is called a complete CDS with uniform protein support if a translated query protein has an 
alignment to at least one target (out of the best scored 25, the default setting) that satisfies 
condition S2.  All such predicted CDSs are included in the set of high-confidence CDSs. 

S1.5 Tests of conditions S1 and S2  

To assess the degree of improvement in the quality of gene sets selected with conditions S1 and 
S2, we used the following approach. We have prepared test sets of transcript sequences with 
complete and partial CDSs. The ground-truth labels were determined from reference 
annotations. GeneMarkS-T was run on these sequences. Next, for each transcript, the alignments 
of the longer and shorter queries with the target proteins were made, and the features used in 
conditions S1 and S2 were selected. We assessed the efficiency of the empirical rules for selecting 
partial and complete CDSs (Condition S1) as well as selecting CDSs with uniform protein support 
(Condition S2) with the efficiency of two other possible approaches. We trained random forest 
and logistic regression classifiers (with Python’s scikit-learn machine learning library) using all 
alignment features offered by DIAMOND's tabular output (Buchfink et al. 2015) i/ to classify CDS 
predictions as complete or partial (compared to the use of condition S1), ii/ to claim uniform 
protein support (Compared to the use of condition S2). The training sets for the two ML methods 
did not overlap with the test set. We observed that the use of conditions S1 and S2 produced 
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more accurate results than the results generated by the application of general-purpose random 
forest or logistic regression models (data not shown).  

S2. ProtHint filter for high-confidence gene candidates (in the ab initio category) 

Some GeneMarkS-T predicted CDSs not uniformly supported by proteins (and not satisfying 
Condition S2) could still be included in the set of HC CDSs. Such predictions should satisfy several 
conditions (see Main text), one of which is no contradiction to the ProtHint hints. To detect such 
a conflict, we proceed as follows. First, a CDS predicted by GeneMarkS-T is mapped to genomic 
DNA. Second, the translation of the initially predicted CDS and its genomic locus is used by 
ProtHint as the protein and CDS seeds to generate hints for the next round of CDS prediction in 
the same locus (Bruna et al. 2020). Next, the borders of the thus determined exons are compared 
to the ProtHint hints.  We say that the contradiction exists if (i) at least one of ProtHint’s introns 
overlaps a mapped exon, or (ii) a ProtHint defined stop codon overlaps an exon or intron of the 
mapped gene, or (iii) a ProtHint start codon overlaps an exon or intron of the mapped gene 
(except the start-to-start overlap). 

S3. Alternative HC CDSs 

An additional round of selection is made to subject CDSs that satisfy Condition S2 to a more 
stringent restriction. Let 𝐼)*+#(,&,

0  be a set of complete alternative CDSs of protein-coding gene 
𝑔 and 𝐼#$%&'$(

0  is a set of its alternative partial CDSs. Each isoform 𝑖 is assigned a score s(𝑖) -- the 
bitscore of its best hit to a protein in the protein database.  We compute the maximum score of 
all the complete CDS isoforms for a gene 𝑔, denoted as s:𝑔)*+#(,&,;.	A score of a CDS isoform 
s(𝑖) selected as complete HC CDS isoform must satisfy the inequality:  

s(𝑖) ≥ 0.8 × s:𝑔)*+#(,&,;				(𝑖 ∈ 𝐼)*+#(,&,
0 )                                (S3) 

Among the partial alternative CDSs of gene 𝑔, we determine the maximum score  s:𝑔#$%&'$(;.	If  
s:𝑔#$%&'$(;	is larger than s:𝑔)*+#(,&,;, the partial CDS isoform with this largest score is selected 
as the partial HC isoform. In this case, all the complete HC isoforms are removed. Otherwise, if 
s:𝑔#$%&'$(;, is lower than s:𝑔)*+#(,&,;, then only complete HC CDSs of gene 𝑔 are retained.   

If all alternative HC CDS candidates were defined ab initio, then the one with the longest protein-
coding region is selected as the predicted HC CDS.  

The numbers of predicted alternative CDSs are smaller than the numbers of annotated 
alternative CDSs (Table 3), because we predict alternative CDSs only for the HC genes, a subset 
of all genes. Moreover, the CDS isoforms of the HC genes must have full protein support 
(Condition S3) which further limits the number of predicted CDS isoforms. 

S4. Computing the species-specific repeat penalty parameter 

For each genome, after identification of the HC CDSs and the first iteration of the GHMM model 
training, we estimate species-specific parameter 𝑞. 
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We have the set of the HC CDSs, the first version of the full GHMM model, and the coordinates 
of the repeats identified in genomic DNA. GeneMark.hmm is run several times with different q 
values to predict CDSs in the genomic sequences containing the HC CDSs for which we compute 
the gene level F1 value (Supplemental Fig. S12-A). The value q delivering the F1 maximum was 
chosen as the species-specific repeat penalty. We have shown that this value is close to q found 
when the test set of CDSs is made based on genome annotation.  We also observed that the value 
q was robust with respect to the size of the HC CDSs set (data not shown).  

Moreover, we have found that the use of the exon level Sn led to more robust estimation of q in 
comparison with use of the gene level F1 (data not shown). Practically, we first find the 𝑞′ value 
maximizing the number of correctly predicted exons in the set of HC genes, 𝑒+$1 (Supplemental 
Fig. S12-B).  Then, the value q* at which 0.998	 × 𝑒+$1 exons are correctly predicted (marked for 
A. thaliana and D. melanogaster in panel A of Supplemental Fig. S12-A) is selected as q. To reduce 
the runtime of the repeat penalty parameter estimation, we use simulated annealing (Kirkpatrick 
et al. 1983).  

S5. Data sets used in computational experiments with MAKER2  

Three model organisms having different types of genome organization were selected: 
• Drosophila melanogaster – compact, GC homogeneous genome. 
• Danio rerio – large, GC homogenous genome 
• Mus musculus – large, GC heterogeneous genome 

 
The following information was available to MAKER2. 
 
Repeat coordinates predicted by RepeatMasker in the MAKER2 supported GFF format: 

rmasker_out2maker_gff.pl < genome.fasta.out > repeatmasker.gff 
 
Transcripts assembled from RNA-Seq by HISAT2/StringTie2 were provided as transcriptome input 
to MAKER2 (the same input as in the GeneMark-ETP runs) 

As a protein database input for both MAKER2 and GeneMark-ETP we used the OrthoDB proteins 
as follows: 

For Drosophila melanogaster, 274,283 proteins from 

Drosophila ananassae 
Drosophila biarmipes 
Drosophila bipectinate 
Drosophila busckii 
Drosophila elegans 
Drosophila erecta 
Drosophila eugracilis 
Drosophila ficusphila 
Drosophila grimshawi 
Drosophila hydei 
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Drosophila mojavensis 
Drosophila obscura 
Drosophila pseudoobscura 
Drosophila rhopaloa 
Drosophila serrata 
Drosophila takahashii 
Drosophila virilis 
Drosophila willistoni 
Drosophila yakuba 

For Danio rerio, 181,842 proteins from: 

Cyprinus carpio 
Sinocyclocheilus anshuiensis 
Sinocyclocheilus 6ahari 
Sinocyclocheilus rhinocerous 

For Mus musculus, 207,553 proteins from: 

Cavia porcellus 
Cricetulus griseus 
Fukomys damarensis 
Ictidomys tridecemlineatus 
Marmota marmota marmota 
Mesocricetus auratus 
Mus caroli 
Mus 6ahari 
Octodon degus 
Rattus norvegicus 

MAKER2 was executed with the gene finders AUGUSTUS, GeneMark.hmm and SNAP. 
The following model files were used by the gene finders: 

For Drosophila melanogaster: 
AUGUSTUS – “fly” from the AUGUSTUS distribution. 
GeneMark.hmm – model created by GeneMark-ETP. 
SNAP – “D.melanogaster.hmm” from the SNAP distribution. 

For Danio rerio: 
AUGUSTUS – the “zebrafish” model from the AUGUSTUS distribution. 
GeneMark.hmm – the model created by GeneMark-ETP. 
SNAP – the model trained according to instructions from the SNAP distribution. The 
training set matched the test set used for evaluation of the MAKER2 performance.  

For Mus musculus: 
AUGUSTUS –  the “human” model from the AUGUSTUS distribution. 
GeneMark.hmm – the ‘medium GC’ model created by GeneMark-ETP for the Mus 
musculus  genome. 
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SNAP – the “mam46.hmm” mammalian model for the medium GC bin from SNAP 
distribution. 

MAKER2 was executed with the following settings in the MAKER2 configuration file:  
genome=genome.fasta 
est=transcriptome.fasta 
protein=proteindb.fasta 
model_org=   #empty 
rm_gff=repeatmasker.gff 
snaphmm=snap.model 
gmhmm=genemark.mod 
augustus_species=model_name 
est2genome=1 
protein2genome=1 
alt_splice=1 
always_complete=1 
keep_preds=1 for D. melanogaster 
keep_preds=0 for D. rerio and M. musculus 
split_hit=20000 
max_dna_len=1000000 

A LINUX node with 96 cores was used to execute MAKER2 in MPI mode at the Azure cloud.  

The gene prediction accuracy of MAKER2 and GeneMark-ETP (Supplemental Table S5) was 
estimated as described in the main text (see Methods).  
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Supplemental Figures 

 

Supplemental Figure S1. Schematics showing the transcript processing steps in GeneMarkS-TP 
(see Fig. 2). 

 

 

Supplemental Figure S2. Schematics of the generation of HC CDS candidates in GeneMarkS-TP 
(the refinement block in Fig. 2). 
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Supplemental Figure S3. Schematics of the selection of HC CDSs in GeneMarkS-TP (see Fig.2). 

 

 

Supplemental Figure S4. Schematics of the repetitive sequence identification and processing. De 
novo repeats prediction module (shown on the left) is not a part of GeneMark-ETP (see Fig.1). 
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Supplemental Figure S5. Workflow of the training of the GHMM model used in GeneMark.hmm 
(see Fig.1). 

 

 
Supplemental Figure S6. Schematics of the identification and the use of the non-HC segments 
in the GHMM training and CDS prediction (see Fig.1). 
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Supplemental Figure S7. Numbers of protein-coding genes predicted at initial stages of running 
GeneMark-ETP (i) genes predicted in assembled transcripts by GeneMarkS-T (black dots), (ii) HC 
genes predicted by GeneMarkS-TP with the ‘Order excluded’ protein database (orange circles) 
and with the ‘Species excluded’ database (blue crosses).  The number of genes annotated in each 
genome is taken from the RefSeq annotation (Supplemental Table S7). The numerical 
designations of the species are as follows: 1 - C. elegans, 2 - A. thaliana, 3 - D. melanogaster, 4 - 
S. lycopersicum, 5 - D. rerio, 6 - G. gallus, 7 - M. musculus. 
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Supplemental Figure S8. Gene level accuracy of the seven gene prediction tools (see legends to 
Figs. 3-4). Compared to the figures in the main text, where we used the ‘Order excluded’ protein 
databases for each species, here we used the larger ‘Species excluded’ databases. 
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Supplemental Figure S9. Depictions of the alignment features used in Condition S2. 

 

 

Supplemental Figure S10. Illustration for the case when Condition S1 is not fulfilled, and the 
GeneMarkS-T prediction is classified as complete CDS. Here a and b are positions of the starts of 
the local alignments of respective longer and shorter protein queries, while c is the end position 
of the local pairwise alignments. 

 

 

Supplemental Figure S11. Illustration for the case when Condition S1 is fulfilled, and the 
GeneMarkS-T gene prediction is classified as a 5’ partial CDS. Here a, b and c are defined as in 
Supplemental Fig. S9.  
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Supplemental Figure S12. Results of analysis of the genome GC content inhomogeneity. For each 
genome, the graphs show the sizes of the narrowest GC% bin in the genome-specific GC content 
distribution (Y axis) that would contain the number of genes corresponding to a fixed fraction of 
the total number of annotated genes (X axis). It can be seen from the graph that the G. gallus 
genome is the most GC heterogeneous, followed by the M. musculus genome. The remaining two 
genomes are GC homogeneous: 80% of the whole gene complement can be placed into the GC 
bin with 10% width. 
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Supplemental Figure S13. A. Dependence of the gene level Sn, Pr, and F1 values (determined for 
the full sets of HC CDSs) on the repeat penalty parameter q (natural log) for genomes of 
A. thaliana and D. melanogaster. B. Dependence of fraction (%) of correctly predicted exons of 
the HC CDSs (Sn) on the repeat penalty parameter q for the same genomes as in A. (See Section 
S4 of Suppl. Materials) 
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