
Supplementary materials 

S1. Datasets 

Tubule segmentation on kidney WSIs 

Cohort description 

Kidney WSIs were obtained from the Nephrotic Syndrome Study Network (NEPTUNE) digital pathology 

repository. NEPTUNE is a multisite observational cohort study of children and adults with glomerular 

disease, enrolled at the time of a clinically indicated kidney biopsy1-4. The renal biopsies were 

processed in 38 different pathology laboratories, collected, and shipped to the NEPTUNE image 

coordinating center, where glass slides were centrally scanned by two scanners (Aperio Scanscope 

AT2, Leica Biosystems Inc., Buffalo Groove, IL, USA and Hamamatsu Nanozoomer 2.0 HT, 

Hamamatsu Corporation, Hamamatsu City, Japan; both with an Olympus UPlan-SApo 20X objective, 

with a 0.75 NA, and image doubler) and subsequently uploaded into the NEPTUNE DPR. In this use 

case, 116 Periodic acid–Schiff (PAS) stained WSIs from 25 sites were included. WSIs were chosen 

such that each patient contributed one randomly selected WSI.  

Ground-truth generation 

For each WSI, 3 ROIs (region of interest) from the cortical area containing renal tubules were randomly 

selected and manually cropped as 3000 x 3000 tiles at 40x digital magnification. A pre-trained DL 

model5 was implemented on each tile to acquire an approximate tubule segmentation result. Two renal 

pathologists then manually evaluated all tubule segmentation results and revised them until all the tiles’ 

results reached at least less than 5% FN/FP at the tubule level. Supplementary Figure 5 shows one 

example of the tubule segmentation use case. 

 



Colon adenocarcinoma classification on colon WSIs 

Cohort description 

Colon WSIs were obtained from The Cancer Genome Atlas (TCGA)  

Colon Adenocarcinoma (COAD) cohort, a publicly available repository 

(https://portal.gdc.cancer.gov/projects/TCGA-COAD). 26 WSIs were excluded during the quality control 

(QC) process because of low base magnification or bad quality. For this use case, a total of 352 whole 

slide images (WSIs) were selected, all of which contained diagnostic information indicating the 

presence of 'Adenocarcinoma, NOS'. WSIs were chosen such that each patient contributed one WSI, 

if a patient has multiple slides, the slide of the highest quality (as determined by the quality control 

pipeline described in previous work1) was chosen. 

Ground-truth generation 

For every WSI, a senior pathologist manually annotated representative areas of colorectal 

adenocarcinoma to be used in an image-based molecular classification task6, and the training ground-

truth patches were generated based on this expert annotation. For the patch sampling process, 

HistoQC7 was used to generate the tissue mask image. Supplementary Figure 6-A. (1) illustrates this 

process for a tissue mask image generated by HistoQC for a specific patient (id: TCGA-F4-6805-01Z). 

All the potential patches (256 x 256 at 5x magnification) were generated from the WSI before being 

assigned a ground truth label via tessellation. Tessellation here, in the context of processing a WSI, 

means dividing a large image into smaller, non-overlapping, square patches. Supplementary Figure 

6-A. (2) shows all the potential patches mapped back to the thumbnail. Patches were retained for 

training if (a) >90% area was intersected with the detected tissue mask, and (b) color density maximum 

differences for all the 3 color channels were greater than 20. Otherwise, they were labeled as ‘non-

informative’ and excluded from the cohort. Patches were labeled as positive for cancer if >90% of the 

patch fell within the ground-truth annotation for cancer. Otherwise, the patch was labeled as negative 

for cancer. Supplementary Figure 6-B shows representative cancer and non-cancer patches from one 

WSI, which were utilized for the experimental evaluation of CohortFinder. 

https://portal.gdc.cancer.gov/projects/TCGA-COAD


 

Rectal cancer segmentation on MRIs 

Cohort description 

MRI scans were acquired from 166 patients diagnosed with rectal adenocarcinoma between August 

2007 and October 2015, who had been retrospectively accrued from two institutions (University 

Hospitals Cleveland Medical Center and Cleveland Clinic, OH, USA). Based on IRB approval, informed 

consent was waived as all data had been deidentified prior to analysis. These MRI scans had been 

acquired prior to neoadjuvant chemoradiation treatment for primary staging of the rectal tumor, via a 

T2-weighted turbo spin echo sequence (T2w) in the axial plane on ten unique scanners from two 

different manufacturers (Philips and Siemens). Despite scanner variability, imaging parameters were 

fairly consistent within each institution (in-plane resolution: 0.313-1.172mm, slice thickness: 3.0-8.0mm, 

repetition time: 2400-11800msec, echo time: 64-184msec). 

Ground-truth generation 

Annotations of rectal tumor extent on each T2w MRI dataset were obtained from a radiologist at each 

institution, who had access to clinical, pathologic, and radiology reports, as well as any additional 

imaging planes and sequences. Radiologists annotated the entirety of the gross tumor volume on all 

2D slices between the peritoneal reflection and the top of the anal canal using 3D Slicer8. To minimize 

the effect of resolution differences within this cohort, all patient datasets and corresponding tumor 

annotations were resampled to a common resolution of 1.00 x 1.00 x 1.00mm. After resampling, 2D 

slices without tumor annotations were excluded, while the remaining 7897 2D slices were cropped to a 

uniform 128x128 bounding box centered on the tumor region. 

 



S2. Results 

Tubule segmentation 

Quantitative result 

In the external testing set (n=25 patients), the best F1 overall score results were from BC partitioning 

(0.95±0.03), followed by AC (0.94±0.04), and finally WC (0.93±0.09), with statistically significant 

differences between WC and AC (p<0.01) as well as between WC and BC (p<0.01). While no 

statistically significant differences were observed between AC and BC (p=0.71), AC resulted in a larger 

range of F1 scores (the violin plot in Figure 2-A), a lower average F1 value, and a higher standard 

deviation in F1 scores (the table in Figure 2-A shows the overall average ± standard deviation results 

for external testing results in terms of all the measurements for all the 3 use cases) compared to BC. 

This suggests less robust performance for AC compared to BC.  

Qualitative result.  

In Figure 2-A and Supplementary Figure 7-A, WC partitioning results in a relatively higher number of 

false negative (FN) areas (overlayed green regions) in comparison to AC and BC. Additionally, AC 

yielded a marginally higher number of false positive (FP) and FN regions (highlighted in fuchsia and 

green, respectively) when compared to BC.  

 

Colon adenocarcinoma classification 

Quantitative result 

In the external testing dataset (n=21 patients), the F1 score is seen to be significantly higher when 

comparing BC and WC (0.87±0.11 vs 0.64±0.32, p<0.01) as well as between AC and WC (0.81±0.21 

vs 0.64±0.32, p<0.01). Though no significant differences were found between BC and AC (0.87±0.11 

vs 0.81±0.21, p = 0.09), the violin plots in Figure 2-B and Supplementary Figure 8 suggest that BC 

has a more compact F1 score distribution, a higher average F1 score, as well as a lower standard 

deviation compared to AC.  



Qualitative result.  

In Figure 2-B and Supplementary Figure 7-B, classification heatmaps produced via BC partitioning 

exhibit the highest degree of similarity with the ground-truth mask. WC partitioning resulted in a 

significant underprediction of the tumor area, with a considerable number of false negative (FN) patches 

within normal tissue. AC partitioning yielded a slightly smaller prediction of tumor area when compared 

to BC.  

 

Rectal cancer segmentation 

Quantitative result 

In the external testing dataset (n=10 patients), BC models resulted in the highest overall F1 score of 

0.68±0.20, while the AC and WC models yielded significantly lower overall F1 scores of 0.63±0.23 

(p<0.01 vs BC) and 0.62 ±0.20 (p<0.01 vs BC), respectively (Figure 2-C shows these measurements 

for the rectal cancer segmentation task). The markedly higher standard deviation in F1 scores of the 

WC models is illustrated in the violin plots of Supplementary Figure 8-C. Notably, the bottom tails of 

the F1 score distribution for WC models (green) are seen to be longer and wider in comparison to those 

of the AC (red) and BC models (blue). This suggests that tumor segmentations by WC models were 

more varied and shared little overlap with expert annotations, resulting in marked variations in model 

performance compared to AC and BC. 

Qualitative result.  

Figure 2-C and Supplementary Figure 7-C depict representative tumor segmentations obtained via 

WC, AC, and BC partitioning schemes compared to radiologist annotations for two different patients. 

BC tumor segmentations are seen to consistently overlap with expert delineations, while AC models 

appear to slightly over-segment the tumor region. By comparison, the WC model is seen to have a 

more varied performance in terms of under-segmenting or over-segmenting the tumor. 

 



S3. Batch-effect severity evaluation (BE score) 

To assist users in quantifying the severity of batch effects, we conducted a preliminary evaluation of 

clustering metrics to determine the segregation of detected BE-groups: (a) Silhouette coefficient, (b) 

Davies-Bouldin index, and (c) Calinski-Harabasz index9. These scores are now reported both the 

CohortFinder output files and in the user interface of MRQy and HistoQC. Initial experimental evaluation 

of the BE score were conducted using: (a) the entire cohort (where significant BEs may be expected to 

be present as it is multi-institutional), (b) site D5 (where fewer/minimal BEs are likely to be present, uni-

institutional). Our preliminary results show that cohorts exhibiting the more severe BEs exhibit higher 

BE scores (see Supplementary Figure 9). In future work, we will investigate the impact of these 

metrics on downstream applications, such as for the selection of k (i.e., BE-groups).  

  



Supplementary - Figures and Tables 

Task Modality Dataset Description Evaluation 
metric 

Tubule 
segmentation 

Digital 
Pathology 

 
PAS-stained WSI 

NEPTUNE 

N=116 WSIs were selected, originating from 
25 different institutions. Each WSI 

represents one single patient. From each 
site, 1 patient is randomly chosen for the 

external testing dataset.  
Precision 

Recall 
Accuracy 

IOU 
F1 score 

 

Colon 
adenocarcinoma 

classification 

Digital 
Pathology 

 
H&E-stained WSI 

TCGA-
COAD 

N = 352 cases were selected and diagnosed 
as ‘Adenocarcinoma, NOS’, originating from 

21 different institutions. From each site, 1 
patient is randomly chosen for the external 

testing dataset. 

Rectal Cancer 
segmentation 

Radiographic 
Imaging 

 
MR 

image 

University 
Hospitals 

and 
Cleveland 

Clinic 

N = 166 patients’ MRIs were accrued from 
University Hospitals Cleveland Medical 

Center and Cleveland Clinic, originating from 
10 different MRI scanner machines.10 

patients (1 per MRI scanner) were chosen 
for the external testing dataset. 

Supplementary Table 1. List of use cases and associated experiments employed for the evaluation of CohortFinder. This 
table encompasses three distinct use cases: 1) Tubule segmentation within the NEPTUNE cohort (Pathology), 2) 
Classification of colon adenocarcinoma in the TCGA-COAD cohort (Pathology), and 3) Segmentation of rectal cancer using 
cohorts accrued from University Hospitals and Cleveland Clinic (Radiology-MRI).  

Metric Formula 

Precision 
𝑡𝑝

𝑡𝑝 + 𝑓𝑝	

Recall 
𝑡𝑝

𝑡𝑝 + 𝑓𝑛	

Accuracy 
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛	

IOU (intersection over union) 
𝑡𝑝

𝑡𝑝 + 𝑓𝑛 + 𝑓𝑝	

F1 score 
2	 × 𝑅𝑒𝑐𝑎𝑙𝑙	 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 	

Supplementary Table 2. Formulas for Quantitative Assessment Metrics. This table provides the mathematical expressions 
used to compute five key metrics for performance evaluation: Precision, Recall, Accuracy, Intersection Over Union (IOU), 
and the F1 Score. Definitions included False Positives (FP), False Negatives (FN), True Positives (TP), True Negatives 
(TN). 

  



   Precision Recall Accuracy IoU F1 score 

Tubule 
segmentation 

Internal 
testing 
results 

WC 0.93±0.04 0.91±0.14 0.93±0.06 0.85±0.13 0.91±0.10 
AC 0.93±0.04 0.94±0.08 0.94±0.03 0.88±0.08 0.93±0.05 
BC 0.92±0.05 0.95±0.06 0.94±0.03 0.88±0.07 0.93±0.05 

External 
testing 
results 

WC 0.94±0.02 0.92±0.12 0.93±0.05 0.87±0.11 0.93±0.09 
AC 0.94±0.02 0.95±0.06 0.95±0.03 0.89±0.06 0.94±0.04 
BC 0.93±0.02 0.96±0.04 0.95±0.03 0.90±0.05 0.95±0.03 

Colon 
adenocarcinoma 
classification 

Internal 
testing 
results 

WC 0.66±0.38 0.56±0.40 0.56±0.32 0.46±0.36 0.54±0.38 
AC 0.89±0.18 0.85±0.23 0.84±0.18 0.77±0.24 0.84±0.20 
BC 0.88±0.18 0.88±0.21 0.85±0.16 0.79±0.23 0.86±0.19 

External 
testing 
results 

WC 0.78±0.26 0.66±0.36 0.66±0.25 0.55±0.32 0.64±0.32 
AC 0.90±0.12 0.79±0.25 0.81±0.2 0.73±0.24 0.81±0.21 
BC 0.89±0.13 0.88±0.15 0.86±0.13 0.79±0.16 0.87±0.11 

Rectal cancer 
segmentation 

Internal 
testing 
results 

WC 0.69±0.26 0.66±0.28 0.97±0.05 0.48±0.23 0.62±0.24 
AC 0.61±0.29 0.74±0.27 0.95±0.06 0.46±0.23 0.60±0.24 
BC 0.67±0.25 0.75±0.26 0.96±0.05 0.51±0.22 0.64±0.22 

External 
testing 
results 

WC 0.62±0.29 0.73±0.30 0.98±0.01 0.50±0.25 0.62±0.27 
AC 0.59±0.27 0.83±0.21 0.97±0.05 0.50±0.23 0.63±0.23 
BC 0.63±0.24 0.84±0.18 0.98±0.01 0.55±0.21 0.68±0.20 

Supplementary Table 3. Summary of performance measures for 3 different use cases, reported on both internal and external 
testing datasets. For the F1 score, the best performance is highlighted in red, and the worst performance is highlighted in 
blue. 

 
Tubule segmentation 

  Train Test Precision Recall Accuracy IoU F1 

Internal 
testing 
results 

Worst 
Case 

WC_1 WC_2 0.94±0.03 0.92±0.08 0.94±0.04 0.87±0.08 0.93±0.05 
WC_3 0.92±0.05 0.94±0.05 0.94±0.03 0.87±0.07 0.93±0.04 

WC_2 WC_1 0.93±0.04 0.82±0.24 0.89±0.10 0.77±0.22 0.84±0.19 
WC_3 0.92±0.06 0.94±0.06 0.94±0.03 0.87±0.08 0.93±0.05 

WC_3 WC_1 0.93±0.03 0.87±0.18 0.91±0.07 0.81±0.16 0.88±0.13 
WC_2 0.92±0.03 0.94±0.06 0.94±0.03 0.88±0.07 0.93±0.04 

Average 
Case 

AC_1 AC_2 0.93±0.03 0.95±0.05 0.95±0.02 0.88±0.05 0.94±0.03 
AC_3 0.92±0.05 0.90±0.14 0.92±0.05 0.83±0.13 0.90±0.10 

AC_2 AC_1 0.93±0.03 0.96±0.03 0.95±0.02 0.90±0.04 0.94±0.03 
AC_3 0.92±0.05 0.93±0.09 0.93±0.04 0.86±0.10 0.92±0.06 

AC_3 AC_1 0.93±0.03 0.96±0.03 0.95±0.02 0.90±0.04 0.94±0.03 
AC_2 0.93±0.03 0.95±0.03 0.95±0.02 0.89±0.04 0.94±0.02 

Best 
Case 

BC_1 BC_2 0.92±0.04 0.93±0.08 0.94±0.03 0.87±0.08 0.93±0.05 
BC_3 0.93±0.03 0.92±0.09 0.93±0.05 0.86±0.09 0.92±0.06 

BC_2 BC_1 0.91±0.06 0.97±0.03 0.95±0.02 0.89±0.06 0.94±0.04 
BC_3 0.92±0.04 0.95±0.06 0.94±0.04 0.88±0.07 0.93±0.04 

BC_3 BC_1 0.91±0.06 0.96±0.03 0.94±0.03 0.88±0.07 0.94±0.04 
BC_2 0.92±0.04 0.95±0.05 0.94±0.02 0.87±0.06 0.93±0.04 

External 
testing 
dataset 

Worst 
Case 

WC_1  0.94±0.02 0.94±0.07 0.94±0.05 0.89±0.07 0.94±0.04 
WC_2  0.94±0.02 0.90±0.17 0.93±0.05 0.85±0.16 0.91±0.13 
WC_3  0.94±0.02 0.93±0.10 0.93±0.05 0.87±0.09 0.93±0.06 

Average 
Case 

AC_1  0.94±0.03 0.93±0.10 0.94±0.04 0.87±0.09 0.93±0.06 
AC_2  0.93±0.02 0.95±0.05 0.95±0.02 0.89±0.05 0.94±0.03 
AC_3  0.94±0.03 0.95±0.04 0.95±0.03 0.89±0.04 0.94±0.02 

Best 
Case 

BC_1  0.94±0.02 0.94±0.07 0.94±0.04 0.88±0.06 0.94±0.04 
BC_2  0.93±0.03 0.97±0.02 0.95±0.02 0.90±0.04 0.95±0.02 
BC_3  0.92±0.03 0.96±0.03 0.94±0.02 0.89±0.04 0.94±0.02 

 
 
 

Colon adenocarcinoma classification 
  Train Test Precision Recall Accuracy IoU F1 



Internal 
testing 
results 

Worst 
Case 

WC_1 WC_2 0.92±0.19 0.85±0.24 0.83±0.22 0.81±0.24 0.87±0.22 
WC_3 0.68±0.33 0.33±0.34 0.57±0.24 0.29±0.29 0.37±0.33 

WC_2 WC_1 0.76±0.27 0.85±0.22 0.69±0.25 0.64±0.28 0.75±0.23 
WC_3 0.53±0.30 0.68±0.36 0.52±0.24 0.43±0.30 0.54±0.31 

WC_3 WC_1 0.78±0.32 0.62±0.31 0.65±0.29 0.55±0.30 0.66±0.30 
WC_2 0.28±0.44 0.02±0.07 0.12±0.15 0.02±0.07 0.03±0.10 

Average 
Case 

AC_1 AC_2 0.89±0.22 0.79±0.29 0.82±0.20 0.73±0.29 0.80±0.27 
AC_3 0.92±0.15 0.82±0.24 0.83±0.18 0.77±0.24 0.84±0.21 

AC_2 AC_1 0.85±0.17 0.89±0.20 0.85±0.17 0.77±0.22 0.85±0.18 
AC_3 0.89±0.17 0.88±0.18 0.85±0.16 0.80±0.21 0.87±0.17 

AC_3 AC_1 0.86±0.18 0.87±0.22 0.85±0.17 0.78±0.23 0.85±0.20 
AC_2 0.89±0.17 0.85±0.22 0.84±0.17 0.77±0.23 0.84±0.19 

Best 
Case 

BC_1 BC_2 0.91±0.17 0.90±0.18 0.89±0.14 0.83±0.21 0.89±0.18 
BC_3 0.91±0.14 0.88±0.17 0.86±0.15 0.81±0.20 0.88±0.15 

BC_2 BC_1 0.88±0.17 0.84±0.26 0.82±0.18 0.75±0.26 0.82±0.23 
BC_3 0.90±0.16 0.88±0.18 0.86±0.16 0.80±0.21 0.87±0.16 

BC_3 BC_1 0.82±0.21 0.88±0.23 0.84±0.16 0.76±0.25 0.84±0.21 
BC_2 0.85±0.20 0.88±0.23 0.84±0.19 0.78±0.26 0.85±0.22 

External 
testing 
dataset 

Worst 
Case 

WC_1  0.89±0.13 0.86±0.18 0.84±0.13 0.77±0.19 0.86±0.15 
WC_2  0.45±0.38 0.26±0.35 0.31±0.22 0.19±0.25 0.26±0.31 
WC_3  0.89±0.13 0.79±0.27 0.79±0.22 0.71±0.26 0.80±0.23 

Average 
Case 

AC_1  0.89±0.14 0.75±0.29 0.78±0.23 0.69±0.28 0.77±0.26 
AC_2  0.90±0.12 0.80±0.23 0.81±0.21 0.73±0.23 0.82±0.19 
AC_3  0.92±0.11 0.82±0.22 0.84±0.17 0.76±0.21 0.84±0.16 

Best 
Case 

BC_1  0.91±0.12 0.92±0.09 0.89±0.11 0.85±0.14 0.91±0.09 
BC_2  0.90±0.13 0.87±0.19 0.84±0.15 0.78±0.18 0.86±0.13 
BC_3  0.86±0.14 0.85±0.21 0.83±0.15 0.76±0.22 0.84±0.17 

 
Rectal cancer segmentation 
   Train Test Precision Recall Accuracy IoU F1 

Internal 
testing 
results 

Worst 
Case 

WC_1 WC_2 0.70±0.24 0.67±0.27 0.97±0.06 0.47±0.21 0.61±0.22 
WC_3 0.69±0.26 0.68±0.30 0.96±0.07 0.50±0.24 0.63±0.26 

WC_2 WC_1 0.74±0.26 0.56±0.27 0.97±0.03 0.45±0.22 0.59±0.24 
WC_3 0.66±0.29 0.60±0.30 0.96±0.04 0.45±0.24 0.58±0.26 

WC_3 WC_1 0.70±0.25 0.69±0.26 0.97±0.02 0.52±0.23 0.65±0.23 
WC_2 0.65±0.27 0.77±0.25 0.97±0.04 0.51±0.22 0.64±0.22 

Average 
Case 

AC_1 AC_2 0.72±0.25 0.68±0.25 0.98±0.02 0.50±0.21 0.64±0.21 
AC_3 0.73±0.25 0.64±0.27 0.96±0.05 0.51±0.22 0.64±0.23 

AC_2 AC_1 0.62±0.27 0.75±0.29 0.96±0.03 0.48±0.23 0.61±0.24 
AC_3 0.70±0.26 0.70±0.30 0.96±0.07 0.50±0.23 0.63±0.23 

AC_3 AC_1 0.43±0.26 0.82±0.24 0.92±0.07 0.37±0.22 0.50±0.25 
AC_2 0.47±0.27 0.83±0.22 0.94±0.06 0.40±0.23 0.54±0.24 

Best 
Case 

BC_1 BC_2 0.69±0.26 0.72±0.28 0.97±0.06 0.52±0.23 0.64±0.24 
BC_3 0.74±0.23 0.68±0.29 0.96±0.07 0.51±0.23 0.64±0.23 

BC_2 BC_1 0.71±0.23 0.73±0.25 0.98±0.02 0.54±0.21 0.68±0.21 
BC_3 0.74±0.22 0.68±0.28 0.96±0.07 0.51±0.23 0.64±0.22 

BC_3 BC_1 0.57±0.25 0.86±0.19 0.96±0.02 0.50±0.22 0.63±0.22 
BC_2 0.56±0.27 0.84±0.20 0.96±0.04 0.47±0.22 0.61±0.22 

External 
testing 
dataset 

Worst 
Case 

WC_1  0.66±0.26 0.71±0.28 0.98±0.01 0.52±0.24 0.64±0.24 
WC_2  0.58±0.36 0.60±0.37 0.98±0.01 0.43±0.29 0.54±0.33 
WC_3  0.62±0.24 0.86±0.18 0.98±0.02 0.55±0.21 0.69±0.20 

Average 
Case 

AC_1  0.66±0.24 0.81±0.16 0.98±0.01 0.55±0.20 0.69±0.19 
AC_2  0.65±0.27 0.79±0.24 0.98±0.01 0.53±0.23 0.66±0.23 
AC_3  0.45±0.26 0.88±0.19 0.94±0.07 0.42±0.23 0.55±0.25 

Best 
Case 

BC_1  0.65±0.25 0.81±0.22 0.98±0.01 0.56±0.22 0.69±0.22 
BC_2  0.68±0.22 0.82±0.18 0.98±0.01 0.58±0.19 0.71±0.17 
BC_3  0.56±0.24 0.90±0.13 0.97±0.02 0.52±0.21 0.65±0.21 

Supplementary Table 4. Detailed performance measures for each experiment for all three use cases. For the F1 score, 
the best performance is highlighted in red, and the worst performance is highlighted in blue. 



Acronym  Full word  Description  

CF  CohortFinder  The name of the introduced open-source tool.  
BE  Batch effect  Batch effect occurs when non-biological factors in an 

experiment cause systematic changes in the data produced 
by the experiment.  

WSI  Whole slide images  High-resolution image obtained from scanning a complete 
histological slide.  

DP  Digital pathology  A field of pathology that focuses on data management and 
analysis of digitalized slide images.  

PAS Periodic acid–Schiff 
stain 

A staining method used in histology to detect 
polysaccharides such as glycogen in tissues. It results in a 

magenta color for the structures it stains. 
H&E Hematoxylin and 

eosin stain 
A commonly used stain in histology that shows a broad 
array of cellular components. Hematoxylin stains nuclei 

blue, while eosin stains the cytoplasm pink. 
MRI  Magnetic Resonance 

Imaging  
A noninvasive medical imaging test that produces detailed 

images of almost every internal structure in the human 
body, including the organs, bones, muscles, and blood 

vessels.  
CT  Computed 

Tomography  
An imaging method that uses x-rays to create detailed 

pictures of cross-sections of the body, useful in diagnosing 
diseases and conditions such as cancers.  

PET  Positron Emission 
Tomography  

A type of nuclear medicine imaging that measures 
metabolic activity in tissues, often used in detecting cancer, 

brain disorders, and heart conditions.  
ML  Machine learning  The study and construction of algorithms that can learn 

from and make predictions on data.  
DL  Deep learning  A subset of machine learning that uses neural networks 

with many layers to learn from data.  
BC  Best case  The data partitioning scenario where batch effects are most 

optimally mitigated.  
AC  Average case  The data partitioning scenario generated by random 

assignment.  
WC  Worst case  The worst data partitioning scenario where the data of 

training/testing cohort are mutually and exclusively from the 
same BE group.  

TN  True negative  This occurs when the model correctly predicts the absence 
of a feature or condition, such as correctly identifying that a 
segment of an image does not contain pathological tissue 

or accurately classifying an image as healthy.  
TP  True positive  This is when the model correctly identifies a feature or 

condition present in the medical image, such as accurately 
recognizing a tumor in a segmentation task or correctly 

classifying an image as indicative of disease.  
FN  False negative  This is when the model fails to identify a feature or 

condition that is actually present, such as not detecting a 
tumor that exists in a segmentation task or failing to classify 

a diseased image correctly.  
FP  False positive  This happens when the model incorrectly identifies a 

feature or condition as present, such as mistakenly 
delineating a region as a tumor in a healthy tissue segment 

or classifying a healthy image as showing signs of 
disease.  

Supplementary Table 5. Acronyms and definitions utilized in the manuscript. 

 
 
 



 

Supplementary Figure 1 Simulated example to demonstrate the combined distribution-level effects of data augmentation 
for three sampling techniques: (a) worst-case, (b) average-case, and (c) best-case (CohortFinder). The x-axis represents 
the value of a quantitative measurement (e.g., brightness) having a domain of [0,1]. The star markers at the top of the plot 
represent the values of that metric for 9 available data samples, from which each sampling technique selects a subset of 3 
(here the diamond-shaped markers (blue, orange, and green)). The remaining smaller markers (circles, squares, and 
triangles) represent instantiations of Gaussian data-augmented versions of each of the 3 selected markers, with their 
associated mean identified by a dashed vertical line. The y-axis represents the density of these markers both at a slide level 
(orange, blue, green curves), and the cumulative density distribution (red curve, sum of the other 3 curves). It can be noted 
that in the (a) worst case, due to the over-representation of data points towards the left of the plot, the red curve does not 
cover the entire domain, intuitively implying that an ML model would not be exposed to measurement values greater than 
0.5. In the (b) average case, though the red curve expands towards the right, the system still lacks instances with 
measurement values greater than 0.80. Notably, because this average case arises from random sampling, it carries an 
inherent risk of being the worst-case scenario as well. Conversely, employing CohortFinder leads to (c) the best case, which 
intentionally selects representative samples such that the coverage of the domain is more complete, potentially improving 
the generalizability of an ML model trained from such data. This is to say that intuitively, CohortFinder helps identify the 
“best" samples from which to perform data augmentation, thus yielding greater coverage of the sample space. 

 



 

Supplementary Figure 2 Three data partitioning strategies. (a) Average case: Patients are randomly split into training and 
testing sets without considering BEs, which can cause possible sub-optimal situations. (b) Worst case: patients with similar 
BE metrics are exclusively assigned to the training or testing dataset, resulting in slides in the training set looking highly 
dissimilar to those in the testing set. (c) Best case: where detected BE-groups are systematically divided between 
training/testing sets. This process, enabled via CF, ensures the diversity of the training dataset, and thus, improves the 
robustness of the machine model. 



 

Supplementary Figure 3. Detail of UMAP plots generated via CohortFinder for the colon adenocarcinoma classification use 
case (a) Quality measures embedded in a 2-dimensional plot using U-MAP. (b) Dots replaced with “v (triangle-down)” and 
“o (circle)”, where “v” indicates a slide to be placed into the training set and “o” indicates a slide to be placed in the testing 
set.  



   
(a) 

   
(b) 

   
(c) 

Supplementary Figure 4. Three contact sheets produced by CohortFinder for (a) Tubule segmentation on WSIs (b) Colon 
adenocarcinoma classification on WSIs (c) Rectal cancer segmentation on MRIs. Each row shows 3 detected BE-groups 
with notable (i) intra-group homogeneity and (ii) inter-group heterogeneity, providing a visual confirmation of successful 
BE-group detection. 

  



 

Supplementary Figure 5. Ground truth example for the tubule segmentation use case, the left one is the cropped ROI, and 
the right one is the expert annotation for the renal tubules. 



 

Supplementary Figure 6. Overview of patch extraction for colon cancer classification. Panel A demonstrates the patch 
extraction workflow: the upper left image represents a downscaled thumbnail from the whole slide image (WSI), and below 
it, the pathologist's annotated ground truth mask with cancerous regions marked in fuchsia. The central image depicts the 
tissue mask as identified by HistoQC alongside the delineated bounding box encompassing the tissue region. The image 
on the right displays all possible patches derived from the thumbnail within the bounding box through tessellation. Each 
patch is categorized as positive or negative based on the percentage of cancerous tissue (the threshold is set as 90%). The 
patch is labeled as non-informative and excluded from the training/testing cohort if: a) <10% area is intersected with the 
detected tissue mask, and b) the maximum difference of color density for all the 3 color channels is less than 20. Panel B 
shows selected patch samples illustrating the distinction between cancerous and non-cancerous tissues from the patient 
identified by the code TCGA-F4-6805-01Z.  

  



 
Supplementary Figure 7. Qualitative comparison of the three use cases in the external set. A) For tubule segmentation task. 
The first column is a 3000x3000 PAS-stained ROI cropped at 40x, the second column is the tubule segmentation ground 
truth (GT). The remaining images are the results of BC, AC, and WC. In each scenario, the top row is the DL model results, 
while the bottom row corresponds to the overlay image of DL output images with the GT, where green represents the false 



negative (FN) area, and the fuchsia represents the false positive (FP) area. B) For the colon cancer classification task. The 
first column represents the thumbnails of the H&E-stained WSI, and the second column is the cancer region annotation 
overlaid in fuchsia. The remaining images are the heatmap results of different BC, AC, and WC, where the detected cancer 
area is highlighted as orange, the non-cancer area is highlighted as blue, while the gray area corresponds to non-informative 
(representing background or non-tissue). C) For the rectal tumor segmentation task. The first column corresponds to the 
patient’s MRI with the expert tumor annotation contoured in fuchsia. The remaining images are rectal tumor segmentations 
via WC (yellow), AC (cyan), and BC (green) models compared to expert annotations (fuchsia). 

 

 
Supplementary Figure 8. Violin plots of the F1-score evaluation measure distribution for both external and internal testing 
datasets and for each use case. Each dot represents the F1-score value for (a) tubule segmentation at the ROI level, (b) 
colon adenocarcinoma classification at the WSI level and (c) rectal cancer segmentation at slice level. In a majority of the 
comparisons, the BC distribution appears more compact than WC and AC distributions. 



 
Supplementary Figure 9 presents preliminary results for quantification of BE severity via clustering metrics, using the TCGA-
COAD cohort as an example. Panel A (from left to right), the first row sequentially displays CohortFinder embedding results 
for the site distribution for the entire cohort with different colors highlighting different sites, and the sample distribution for 
site D5 alone (highlighted in red). CohortFinder was then run with the same parameter settings individually on (a) the entire 
cohort, and (b) only samples from site D5. The second row displays the associated CohortFinder embedding plots for the 
entire cohort and D5, separately, where the green, blue, orange represent different BE groups generated by CohortFinder. 
In panel B, three clustering evaluation metrics are presented in a table for the 2 scenarios. Within this table, the best score 
for each metric is highlighted in red. The entire cohort scenario has higher BE scores for all three clustering metrics, 
indicating more significant batch effects being present compared to an individual site (D5). Panel C shows a table with the 
names of the measurements being utilized for BE scoring, their descriptions, and the values indicative of good clustering 
for each of the three measurements: Silhouette coefficient, Davies-Bouldin index, and Calinski-Harabasz index. 
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