ERIC recommendations for *TP53* mutation analysis in chronic lymphocytic leukemia — 2024 update

Supplementary data

Supplementary Tables

Supplementary Table S1. Summary of studies analyzing the clinical impact of low-VAF <i>TP53</i> -mutated clones
Supplementary Table S2. List of primers with highlighted population variants (provided as separate excel file)
Supplementary Table S3. Parameters describing the performance of the NGS test assessed within validation
Supplementary Table S4. List of published guidelines and recommendations for variant description, interpretation and reporting
Supplementary Table S5. List of databases instrumental in the interpretation of somatic <i>TP53</i> variants
Supplementary Table S6. Details specifying the classification of <i>TP53</i> variants detected in CLL patients
Supplementary Figures Supplementary Figure 1. Detailed classification algorithm of <i>TP53</i> variants detected in CLL9
Other supplementary material Template report form10
Supplementary references

	Parameters of the study								Overall survival (median months/5 year OS*)				Progression-free survival (median months)					
	Reference (Cohort type		Number of patients			nts		TD52	TD52	Pair comp	wise arison		TP53	TP53	Pair compa	wise arison
Disease stage		NGS LOD (VAF)		% U- CLL	Total	TP53 wt	<i>TP53</i> mut <10 % VAF	<i>TP53</i> mut ≥10 % VAF	TP53 wt	mut <10% VAF	mut ≥10% VAF	<i>TP53</i> mut <10% VAF vs wt	<i>TP53</i> mut <10 % vs ≥10 % VAF	TP53 wt	mut <10 % VAF	mut ≥10 % VAF	<i>TP53</i> mut <10% VAF vs wt	<i>TP53</i> mut <10 % vs ≥10 % VAF
Early stage	Rossi et al. 2014 ¹	0.3 %	At diagnosis	36	309	263	18	28	75 %*	46%	35 %*	p=0.0042	p=0.6926					
	Nadeu et al. 2016 ²	0.3 %	Untreated (50% at dg)	43	405	361	16	28	82 %*	64%*	54 %*	p=0.0110	p=0.4400					
	Brieghel et al. 2019 ³	0.2 %	At diagnosis	32	290	245	25	20	NR	NR	60	p=0.9300	Not shown					
	Bomben et al. 2021⁴	1%	At diagnosis	42	539	467	31	41	NR	93	61	p=0.0005	p=0.1241					
	Rossi et al. 2014 ¹	0.3 %	Retrospective	68	53	36	6	11	54 %*	0 %*	12 %*	p=0.0051	p=0.4170					
	Brieghel et al. 2019 ³	0.2 %	Retrospective	70	61	44	10	7	72	14	26	p=0.0020	Not shown					
At the time of treatment	Blakemore et al. 2020 ⁵	2%	UK LRF CLL4	63	499	440	16	43	73	51	26	p=0.1200	p=0.3290	26	23	6	p=0.1960	p=0.3040
	Malcikova et al 2021 ⁶	0.1 %	Retrospective	72	511	370	82	59	68	41	22	p=0.0004	p<0.0001	25	20	7	p=0.0830	p<0.0001
	Bomben et	1%	Retrospective	55	552	449	42	61	NR	62	47	p<0.0001	p=0.3170					
	al. 2021 ⁴	al. 2021 ⁴ 1%	ARCTIC/ADMIRE	57	251	211	18	22	108	76	31	p=0.0058	p=0.3337	69	40	24	p=0.0045	p=0.1504

Supplementary Table S1. Summary of studies analyzing the clinical impact of low-VAF *TP53*-mutated clones.

LOD - limit of detection

U-CLL - Unmutated IGHV genes

Supplementary Table S2. List of primers with highlighted population variants (provided as separate excel file).

Supplementary Table S3. Parameters describing the performance of the NGS test assessed

within validation. The terminology is inconsistent throughout the literature⁷; it is advisable to explain the calculation briefly alongside the reported parameter. Here, we adopted definitions and procedure from Clinical and Laboratory Standards Institute (CLSI)⁸ and A Joint Consensus Recommendation of the Association for Molecular Pathology and College of American Pathologists⁹.

Limit of Blank (LoB)
Definition: Highest measurement result that is likely to be observed for a blank sample. Establishing
LoB enables distinguishing of true variants form background noise.
Procedure: Per position background distribution estimated based on repeated library preparation
and sequencing of negative controls (background VAF does not follow normal
distribution). LoB should be set to a value where the false positive rate is close to zero.
Ideally: testing of 30 variant-negative samples in duplicate using two reagents lots in
independent runs = 120 measurements ⁸ .
Limit of Detection (LoD)
Definition: The minimum allele fraction that can be detected with a required level of confidence.
Procedure: Testing of variant-positive samples (optimally, patients' samples with known variants),
serially diluted with variant-negative sample.
Ideally: at least five-fold dilution near the target LoD, in 10 replicates analyzed using two
reagents lots in two independent runs = 100 measurements); include SNV, small
insertions and deletions ⁸ . Different variants might be pooled in one sample.
LoD is set to a safe distance from LoB considering distribution of measured values (low-
level somatic VAF do not follow a normal distribution), and the required probability of
FP and FN errors
Either the overall LoD of the whole assay or variant-specific LoD is estimated.
Precision
Definition: Closeness of agreement between independent test results.
Replicability/repeatability = within-run precision
Definition: How the test result varies under the same operating conditions.
Procedure: Testing the same samples repeatedly within the same run.
Reproducibility = between-run precision
Definition: How the test results vary under different operating conditions.
Procedure: Testing the same samples repeatedly in different runs under different conditions
(personnel/equipment/reagent lots, etc.)
Additional parameters
Definition: The wide list of parameters that can be defined includes: sensitivity, specificity,
positive/negative predictive value, false positive/negative rate, accuracy.
Procedure: Running reference samples with known variants, assessing the rate of TP, FP, FN, TN,
and calculating the respective values. To obtain robust estimation, as many variables as
possible should be included. The most important parameters to be described:
Sensitivity (alternatively Analytical sensitivity, or Positive Percentage Agreement [PPA],
or Recall) = TP/(TP+FN). The proportion of known variants that are detected. The value
reaches 1 if all variants present in the reference sample are detected
Positive Predictive Value (PPV) = TP/(TP+FP). The proportion of detected variants that
are true. The value reaches 1 if no false positive results are reported.
Note: Assessing PPV is preferred to express the probability of FP call. Calculating
specificity using the traditional formula (TN/TN+FP) may lead to a high value masking FP
calls due to defining TN as any reference base called as wt.
Caution: The obtained values depend on the composition of the reference sample; if all tested
variants are of high VAF (e.g. >50%), the estimated values will not reflect the method's performance
with respect to variants closer to LOD.

FP - false positive, TP - true positive, FN - false negative, TN - true negative

Supplementary Table S4. List of published guidelines and recommendations for variant description, interpretation and reporting.

Recommendation •	topic and aim	Specifications and notes	Context
Variant description			
den Dunnen et al., Hum Mutat 2016 ¹⁰	HGVS Recommendations for the Description of Sequence Variants: 2016 Update		
Interpretation			
Richards, S et al., Genet Med 2015 ¹¹	Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology.	5 Class system: Pathogenic Likely Pathogenic Uncertain significance Likely benign Benign	germline
Fortuno et al., Hum Mutat 2021 ¹²	Specifications of the ACMG/AMP variant interpretation guidelines for germline TP53 variants	<i>TP53</i> specific nuances to classify <i>TP53</i> variants into 5-class system formulated by ClinGen TP53 Variant Curation Expert Panel	germline, <i>TP53</i> specific
Li et al., JMD 2017 ¹³	Standards and guidelines for the interpretation and reporting of sequence variants in cancer: a joint consensus recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists.	4 Tier system: I: Variants of Strong Clinical Significance II: Variants of Potential Clinical Significance III: Variants of Unknown Clinical Significance IV: Benign or Likely Benign Variants	somatic
Horak et al., Genet Med 2022 ¹⁴	Standards for the classification of pathogenicity of somatic variants in cancer (oncogenicity): Joint recommendations of Clinical Genome Resource (ClinGen), Cancer Genomics Consortium (CGC), and Variant Interpretation for Cancer Consortium (VICC)	5 categories: Oncogenic Likely oncogenic Variant of uncertain significance Likely benign Benign	somatic
Reporting			
Deans et.al., EJHG 2022 ¹⁵	Recommendations for reporting results of diagnostic genomic testing		

[‡] For regular updates, please check the TP53-expert panel website: <u>https://clinicalgenome.org/affiliation/50013/</u>

Supplementary Table S5. List of databases instrumental in the interpretation of somatic *TP53* variants.

Database name	Website	Content	Variant origin	Details
The TP53 database ¹⁶	https://tp53.isb-cgc.org/	TP53 specific	Somatic and germline	Compiles data from the literature and databases on human <i>TP53</i> gene variations related to cancer.
The TP53 website (UMD TP53 database) ^{17, 18}	https://p53.fr/	TP53 specific	Somatic and	Compiles data from the literature and databases on human <i>TP53</i> gene variations related to cancer.
Seshat ¹⁹	http://vps338341.ovh.net/		germline	Seshat, tool for variant classification embedded in the TP53 website
Clingen TP53 expert panel ¹²	https://erepo.clinicalgenome.org/evrepo/ui/classifications?matchMode=exact&gene=TP53	<i>TP53</i> specific	Germline	Contains expert-curated assertions regarding variants' pathogenicity and supporting evidence summaries.
ClinVar ²⁰	https://www.ncbi.nlm.nih.gov/clinvar/	General	Germline	Publicly available database of gene variant classifications
Cancer hotspots ²¹	http://cancerhotspots.org	General	Somatic	Recurrently mutated positions identified in > 24,000 tumor samples
gnomAD (non- cancer) ²²	https://gnomad.broadinstitute.org/	General	Germline	Variant found in individuals with no known personal history of the disease
FLOSSIES	https://whi.color.com/	27 genes known or suggested to harbor mutations that predispose to breast cancer.	Germline	Variants found in women without a personal history of cancer by age ≥70

Supplementary Table S6. Details specifying the classification of *TP53* variants detected in CLL patients.

Truncating = n	ull variants
Specification	Frameshift insertions/deletions, nonsense variants
Rationale	Termination of translation due to the formation of a premature stop codon leads to
	non-functional protein. Transcripts bearing premature stop codons are often
	degraded via nonsense-mediated RNA decay resulting in decreased protein level
Interpretation	Always pathogenic (oncogenic) irrespective of their presence/absence in databases.
Splice site var	iants - canonical
Specification	Variants in +/-2 intronic bases
Rationale	Most splice site variants in the TP53 gene lead to frameshift (see null variants). Only
	variants in the acceptor site of intron 3 (preceding exon 4) theoretically lead to in-
	frame exon skipping, but various aberrantly spliced transcripts might be formed.
Interpretation	Always pathogenic (oncogenic)
Splice site var	iants – noncanonical
Specification	Variants in +/-5 intronic bases
Rationale	Variants in nucleotides adjacent to canonical splice sites might affect splicing. The
	evidence can be found at the MutSpliceDB (<u>https://brb.nci.nih.gov/splicing</u>). For the
	TP53 gene, so far, only variants in position c.375+5 have documented an impact on
	splicing ²³ , but a continuous extension of the data may be expected.
Interpretation	Variants with experimental evidence documenting splicing defect - likely pathogenic
	(oncogenic).
Intronic and U	TR variants
Specification	Variants in inner parts of introns further from splice sites and in 3' and 5'UTR regions
Rationale	Variants may affect transcription or splicing, but there is generally lack of evidence and
	large number of population variants are located in these regions.
Interpretation	Analysis is not recommended in routine practice.
	Might be classified as likely pathogenic (oncogenic) if experimental evidence exists
In-frame varia	nts
Specification	Deletions and insertions not disturbing the reading frame
Rationale	Limited data on the functional impact exist. The vast majority of so-far analyzed in-
	frame deletions within the DNA-binding domain showed impaired anti-proliferative
	capacity in H1299 cells ^{2*} . The functional data are to be found via The <i>TP53</i> database
	for some but not all tested variants. ERIC initiated the study of the impact of the in-
	frame variants found in patients with CLL; all 45 tested variants showed disturbed
	functionality (manuscript in preparation).
Interpretation	Within the DNA-binding domain - likely pathogenic (oncogenic)
	Outside the DNA-binding domain - VUS unless functional data or proven association
C	with Li-Fraumeni of hereditary cancer syndromes exist.
Synonymous	/ariants
Specification	Single-nucleotide change not leading to amino acid change
кацонаје	houndary might affect colicing ²⁵ (coo Supplementary Figure 1). Care must be taken act
	to evolute all synonymous variants during the filtering in high-formatics mission
Interpretation	to exclude an synonymous variants during the intering in bioinformatics pipelines.
interpretation	wost are beingn but specific variants affecting splicing are pathogenic (oncogenic).

Missense varia	ants
Specification	Single-nucleotide change variants leading to amino acid change
Rationale	Amino-acid change mostly affects p53 protein structure or DNA binding ability.
Interpretation	Variants with concordant data from functional studies ^{24, 26, 27} can be directly
	interpreted as (likely) pathogenic (oncogenic) - most variants, or (likely) benign -
	minority of variants. For variants with discordant or lacking functional data further
	consideration is required (see Supplementary Figure 1).
	Caution: A few specific variants located in borderline exon/intron nucleotides affect
	splicing although they were classified as functional (see Supplementary Figure 1).
	Population variants: Several missense variants occur in a human population
	without affecting p53 function. Variant c.215C>G p.Pro72Arg is the most common
	benign SNP, others are listed in Supplementary Figure 1. The rare variants should
	be checked using Clingen repository ²⁸ and GnomAD ²² .

Supplementary Figure 1. Detailed classification algorithm of TP53 variants detected in CLL.

Databases instrumental in the interpretation of *TP53* variants are listed in Supplementary Table S5.

Might be misclassified as synonymous or missense and listed as such in some databases.

* Oncogenicity classification according to Horak et al. 2022¹⁴ is also acceptable.

Occurrence according UMD database¹⁸.

			CODING	REGION			INTE	ONS	
		Borderline exonic (2 bp) Borderline exonic (2 bp)							
DNA event	Deletion/inse	rtion/duplication		Single nucle	eotide variant			Any	
Variant type	Frameshift	In-frame	Nonsense (stop-gain)	Missense	Synonymous	Possibly splice [#]	Splice	Possibly splice	
Occurrence	10%	2%	6%	76%	<<1%	<1%	5%	<<1%	
Consequence	Truncating	Deletion and/or insertion of aminoacids	Truncating	Amino acid change	No change	Various	Mainly truncating	Various	
Classification*	Pathogenic		Pathogenic		Benign		Pathogenic		

In DNA-binding domain			Known popu	lation variant	Effect on splicing		Effect on splicing	
Yes	No Described to affect function • Databases • Functional data • Literature • ERIC helpdesk Yes No/not sure		Yes c.91G>A p.V31I c.108G>A p.P36= c.139C>T p.P47S c.215C>G p.P72R c.639A>G p.R213= c.704A>G p.N235S c.869G>A p.R290H 	No	Confirmed c.375G>A p.T125= c.375G>T p.T125= c.375G>C p.T125= c.559G>C p.G187R c.672G>A p.E224= c.672G>T p.E224D c.782G>C p.S261T	Predicted Multiple variants	Confirmed c.375+5G>A p? c.375+5G>C p? c.375+5G>T p? Others: Databases Functional data Literature ERIC helpdesk	Unknown
Likely pathogenic	Likely pathogenic	VUS	Benign		Pathogenic		Likely pathogenic	

Ĭ

The TP53 database & Seshat: Transactivation class (Kato et al., 2003, PMID: 12826609)) DNE_LOF class (Giacomelli et al., PMID: 30224644) Growth suppression (Kotler et al., 2018, PMID: 29979965)

	Concordant					
	Funct	Discordant Partially functional				
Non-functional	Con	firm	No data			
	Confirmed	Not confirmed				
Pathogenic (Likely) Benign		False positive	Require further consideration and gathering information from multiple resources			

ÿ

- Consider:
- Extent of functional loss
 Frequency in tumors
 - Frequency in tumors
 - Presence in healthy human populations • gnomAD
 - Doffe et al. 2021 (PMID: 33257846)
 - FLOSSIES
- The ClinGen Evidence Repository by TP53 Variant Curation Expert Panel
- Final comment from Seshat
- ClinVar interpretation and evidence

Use guidelines for classification of somatic variants (Horak et al. 2022; PMID: 36063163) with the application of *TP53* specific nuances as defined in ClinGen *TP53* Expert Panel Specifications (Fortuno et al., 2021; PMID: 33300245)

Template report form. Please check for the most updated version on www.ericll.org

Logo of the Hospital/Laboratory

Mutational analysis of the TP53 gene

Performed by

Laboratory name: Laboratory address: (full contact details including phone number)

Requested by

Hospital: Referrer: Address:

Patient name/id: * Date of birth: Gender: Reason for referral: Date of sample collection: Date of sample delivery: Result issued:

Type of material: Cell separation: Sample identification number: Method:

Result: *TP53* **MUTATION DETECTED / NOT DETECTED**

Mutation No.	Variant Reference sequence: NC_000017.11 (NM_000546.6)	Variant allele frequency (VAF)	Mutation type (optional)	Pathogenicity
1				
2				

Optional:

Comparison with a previous sample: We observed an increase/decrease in variant allele frequency compared to previous sample (sampling date xx.xx.xx variant allele frequency xx%).

Conclusion:

Example: A pathogenic variant was found within the TP53 gene. TP53 mutations are associated with adverse prognosis and poor response to chemoimmunotherapy in CLL and therefore such treatment should be avoided (PMID: 33091559 or other reference(s) of current national or international guidelines).

Or: No pathogenic variant within the TP53 gene was detected

The result should be interpreted with respect to the proportion of tumor cells in the primary sample and the separation method used. A low proportion of tumor cells in the sample may lead to a false negative result or a decreased VAF.

Mutational analysis of the TP53 gene

Patient name/id: * Date of birth: Gender: Reason for referral: Date of sample collection: Date of sample delivery: Result issued:

Analytical method description (region sequenced, method description including bioinformatics pipeline):

Minimal coverage of the target region:

Detection limit of the method:

Variants are described according the Human Genome Variation Society (HGVS) nomenclature Version xx.xx.

Variant interpretation:

Functional impact and pathogenicity of variants was assessed based on the following tools:

The interpretation refers to the time of issuing of the report and may change in the future due to additional evidence. Validated polymorphisms and benign/likely benign variants are not included in this report and can be provided upon request.

Method limitations:

Example: The method cannot detect large duplications and deletions, and complex rearrangements within the tested regions of TP53 gene. The procedure cannot distinguish between somatic and germline variants without testing of normal tissue from the same individual. In the case of justified suspicion of the germinal origin of a variant with VAF>50% (young age, family history), the examination needs to be repeated from non-tumor DNA.

Analysis performed by[†]: Name and function

Result issued by: Name and function⁺

* Unique patient identification, the date of primary sample collection and the date of the issue of the report should be on each page of the report (in a header or a footer of the document). ‡ Co-validation and co-signature by a second competent person is recommended (and mandatory in some countries).

Note: Pages should be numbered in a format: 1/2, 2/2

Supplementary references

- Rossi D, Khiabanian H, Spina V, Ciardullo C, Bruscaggin A, Famà R, et al. Clinical impact of small TP53 mutated subclones in chronic lymphocytic leukemia. *Blood* 2014 Apr; **123**(14): 2139-2147.
- 2. Nadeu F, Delgado J, Royo C, Baumann T, Stankovic T, Pinyol M, *et al.* Clinical impact of clonal and subclonal TP53, SF3B1, BIRC3, NOTCH1, and ATM mutations in chronic lymphocytic leukemia. *Blood* 2016 Apr 28; **127**(17): 2122-2130.
- 3. Brieghel C, Kinalis S, Yde CW, Schmidt AY, Jønson L, Andersen MA, *et al.* Deep targeted sequencing of T*P53* in chronic lymphocytic leukemia: clinical impact at diagnosis and at time of treatment. *Haematologica* 2019 Apr; **104**(4): 789-796.
- 4. Bomben R, Rossi FM, Vit F, Bittolo T, D'Agaro T, Zucchetto A, *et al*. Mutations with Low Variant Allele Frequency Predict Short Survival in Chronic Lymphocytic Leukemia. *Clin Cancer Res* 2021 Oct 15; **27**(20): 5566-5575.
- 5. Blakemore SJ, Clifford R, Parker H, Antoniou P, Stec-Dziedzic E, Larrayoz M, *et al.* Clinical significance of TP53, BIRC3, ATM and MAPK-ERK genes in chronic lymphocytic leukaemia: data from the randomised UK LRF CLL4 trial. *Leukemia* 2020 Jul; **34**(7): 1760-1774.
- 6. Malcikova J, Pavlova S, Barbara KV, Radova L, Plevova K, Kotaskova J, *et al.* Low-burden TP53 mutations in CLL: clinical impact and clonal evolution within the context of different treatment options. *Blood* 2021 Dec 23; **138**(25): 2670-2685.
- 7. CLSI Harmonized Terminology Database. [cited; Available from: <u>https://clsi.org/standards-development/harmonized-terminology-database/</u>
- 8. Clinical and Laboratory Standards Institute (CLSI). Human Genetic and Genomic Testing Using Traditional and High-Throughput Nucleic Acid Sequencing Methods. 3rd ed. CLSI guideline MM09. Clinical and Laboratory Standards Institute, USA; 2023.
- Jennings LJ, Arcila ME, Corless C, Kamel-Reid S, Lubin IM, Pfeifer J, et al. Guidelines for Validation of Next-Generation Sequencing-Based Oncology Panels: A Joint Consensus Recommendation of the Association for Molecular Pathology and College of American Pathologists. J Mol Diagn 2017 May; 19(3): 341-365.
- 10. den Dunnen JT, Dalgleish R, Maglott DR, Hart RK, Greenblatt MS, McGowan-Jordan J, *et al.* HGVS Recommendations for the Description of Sequence Variants: 2016 Update. *Hum Mutat* 2016 Jun; **37**(6): 564-569.
- 11. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, *et al.* Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. *Genet Med* 2015 May; **17**(5): 405-424.

- 12. Fortuno C, Lee K, Olivier M, Pesaran T, Mai PL, de Andrade KC, *et al.* Specifications of the ACMG/AMP variant interpretation guidelines for germline TP53 variants. *Hum Mutat* 2021 Mar; **42**(3): 223-236.
- 13. Li MM, Datto M, Duncavage EJ, Kulkarni S, Lindeman NI, Roy S, *et al.* Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. *J Mol Diagn* 2017 Jan; **19**(1): 4-23.
- Horak P, Griffith M, Danos AM, Pitel BA, Madhavan S, Liu X, et al. Standards for the classification of pathogenicity of somatic variants in cancer (oncogenicity): Joint recommendations of Clinical Genome Resource (ClinGen), Cancer Genomics Consortium (CGC), and Variant Interpretation for Cancer Consortium (VICC). *Genet Med* 2022 Sep; 24(9): 1991.
- 15. Deans ZC, Ahn JW, Carreira IM, Dequeker E, Henderson M, Lovrecic L, *et al.* Recommendations for reporting results of diagnostic genomic testing. *Eur J Hum Genet* 2022 Sep; **30**(9): 1011-1016.
- 16. de Andrade KC, Lee EE, Tookmanian EM, Kesserwan CA, Manfredi JJ, Hatton JN, *et al.* The TP53 Database: transition from the International Agency for Research on Cancer to the US National Cancer Institute. *Cell Death Differ* 2022 May; **29**(5): 1071-1073.
- 17. Leroy B, Anderson M, Soussi T. TP53 mutations in human cancer: database reassessment and prospects for the next decade. *Hum Mutat* 2014 Jun; **35**(6): 672-688.
- 18. Soussi T, Baliakas P. Landscape of TP53 Alterations in Chronic Lymphocytic Leukemia. *Front Oncol* 2022; **12:** 808886.
- 19. Tikkanen T, Leroy B, Fournier JL, Risques RA, Malcikova J, Soussi T. Seshat: A Web service for accurate annotation, validation, and analysis of TP53 variants generated by conventional and next-generation sequencing. *Hum Mutat* 2018 07; **39**(7): 925-933.
- Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S, et al. ClinVar: improving access to variant interpretations and supporting evidence. *Nucleic Acids Res* 2018 Jan 04; 46(D1): D1062-D1067.
- Chang MT, Bhattarai TS, Schram AM, Bielski CM, Donoghue MTA, Jonsson P, et al. Accelerating Discovery of Functional Mutant Alleles in Cancer. *Cancer Discov* 2018 Feb; 8(2): 174-183.
- Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. *Nature* 2020 May; 581(7809): 434-443.

- 23. Chui MH, Yang C, Mehta N, Rai V, Zehir A, Momeni Boroujeni A, *et al.* Somatic intronic TP53 c.375+5G mutations are a recurrent but under-recognized mode of TP53 inactivation. *J Pathol Clin Res* 2022 Jan; **8**(1): 14-18.
- 24. Kotler E, Shani O, Goldfeld G, Lotan-Pompan M, Tarcic O, Gershoni A, *et al.* A Systematic p53 Mutation Library Links Differential Functional Impact to Cancer Mutation Pattern and Evolutionary Conservation. *Mol Cell* 2018 Sep 06; **71**(5): 873.
- 25. Supek F, Miñana B, Valcárcel J, Gabaldón T, Lehner B. Synonymous mutations frequently act as driver mutations in human cancers. *Cell* 2014 Mar 13; **156**(6): 1324-1335.
- 26. Kato S, Han SY, Liu W, Otsuka K, Shibata H, Kanamaru R, *et al.* Understanding the functionstructure and function-mutation relationships of p53 tumor suppressor protein by highresolution missense mutation analysis. *Proc Natl Acad Sci U S A* 2003 Jul 8; **100**(14): 8424-8429.
- 27. Giacomelli AO, Yang X, Lintner RE, McFarland JM, Duby M, Kim J, *et al.* Mutational processes shape the landscape of TP53 mutations in human cancer. *Nat Genet* 2018 Oct; **50**(10): 1381-1387.
- 28. <u>https://erepo.clinicalgenome.org/evrepo/ui/classifications?matchMode=exact&gene=TP53</u>.