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REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

This paper presents the design optimization of pixelated active composite materials, to achieve 

target deformation behaviors. To reduce the computational cost, the author first trained a ResNet 

model which performs fast prediction. Materials are then optimized using gradient descent and 

evolutionary algorithms based on neural network queries. Overall, this research is well presented 

with results validated by both numerical simulations and real experiments through 3D-printing. 

Implementation details are provided to allow reproduction. However, the contribution of the 

manuscript is more on the application of ML-based optimization on deformation optimization of 

smart composites, rather than the optimization algorithm itself, as similar methods have been seen 

in many literatures: CT Chen, GX Gu - Advanced Science, 2020, and S Lee, Z Zhang, GX Gu - 

Materials Horizons, 2022, etc. So it would be better if the author could elaborate more (in Intro) 

on the application side for motivation. There are also a couple of detailed questions regarding the 

modeling and optimization method used in this work, as below. 

 

• The author trained a ResNet as a surrogate model to make fast inferences for different AC 

designs. The training process seems to be fully supervised. As the model is predicting the 

displacement (coordinates) of the voxels, is it possible to add in some physical constraint like 

continuity or smoothness of the deformed composite, which potentially reduce the amount of data 

needed? 

• The AC in this work has a design space of size 15*15*2. However, for most topology optimization 

problems in literature, the design space is significantly larger, some are like 100*100 or even 

larger. Is it still viable to train a surrogate model for design optimization when each simulation 

takes hours to accomplish? It would be great if the author can add in some discussion regarding 

the scalability of surrogate model based optimization. 

• From the optimization results in Fig. 5 and 6, the activated shapes indeed match well with the 

target shape macroscopically. But the deformed materials are not as smooth as the target shape 

microscopically. Is this problematic in application? How can this issue be potentially addressed? 

• Surrogate model based optimization can be problematic as the optimization process not only 

maximize/minimize the design objective, but may also converge at someplace with maximized 

prediction errors. In this study, this phenomenon isn’t obvious as the model is trained on a rich 

dataset and have an extremely high R-squared value. But how would the optimization strategy be 

improved if the surrogate model gives certain bias from ground truth, say only 85-90% R-squared 

value? 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

This paper presents a machine learning and evolutionary algorithm enabled approach for designing 

and predicting shape changes of 4D printed active composite plates. A residual network based 

machine learning model is developed to predict shape changes with great accuracy and efficiency. 

The model is then combined with gradient descent and evolutionary algorithms to achieve inverse 

design of optimal material distributions for desired shape changes, which is significantly 

accelerated by machine learning. A global-subdomain design strategy is proposed to obtain optimal 

designs by first globally optimizing all voxels and then refining local subdomains. This method can 

rapidly generate optimal material distribution designs for various target shapes, including FE-

generated and algorithmically-generated shapes, as well as irregular shapes using patch 

representation and normal distance loss. The designs are computationally and experimentally 

validated. The voxel-level inverse design approach empowered by machine learning opens a new 

paradigm for intelligent design and fabrication of 4D printed active composites, providing new 

insights for 4D printing applications. 

After a thorough review of the entire manuscript, I believe that despite the systematic nature of 

this work, it does not present significant advancements compared to the author's previous 

research (DOI: 10.1002/adfm.202109805). In other words, the methods proposed in this paper 



have already been introduced in the author's prior publications. Given the journal's emphasis on 

the novelty of research contributions, I recommend reconsidering the acceptance of this 

manuscript. 

Furthermore, this paper still needs to address the following concerns: 

1. Data set generation could consider a broader range of material distribution patterns, not just 

the two modes of full randomness and island distribution. Incorporating more modes may enhance 

the model’s generalization ability. 

2. Evaluating the impact of different boundary conditions on model prediction performance on the 

test set can be considered, which can further aid in selecting the optimal boundary condition 

settings. 

3. Experimenting with different machine learning model architectures, such as convolutional neural 

networks, graph neural networks, etc., and comparing them with the current residual network 

model is an option. 

4. It is worth considering validating this design approach on multiple real material systems, not 

limited to a thermal expansion/contraction material system, to assess the method's applicability. 

5. More constraints can be imposed on the target shape, such as surface smoothness constraints, 

to make the optimization results more in line with practical manufacturing requirements. 

6. I noticed that the authors did not use widely adopted open-source deep learning frameworks 

commonly used in both the research and industry sectors, such as TensorFlow, etc. I have 

reservations about the reliability of the data obtained in this paper, and the fact that all MATLAB 

code used in this study has not been made open-source could significantly diminish the paper’s 

impact. 

 

 

Reviewer #3 (Remarks to the Author): 

 

This paper addresses the challenge of designing active composites (ACs) with 3D shape changes 

using 4D printing technology. The authors propose an approach that combines machine learning 

(ML) with gradient-descent (GD) and evolutionary algorithm (EA) techniques for both forward 

shape prediction and inverse material-distribution design. A residual network ML model is 

developed for forward shape prediction and a global-subdomain design strategy with ML-GD and 

ML-EA is used for inverse material distribution design. The ML models enable efficient exploration 

of the large design space associated with 4D-printed ACs. The results are good, but I have some 

questions. 

 

1. In this article, you did not say anything about the properties (constitutive model) of the material 

(from line 901 to line 909). Did you write UMAT for Abaqus when simulation? How can you ensure 

the material you printed can satisfy the properties you used for the simulation what is "the 

coefficient of thermal expansion is set to be 0.001 for active material and 0 for passive material. A 

50-degree temperature increase is applied to the entire plate"? Even from the authors' previous 

work (literature 15 and 43), I also didn't find the constitutive model of the materials you use. If it 

can not be satisfied, this control of the 4D-printed active plate is not precise. You just simulate the 

trend of the deformation, you didn't know how much this part can deform. 

 

2. In the supplementary videos, all parts are only shown in their final manufactured form, which 

seems perfect. The deformation process of these parts is not shown at all. Therefore, although it 

looks perfect, readers will question how these parts that "perfectly" fit the desired shape are 

"manufactured", which is better if you record the video of the deformation process, 

 

3. For one side of the plate (now a square plate with specified length, width, and thickness), it 

needs a lot of time (about more than 100 hours) to generate datasets for training. Do you think 

this is meaningful? or do you have the choice to reduce the time to generate the dataset for 

training? Also for ML models, it also takes more than 10 hours to train, and the author uses V100 

GPU, which is already very powerful. I don't think it will be greatly improved if you use more 

advanced GPUs like A100 and H100. If you use these more advanced GPUs, it will still take about 

three or four hours for training. 

 

4. In lines 762 and 763, you said the coefficient of thermal expansion is set to be 0.001 for active 

material and 0 for passive material. A 50-degree temperature increase is applied to the entire 



plate. So, the total expansion ratio will be 0.05 (5%) for the active material. Do you think this tiny 

change in the volume of active material will cause a huge shape change for the whole structure? I 

have this doubt due to the authors' previous work in Reference 43. In Figure S1 of supplementary 

materials in Sun et al. 2022 Advanced Functional Materials, such a tiny change in volume of active 

material (10% in that literature), will it cause more than the 180-degree reverse of that 4D-

printed beams??? Even if such a large displacement can occur, during the deformation process, a 

certain place of the part "hits" the origin on the left side of the part. How do you deal with this 

situation? This becomes a contact problem in Abaqus simulation, which is very complicated. 

5. One tiny issue, in Line 477 "(≥2x2)", why do you use "x" to represent the multiplication sign? 

Why don't you express the multiplication sign like in Line 475? 

6. What will happen if the target shape is out of the range that the printed part can achieve? For 

example, if you want the first voxel near (0, 0, 0) to reach the point (1, 1, 1000), this target is 

impossible to reach. What impact does this situation have on your algorithm? 

 

 

Reviewer #4 (Remarks to the Author): 

 

This paper by Sun et al. uses machine learning to allow the forward prediction and inverse design 

of the 3D shape a 2D printed voxelated sheet will take after expansion of specific pattern of voxels 

defined by the printing process. 

 

The results show that the prediction works very well as arbitrary shapes designed by crumpling a 

piece of paper can be mapped and printed. It is difficult to comment further on the modeling as 

this is not my area of expertise. 

 

In terms of manufacturing the use of 4D printing to convert flat sheets into three dimensional 

objects is of broad interest. Bilayer structures are widely used as analytical predictions of the 

shapes may be made. However, it much more difficult to print a complex shape with non-periodic 

features. This work appears to be a significant advance in the design of these types of 4D printed 

materials. 

 

It is very useful that the modeling is tested by experimental 3D printing of the same materials. It 

is noted that the modeling considers the active material one that isotropically expands, while in 

the 3D printed parts the shape change is achieved by contraction of voxels through the 

evaporation of unreacted monomer. One assumes from the agreement between the experiment 

and the model that the corresponding ‘active’ voxel in the experimental material is therefore the 

well-cured phase. This should be more explicitly indicated in the ‘Materials and Methods’. 

 

It would be useful to list the voxel dimensions in the experimentally printed material. Looking at 

the scale bars in Figure 7, it appears to be roughly on the order of a 1x1x1 mm? Building on this 

comment, the 3D printing material is interesting and may be useful in some applications, however 

the evaporation of acrylate monomer may be undesirable in others. If the dimensions at this scale 

for the voxels, it would be helpful to briefly discuss the applicability of this method to other 

voxelated printing schemes, perhaps using materials of different thermal expansion to achieve 

similar effects. 
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RESPONSE TO REVIEWERS 

 

We appreciate the insightful comments from the four reviewers and sincerely thank them for 

their time spent on reviewing our manuscript. We have revised our paper according to their 

suggestions.  Below are our point-by-point responses (in blue fonts). The corresponding changes 

made in the manuscript are highlighted in yellow.   

 

Reviewer #1 (Remarks to the Author): 

General comments: 

This paper presents the design optimization of pixelated active composite materials, to achieve 

target deformation behaviors. To reduce the computational cost, the author first trained a ResNet 

model which performs fast prediction. Materials are then optimized using gradient descent and 

evolutionary algorithms based on neural network queries. Overall, this research is well presented 

with results validated by both numerical simulations and real experiments through 3D-printing. 

Implementation details are provided to allow reproduction. However, the contribution of the 

manuscript is more on the application of ML-based optimization on deformation optimization of 

smart composites, rather than the optimization algorithm itself, as similar methods have been 

seen in many literatures: CT Chen, GX Gu - Advanced Science, 2020, and S Lee, Z Zhang, GX 

Gu - Materials Horizons, 2022, etc. So it would be better if the author could elaborate more (in 

Intro) on the application side for motivation.  

 

Response: Thanks for your suggestion. We agree that our contribution is on applying the ML 

approach to the shape-change design of active composites (ACs), more specifically, on voxel-

level design of 4D-printed AC plates. However, we would like to clarify that although the 

general idea of ML-based optimization algorithm can be seen in the literature, there exist big 

gaps between existing methodologies and the current problem (shape-change design) due to 

some challenges. Besides common challenges (e.g., large design space) in the composite design 
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problem, the unique challenges in our problem include the highly complex mapping from 

material distribution to response (large-deflection shape change), the high-dimensional nature of 

the response data and the variability of the target response (i.e., instead of optimizing or 

extremizing a single (or a few) property(ies)). These features lead to significantly increased 

challenge in both accurate forward predictions and efficient inverse designs, and we have 

developed new strategies/methodologies to address them. For example, our design task is very 

sensitive to the prediction accuracy, as minor prediction inaccuracies (e.g., deviations in a few 

data points) can significantly alter the actually achieved shape from the target. We thus dedicated 

substantial efforts (detailed in our response to your last comment) to enhancing the ML accuracy, 

ultimately achieving the R-squared > 0.99. Moreover, new design strategies were developed to 

achieve the efficient inverse design. These strategies offer insights into the use of ML for other 

composite shape morphing problems. In addition, our method is generally applicable across 

various material systems, actuation mechanisms, and length scales. We believe that our work 

introduces significant advancements in the field of 4D printing by tackling the complex 

challenges associated with 3D shape morphing of plates.  

 

We have revised the following text in Introduction to emphasize the challenges of shape-change 

response of ACs (see highlighted text on Page 5): 

“For example, Gu and coworkers have made extensive explorations [32-35] on utilizing ML 

capabilities, such as combining ML with gradient descent (GD) and active learning [32] or with 

EA [33], for materials design. However, existing works mainly focused on optimizing 

mechanical properties of materials, such as strength and toughness of composites [34, 35], 

auxetic metamaterials [36, 37], and responses of soft pneumatic robots [38]; there is limited work 

on ML-based design of shape changes of ACs [39-43]. Compared to optimizing or extremizing a 

few properties, the design for shape changes has unique challenges such as highly complex 

mapping from material distributions to shapes (particularly for large deflections), the high-
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dimensional nature of the shape data and the variability of the target shapes. This also places 

higher demands on the accuracy of ML models. Therefore, there exist big gaps between existing 

methodologies and the shape-change design of 4D-printed ACs.” 

 

The suggested references have been added to Introduction: 

“32. Chen, C.-T. and G.X. Gu, Generative Deep Neural Networks for Inverse Materials Design 

Using Backpropagation and Active Learning. Advanced Science, 2020. 7(5): p. 1902607. 

33. Lee, S., Z. Zhang, and G.X. Gu, Generative machine learning algorithm for lattice 

structures with superior mechanical properties. Materials Horizons, 2022. 9(3): p. 952-960.” 

 

We have also added more text to state our motivation on the application side in Introduction (see 

highlighted text on Page 8): 

“Although many ML-based strategies have been utilized for the materials design[32-35], 

applying existing methodologies to the shape-change design of 4D-printed ACs is very 

challenging due to the high complexities outlined above.” 

 

 

There are also a couple of detailed questions regarding the modeling and optimization method 

used in this work, as below. 

 

Comment 1. The author trained a ResNet as a surrogate model to make fast inferences for 

different AC designs. The training process seems to be fully supervised. As the model is 

predicting the displacement (coordinates) of the voxels, is it possible to add in some physical 

constraint like continuity or smoothness of the deformed composite, which potentially reduce the 

amount of data needed? 
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Response: Thanks for your insightful comment regarding the physical constraints. We think that 

incorporating constraints related to the continuity or smoothness might facilitate the model's 

training in the initial stages, but might not be able to aid in learning the complex mapping from 

material distributions to the shape-change predictions. We agree some physics-informed loss 

functions based on the governing equations might potentially reduce the amount of data needed. 

However, implementing such an approach presents substantial challenges including the effective 

integration of appropriate physical laws, which appears to be an entirely new methodology and 

will be a nice topic for future research. Given these considerations, the strategy to incorporate 

physical constraint in the model training will be left to our future efforts. This will allow us to 

dedicate necessary resources and time to thoroughly investigate and explore such methodologies. 

We have added the following discussion and references (see highlighted text on Page 35): 

“Third, our ML model is purely supervised by data. A physics-informed ML model [69, 70] that 

incorporates appropriate physical constraints into the loss function could potentially reduce the 

amount of data needed, which will be explored in our future research.” 

“69. Raissi, M., P. Perdikaris, and G.E. Karniadakis, Physical_Informed_Deep_Learning Part I 

Data driven solutions for nonlinear PDEs. 2017. 

70. Chen, C.-T. and G.X. Gu, Physics-Informed Deep-Learning For Elasticity: Forward, Inverse, 

and Mixed Problems. 2023. 10(18): p. 2300439.” 

 

 

Comment 2. The AC in this work has a design space of size 15*15*2. However, for most 

topology optimization problems in literature, the design space is significantly larger, some are 

like 100*100 or even larger. Is it still viable to train a surrogate model for design optimization 

when each simulation takes hours to accomplish? It would be great if the author can add in some 

discussion regarding the scalability of surrogate model based optimization. 
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Response: Thanks for your suggestion.  First, we would like to highlight the advantage of our 

approach over existing methods for the shape-change design. Most topology optimization (TO) 

efforts are focused on single material structure; among those of the composite design, only a few 

works address the shape-change design of 4D-printed ACs. Examples include those by Maute et 

al. (Refs.18-19), which involve a larger number of design voxels but require significantly longer 

computational time. For example, the approach in (Ref.18) takes about 50 hours for optimizing a 

single target. Additionally, these target shapes are typically limited to small-deflection cases 

(Ref.18) or are defined only by a few feature points (Ref.19), which are relatively less 

challenging than large-deflection, full-surface-defined targets that add more complexities to TO 

applications. Moreover, TO faces challenges such as the local minima problem and the 

complicated derivation of gradients (particularly non-trivial for complex material behaviors), as 

pointed out by (Ref.32: GX Gu, Advanced Science, 2020).  It should be noted that gradient-free 

EA-based TO frameworks (Refs.22-23) have also been explored for shape-change design, which, 

however, use smaller numbers of design voxels (e.g., 3×24 voxels in Ref.23) and incur greater 

time cost (about 12 hours for a single target).  Given the context described above, developing 

new inverse design approaches for shape morphing and 4D printing is highly desired. ML, in 

particular, holds great promise in tackling challenges of TO as it enables ultrafast and 

differentiable forward predictions. Our ML-based approach demonstrates highly efficient inverse 

design for complex target shapes. More importantly, once an accurate ML model is trained, it can 

be reused for efficient inverse designs of many different target shapes. Therefore, the upfront 

time cost for obtaining the ML model is offset by the significant time savings of inverse design, 

when compared to conventional methods as discussed above. In addition, our approach has 

general applicability across various shape-morphing material systems in 4D printing, which we 

believe presents significant advancements in the field.   

 

Second, scalability is indeed important in surrogate model-based optimization. In the literature, 
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ML models concerned with the shape-change response typically use relatively small number of 

voxels (Gu 2019 ATS; Gu 2022 AS).  In our AC plate problem, moving to a larger design space, 

such as 45×45×2 voxels, may not lead to (significantly) greater time cost for FE simulations, 

since the element number (45×45×4) of our current FE model may be sufficient. Going even 

higher to, e.g., 90×90×2 voxels (assuming 90×90×4 elements), should still be viable for our 

problem, since the use of 10 cores of a CPU in our parallelization (10 simulations at a time) does 

not represent a substantial computational resource. In fact, our current CPU (Intel i9-10900) 

supports running 20 simulations simultaneously owing to its 10 physical cores with hyper-

threading. By using more CPU cores (e.g., 60), which are readily available in many research 

settings (e.g., across multiple computers or within a cluster), the FE simulation time can be 

greatly reduced. This suggests the feasibility of scaling our design space without leading to 

prohibitive time costs.  In addition, our approach may be adapted to accommodate the design of 

large-scale targets without retraining a new ML model. For instance, we can combine multiple 

conforming patches to construct surfaces containing a larger number of voxels. Such potential 

modifications to the existing ML model and design approach for AC plates are our ongoing 

efforts. This idea was demonstrated for AC beams in our recent study (JMPS, 

doi.org/10.1016/j.jmps.2024.105561). We are currently working on extending this idea to AC 

plates.  

 

Third, in scenarios where each FE simulation takes a considerably longer time (e.g., hours), the 

following strategies may be explored and combined: developing smaller-scale ML models with 

extrapolation capabilities or exploring extrapolation techniques (e.g., splicing); utilizing small 

datasets with physics-informed loss; exploring data augmentation techniques; exploring reduced-

order models for expedited simulations; and conducting parallel computing for expedited 

simulations.  Moreover, it is essential to assess whether increasing the design space is necessary 

for the design objectives (e.g., desired accuracy and feature size for target approximation). It is 
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suggested to use a hierarchical concept to progressively increase the design space (e.g., 5×5 to 

15×15 to 45×45 for our specific problem), until the design space is sufficient to fulfill the design 

objective. After all, a larger design space offers enhanced design capabilities but needs more data 

for model trainings and adds more complexities to optimizations. As the design space increases, 

the feasibility and the trade-offs involved would require careful consideration for each specific 

problem. 

 

We have added discussions on the benefits and efficiency gains of our approach for the design 

process, the potential ways to reducing time cost and its implication on the scalability of our 

model, and the potential ways to expanding the design space without retraining new models (see 

highlighted text on Pages 34-35, 38): 

 

Pages 34-35 

“In addition, ML allows for rapid shape predictions and efficient gradient computations via AD, 

thereby enabling the computationally low-cost GD process. This thus offers new possibilities for 

addressing the challenges faced by TO (which can be seen as FE-GD), the local minima problem 

and the complicated gradient derivation [32].  More importantly, once an accurate ML model is 

trained, it can be reused for efficient inverse designs of many different target shapes. Therefore, 

the time cost for obtaining the ML model is offset by the significant time savings of inverse 

design, when compared to conventional design methods [18, 22, 23].  Furthermore, both data 

generation and model training can be further parallelized to improve computational efficiency. 

For example, in our 10-group parallelized FE simulations, the use of 10 cores of a CPU does not 

represent a substantial computational resource. By using more CPU cores (e.g., 60), which are 

readily available across multiple computers or within a cluster, the FE simulation time can be 

significantly reduced. This also suggests the feasibility of scaling our design space (e.g., to 

45×45×2 or 90×90×2 voxels) without leading to prohibitive time costs.   
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…… 

For the cases where the initial shape is not square, for example, triangular or rectangular, or those 

with finer features that cannot be adequately captured by the current design space (15 × 15 × 2 

voxels), our design approach may still be applicable without training a new ML model. For 

example, one can use cutting if the initial shape is triangular or rectangular, or combine multiple 

conforming patches to construct surfaces containing a larger number of voxels. These potential 

modifications could expand the design space of our current ML model and are our ongoing 

efforts. This idea was demonstrated for AC beams in our recent study [41].” 

 

Page 38 

“For the dataset generation, we perform FE simulations in parallel across 10 groups, each using a 

single core of a CPU (Intel Core i9-10900), which takes about 95 hours. This setup does not 

represent a substantial computational resource. In fact, our current CPU supports running 20 

simulations simultaneously owing to its 10 physical cores with hyper-threading. Therefore, the 

FE simulation time may be significantly reduced depending on a user’s computational resource.” 

 

 

Comment 3. From the optimization results in Fig. 5 and 6, the activated shapes indeed match 

well with the target shape macroscopically. But the deformed materials are not as smooth as the 

target shape microscopically. Is this problematic in application? How can this issue be potentially 

addressed? 

 

Response: Thanks for bringing up this question. First, it might not be problematic in most 4D 

printing applications such as smart devices, actuators, and robotics, where it is more important to 

achieve the target shape morphing or motion macroscopically. Second, it may be important in 

certain applications such as deployable reflectors on satellites. To address the problem in this 
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case, we observe that the surface roughness arises from variations in the curing distance for 

different grayscale levels of DLP printing, which is reflected in the smoothness of the surface 

(e.g., both as-printed and actuated plates show the surface roughness as shown in 

Supplementary Movie 7). This issue could potentially be addressed through the optimization of 

printing parameters (e.g., light field distribution) for more accurate DLP printing. Previous work 

of our group has demonstrated the effectiveness of pixel-level manipulation to improve printing 

accuracy (AFM, doi.org/10.1002/adfm.202213252). The modeling framework developed there 

can be integrated with a parameter optimization algorithm for smoothing the surface of 4D-

printed plates. This is an ongoing project that we are currently pursuing, but it falls outside the 

scope of the present work.  

 

We have added discussions on the potential improvement of surface smoothness in Section 2.8 

(see highlighted text on Page 35): 

“Second, our printed AC sheets exhibit some unsmooth features at the voxel boundaries, which 

arise from variations in the curing distance for different grayscale levels of DLP printing. This 

issue could potentially be addressed through the optimization of printing parameters [68] to 

achieve more accurate printing of our optimized material distributions. This is our ongoing work.” 

 

 

Comment 4. Surrogate model based optimization can be problematic as the optimization process 

not only maximize/minimize the design objective, but may also converge at someplace with 

maximized prediction errors. In this study, this phenomenon isn’t obvious as the model is trained 

on a rich dataset and have an extremely high R-squared value. But how would the optimization 

strategy be improved if the surrogate model gives certain bias from ground truth, say only 85-90% 

R-squared value? 
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Response: This is a great question that we have been fighting in our work. Thank you for 

bringing this up. In our study, we prioritize high accuracy in the forward ML model due to the 

high sensitivity of our design task—approximating target shapes represented by the high-

dimensional data (16×16×3 numbers)—where even minor prediction inaccuracies (e.g., 

deviations in a few data points) can significantly alter the actually achieved shape from the target. 

To address this, we dedicated substantial efforts (such as generating dataset with distinct types of 

design patterns, augmenting data using symmetries, optimizing the network architecture, and 

selecting appropriate boundary conditions) to enhancing our ML model's performance, ultimately 

achieving the R-squared > 0.99. Based on our experience in our previous work (1D AC beam) 

and this work, the high level of accuracy is crucial for our task of shape change design. 

 

In scenarios where a surrogate model exhibits lower accuracy (85-90% R-squared value), as you 

mentioned, we agree that such models may not meet the stringent requirements of tasks that 

demand high prediction accuracy, like ours. They could, however, be better suited for tasks less 

sensitive to accuracy, such as optimizing or extremizing a single property. If the tasks are indeed 

sensitive to the prediction accuracy but the ML model is not accurate enough, we suggest 

exploring potential solutions like employing an active learning approach to iteratively refine the 

model (see your suggested paper, Ref.[32], Chen and Gu, Adv. Sci., 2022) or integrating finite 

element (FE) verification with ML optimization to validate and adjust predictions (see PNAS, 

2023, 120(35): e2309062120). While these strategies could mitigate some of the accuracy 

concerns, they also introduce additional computational costs. Thus, their feasibility and the trade-

offs involved would require careful consideration and further investigation. This is a future work 

that we are considering. 

 

We have added text to emphasize the importance of high ML accuracy in our design task in 

Introduction (see highlighted text on Page 5): 
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“Compared to optimizing or extremizing a few properties, the design for shape changes has 

unique challenges such as highly complex mapping from material distributions to shapes 

(particularly for large deflections), the high-dimensional nature of the shape data and the 

variability of the target shapes. This also places higher demands on the accuracy of ML models.” 
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Reviewer #2 (Remarks to the Author): 

General comments: 

This paper presents a machine learning and evolutionary algorithm enabled approach for 

designing and predicting shape changes of 4D printed active composite plates. A residual 

network based machine learning model is developed to predict shape changes with great 

accuracy and efficiency. The model is then combined with gradient descent and evolutionary 

algorithms to achieve inverse design of optimal material distributions for desired shape changes, 

which is significantly accelerated by machine learning. A global-subdomain design strategy is 

proposed to obtain optimal designs by first globally optimizing all voxels and then refining local 

subdomains. This method can rapidly generate optimal material distribution designs for various 

target shapes, including FE-generated and algorithmically-generated shapes, as well as irregular 

shapes using patch representation and normal distance loss. The designs are computationally and 

experimentally validated. The voxel-level inverse design approach empowered by machine 

learning opens a new paradigm for intelligent design and fabrication of 4D printed active 

composites, providing new insights for 4D printing applications. 

 

Response 1 to general comments: We thank you for your thorough review of our paper and 

have made substantial revisions to the manuscript. 

 

After a thorough review of the entire manuscript, I believe that despite the systematic nature of 

this work, it does not present significant advancements compared to the author's previous 

research (DOI: 10.1002/adfm.202109805). In other words, the methods proposed in this paper 

have already been introduced in the author's prior publications. Given the journal's emphasis on 

the novelty of research contributions, I recommend reconsidering the acceptance of this 

manuscript. 
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Response 2 to general comments: We respectfully disagree with your assessment regarding the 

novelty and significance of this work compared to our previous research (Ref.40, AFM, 2022). 

While our earlier work focused on the 2D shape change of active composite (AC) beams, the 

current work advances into the 3D shape change of AC plates, representing a significant leap in 

both complexity and application. The transition from 2D to 3D involves addressing some new 

significant challenges, developing innovative strategies, and ultimately impacting a broader 

range of applications in 4D printing. Below, we detail the key aspects of our response: 

 

Challenges: The transition from beams to plates introduces significantly higher physical and 

data complexities, presenting considerable challenges in both accurate ML prediction and 

efficient inverse design. For example, for an AC beam design using 24×4 voxels for 2D shape 

change, the design space is (296≈8×1028); for an active plate with 15×15×2 voxels, the design 

space becomes 2450 (≈3×10135), an increase of more than 10100.  There thus exist big gaps 

between our previous methodologies (ML and evolutionary algorithm, ML-EA) and the current 

problem, which requires developing new methodologies.  

 

Strategies/efforts: To address the challenges, our new methodologies are detailed as follows.  

First, we did a comprehensive exploration of strategies to enhance ML model accuracy, such as 

investigating boundary conditions, data augmentation, network architectures, and symmetry-

enabled accuracy enhancement. These efforts have been expanded during revision, including 

broadening dataset ranges and experimenting with new ML model architectures.  Second, we 

developed a novel global-subdomain design strategy, inspired by the spatially sequential 

dependency in plate deflection. We also explored a machine learning and gradient descent (ML-

GD) approach tailored for our discrete-variable problem, which, combined with subdomain EA, 

surpasses the efficiency of our previous ML-EA strategy. 
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Impact/Significance: The ability to design shape-morphing plates has profound implications 

across a wide spectrum of 4D printing applications, from smart devices and robotics to 

biomedical devices. Our work represents a substantial progress in the field and provides an 

intelligent design-fabrication paradigm for 4D printing. Our methodologies/explorations offer 

valuable insights into addressing problems related to the design for AC plates, shape morphing, 

and 4D printing. In addition, our approach demonstrates general applicability across various 

material systems, activating stimuli, and length scales, further showing the novelty and broader 

relevance of our current study.  

 

In summary, our work introduces significant advancements in the field of 4D printing by tackling 

the complex challenges in designs for 3D shape morphing of plates. The novel strategies and 

notable impact of our work strongly align with the journal's emphasis on original research 

contributions. 

 

Furthermore, this paper still needs to address the following concerns: 

 

Comment 1. Data set generation could consider a broader range of material distribution patterns, 

not just the two modes of full randomness and island distribution. Incorporating more modes 

may enhance the model’s generalization ability. 

 

Response: Thanks for your valuable suggestion. We have expanded our dataset beyond the 

original fully random and island patterns to include additional datasets with new pattern types.  

 

First, we introduced a hierarchical pattern type inspired by the Sci. Adv. paper by Buehler and 

colleagues. These hierarchical patterns utilize "super" voxels composed of i×j (i, j ≥ 2) true 

voxels, creating an m×n hierarchical grid for generating random designs. To cover a broad range 
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of patterns, we developed a dataset with mixed hierarchies (named "HrchMix") by randomly 

sampling design hierarchies (m and n) from uniform distributions (m, n ~ U(3, 7)), followed by 

the generation of random grids (∑i = ∑j = 15), random combination of random grids, and finally 

random assignment of two materials. The two layers of each material distribution can have 

different hierarchies to ensure diversity. In addition, we generate two independent validation 

datasets with the 3×3 and 5×5 hierarchies, where each "super" voxel contains 5×5 and 3×3 true 

voxels, respectively. Representative patterns for the HrchMix, 3×3, and 5×5 datasets are 

illustrated in Figure R1. We also study their statistics and the results are shown in Figure R2. 

 

Second, we explored a completely different pattern type inspired by Spinodal decomposition 

(Ref.5 of Supplementary Materials), a process related to phase separation that results in 

distinctive patterns useful for material design. To cover a broad range of patterns, the Spinodal 

dataset (named “Spnd”) was generated with varying anisotropies, orientations, and periods, 

details of which are provided in the newly added Section S5 of Supplementary Materials. 

Representative patterns for the Spnd datasets are illustrated in Figure R1. We also study their 

statistics and the results are shown in Figure R2. 

 

The representative patterns and statistics of these new datasets confirm that they differ from the 

existing fully random and island datasets. We split the HrchMix and Spnd datasets into training 

and validation sets and incorporate the new training sets into our original training set, 

maintaining the overall size by replacing an equivalent number of original datapoints. The 

combined training set was then used to train a new ResNet-based ML model, the performance of 

which, compared to the existing model across various validation sets (original, HrchMix, Spnd, 

3×3 and 5×5), is shown in Figure R3. First, our existing ML model shows an excellent 

performance on the new datasets, demonstrating its strong ability to generalize. Second, 

incorporating these new dataset types into the training set improves the model's performance on 
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the independent 3×3 and 5×5 validation sets, indeed indicating an enhancement in generalization 

ability, although the improvement in prediction accuracy is not significant (this is probably our 

existing model already has high accuracy). Due to the slight improvement of the new model and 

the excellent performance of the existing model, we opted not to rerun the inverse designs with 

the new model. We have added a new Section S5 in Supplementary Materials for implementation 

details of the new datasets. We have also added the following descriptions and results in main 

text (see highlighted text on Page 16): 

“Moreover, to evaluate the model’s generalization ability, we build additional datasets that differ 

significantly in pattern types from the existing fully random and island datasets, as detailed in 

Supplementary Materials. The distinction across datasets is illustrated through their example 

patterns (Figure S6) and statistics (Figure S7). Our ML model exhibits excellent performance on 

the new datasets, and incorporating the new datasets into the training set slightly improves the 

performance (Figure S8). These demonstrate that our existing ML model has strong 

generalization ability.” 
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Figure R1. (Figure S6). Representative patterns for the hierarchical patterns and spinodoid 

patterns.  
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Figure R2. (Figure S7). The statistics of the newly generated datasets. We also calculate the 

maximum displacement of each datapoint (design-shape pair) of the entire dataset and then 

depict the distributions of the maximum displacement for (a) HrchMix dataset, (b) 3×3 and 5×5 

datasets, (c) Spnd1 dataset generated with isotropic spinodoid patterns and Spnd2 dataset 

generated with anisotropic spinodoid patterns, and (d) Spnd dataset dataset. All datasets are 

based on the converted BCs. The mean value of the maximum displacements of each dataset is 

shown in the corresponding panel. These new datasets overall exhibit a maximum displacement 

between that of the fully random dataset and that of the island dataset.  

 



19 

 

 

Figure R3. (Figure S8). Effects of new dataset types on the ML model’s performance. (a) 

Performance of two ML models on different validation sets in terms of the R2 value. (b) 

Performance of two ML models on two independent validation sets. 

 

 

 

Comment 2. Evaluating the impact of different boundary conditions on model prediction 

performance on the test set can be considered, which can further aid in selecting the optimal 

boundary condition settings. 
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Response: Thanks for your helpful suggestion. We have accordingly differentiated our response 

based on two distinct categories of BCs. The first category of BCs allows for the free shape 

morphing of plates. This category, which is our primary focus, is pivotal to the majority of 4D 

printing applications, where different BCs essentially give the same shape changes but with 

different rotations and thus different coordinate representations. Following your suggestion, 

during the revision, we have considered two additional BCs, namely BC3 and BC4, alongside 

the original and converted BCs previously considered. The forms of new BCs are provided in the 

newly added Section S1 of Supplementary Materials, and their effects on the model performance 

are shown in Figure R4. The deep model (ResNet-33) shows greatly improved performance with 

the converted BCs compared to the original, BC3, and BC4; the latter three show similar 

performance. This observation suggests that retaining the spatially sequential dependency in 

plate morphing can significantly enhance prediction accuracy.  To further verify this, we compare 

the ML (LSTM) performance on the beam’s shape morphing under two BCs, simply supported 

and cantilever-like, which again yield identical shape changes but differ in coordinate 

representation. Figure R5 shows that transforming shapes from simply-supported to cantilever-

like BCs enables a substantial accuracy improvement, underscoring the ease of learning for 

shapes with sequential dependency by ML models.   

 

The second category of BCs involves boundary constraints or applied mechanical loads that can 

interfere the shape morphing of plates. While our primary focus is on the first category, the 

second category can be relevant to certain applications, which would need new ML models. 

Further, a universal ML model capable of accommodating general BCs or loads would be highly 

beneficial. Due to the increased complexity of such a problem and the fact that it is beyond the 

scope of the present paper, new ML models on it will be explored in future studies. 

 

We have added Figure R4 as Figure 3c and revised the relevant text in main text (see 
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highlighted text on Pages 10 and 14). We have also added a new Section S1 in Supplementary 

Materials. Our evaluation of different BCs can provide insights into optimizing BC settings for 

enhanced ML performance in other shape morphing problems (e.g., those with different 

structures and mechanisms).  

 

Figure R4. (Figure 3c). Boundary condition (BC) effects. Validation loss versus epochs showing 

the training progress of ResNets using four datasets with different BCs: original BCs (oriBC), 

converted BCs, BC3, and BC4. 

 

Figure R5. ML (LSTM) model performance on the beam shape-change problem with two 

boundary conditions: (a) Simply-supported BC, (b) cantilever-like BC converted from the 

simply-supported BC, where B’ is right point of the first available element on the beam mid-axis. 

By converting shapes from simply-supported to cantilever-like BC, a substantial accuracy 
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improvement is achieved for the same ML architecture. 

 

 

Comment 3. Experimenting with different machine learning model architectures, such as 

convolutional neural networks, graph neural networks, etc., and comparing them with the current 

residual network model is an option. 

 

Response: Thanks for your helpful suggestion. We experimented with CNNs of different depths 

and the results were compared with ResNets in Figure 3. In response to your suggestion, we 

have extended our investigation to include graph convolutional networks (GCNs) (Figure R6a). 

We studied GCN models with different depths and architectures to ensure a fair comparison. 

Details on the GCNs tested are provided in the newly added Section S4 of Supplementary 

Materials. As shown in Figure R6b, the GCN-21×64 (depth × hidden size) with 4 skip 

connections (SCs) is the top performer among the GCNs tested. However, its validation MSE is 

higher (indicating lower accuracy) than that of the best-performing CNN and ResNet models 

(see Figure 3d). Further, the regression plots for the best-performing GCN and CNN models are 

shown in Figure R6c and R6d, respectively, revealing that GCNs exhibit inferior performance 

compared to CNNs, and consequently, to ResNets as well (see Figure 3h).  
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Figure R6. (Figure S5). Effects of model architectures. (a) Schematics of GCN architectures. 

GCL: graph convolutional layer. SC: skip connection. (b) Validation loss versus epochs showing 

the training progress of GCN with different depths, hidden sizes, and number of skip connections 

(SCs). GCNII is an extension of GCN with initial residual and identity mapping (Ref.3 of 

Supplementary Materials). (c-d) Density scatter plots of the true versus ML-predicted coordinate 

z using the (c) GCN and (d) CNN with optimal hyperparameters. 

 

In addition to these experiments, we also conducted preliminary tests at the beginning of this 

project using a smaller design space (5×5×2) to compare CNNs with other architectures such as 

LSTM networks and multi-dimensional LSTM (MDLSTM). The LSTM model sequentially 

predicts the shape changes at increasing active strains (0.01, 0.02, …, 0.05), and the final 

prediction corresponds to that by CNN. The MDLSTM model, as an extension of our previous 
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work (Ref.40, AFM, 2022), treats the x and y dimensions as two “sequential” directions, and 

sequentially predicts the coordinates column-by-column (each column has two voxels in z-

dimension) from one corner to the opposite corner of the plate. Our tests showed that CNNs 

outperformed the other architectures, further reinforcing our decision to utilize the ResNet 

architecture for the current design space (15×15×2). 

 

It should be noted that the higher performance of CNN and ResNet are attributed to the 

structured nature of our voxel-level input and output data which aligns well with the 

convolutional filter’s capabilities. When dealing with non-structured data, such as structures with 

irregular geometries or topologies, GCNs might be appropriate. This will be explored in future 

studies.  

 

We have added a new Section S4 in Supplementary Materials for the implementation and results 

of GCN. We have also added relevant descriptions in the main text (see highlighted text on Pages 

13, 15, and 40). 

Page 13: 

“In addition to the ResNet, we also build the plain CNN …, as well as the graph convolutional 

network (GCN), and compare their performances on the active plate design problem.” 

Page 15: 

“In addition, we also study the performance of graph convolutional network (GCN) models, 

which proves to be inferior to that of both plain CNN and ResNet (Figure S5).” 

Page 40: 

“In addition to ResNet, we also build the plain CNN and GCN models. Our CNN has the same 

architecture as ResNet but without skip connections. Details on our GCN implementation are 

provided in Supplementary Materials. ” 
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Comment 4. It is worth considering validating this design approach on multiple real material 

systems, not limited to a thermal expansion/contraction material system, to assess the method's 

applicability. 

 

Response: Thanks for your valuable suggestion. Our design approach is generally applicable to 

any active composite (AC) structure that exhibits differential dimensional changes driven by 

mismatched strains due to isotropic volume change under proper activation stimuli. In response, 

we have validated our approach with two additional grayscale DLP printable material systems, 

employing different actuation mechanisms, as shown in the newly added Supplementary Movie 

6. The successful realization of target shape changes in both systems demonstrates the 

applicability not only across different material systems but also under varied activation stimuli.  

In addition, our design approach is applicable across different length scales, which is 

demonstrated on a smaller AC plate using the same material system, as shown in the newly 

added Supplementary Movie 5. 

 

 

Comment 5. More constraints can be imposed on the target shape, such as surface smoothness 

constraints, to make the optimization results more in line with practical manufacturing 

requirements. 

 

Response: Thanks for your suggestion. We are not fully clear about the “surface smoothness 

constraints”, “imposed on the target shape”. Our response is organized into two possible 

interpretations. 

 

In cases you are talking about the unsmoothness of the target shape, we have introduced a pre-

smoothing function during revision (detailed in the newly added Section S11 of Supplementary 
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Materials), which removes severely unsmooth features of the target, as shown in Figure R7. We 

would like to mention that even without pre-smoothing, our current approach with the normal 

distance-based loss (Eq.(13)) can implicitly do the smoothing during the optimization. This is 

because it handles unsmoothed targets by encouraging achieved points to conform to the overall 

target surface, rather than matching each specific target point. As illustrated in Figures 7c, for 

the crumpled paper, our approach achieves a smoother shape that best approximates the target. 

This contrasts with the pre-smoothing method discussed above, yet both approaches yield a 

similar smoothing effect. We have a new Section S11 in Supplementary Materials and the 

following in main text (see highlighted text on Page 33): 

“Note that for targets with severe unsmoothness, one can pre-smooth the target before the design, 

as shown in Figure S13. Here, without pre-smoothing, our algorithm implicitly smooths the 

target during the design.” 

 

Figure R7. (Figure S13). The crumpled paper target shape with the severe unsmooth feature 

being intentionally introduced (top), the smoothed target shape with the unsmoothness being 

removed (bottom left), and the further smoothed target shape (bottom right). 
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In cases you are talking about the surface roughness that occurs at the boundaries between 

different material phases, our response is as follows. We observe that the surface roughness 

arises from variations in the curing distance for different grayscale levels of DLP printing, which 

is reflected in the smoothness of the surface (e.g., both as-printed and actuated plates show the 

surface roughness as shown in Supplementary Movie 7). This issue could potentially be 

addressed through the optimization of printing parameters (e.g., light field distribution) for more 

accurate DLP printing. Previous work of our group has demonstrated the effectiveness of pixel-

level manipulation to improve printing accuracy (AFM, doi.org/10.1002/adfm.202213252, newly 

added Ref. 68). The modeling framework developed there can be integrated with a parameter 

optimization algorithm for smoothing the surface of 4D-printed plates. This is an ongoing project 

that we are currently pursuing, but it falls outside the scope of the present work. We have added 

discussions on the potential improvement of surface smoothness in Section 2.8 (see highlighted 

text on Page 35): 

“Second, our printed AC sheets exhibit some unsmooth features at the voxel boundaries, which 

arise from variations in the curing distance for different grayscale levels of DLP printing. This 

issue could potentially be addressed through the optimization of printing parameters [68] to 

achieve more accurate printing of our optimized material distributions. This is our ongoing work.” 

“68. Montgomery, S.M., et al., Pixel-Level Grayscale Manipulation to Improve Accuracy in 

Digital Light Processing 3D Printing. Advanced Functional Materials, 2023. 33(17): p. 2213252.” 

 

Comment 6. I noticed that the authors did not use widely adopted open-source deep learning 

frameworks commonly used in both the research and industry sectors, such as TensorFlow, etc. I 

have reservations about the reliability of the data obtained in this paper, and the fact that all 

MATLAB code used in this study has not been made open-source could significantly diminish 

the paper’s impact. 
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Response: Thank you for bringing up this point. We choose MATLAB because of its 

comprehensive documentation and ease of rapidly implementing ideas, which significantly 

expedited our development process. We understand your concern regarding the reliability of the 

data obtained; however, we would like to emphasize that the choice of software does not 

inherently affect the reliability of our results and conclusions. In addition, all ML predictions and 

optimized designs are verified by FE simulations and experiments, which demonstrates the 

validity of MATLAB and our research findings. 

 

Regarding the availability of our code, we agree that the open-sourced codes will enhance the 

impact and reproducibility of our research. To this end, we have already made parts of our work 

available to the public, including the dataset, the machine learning model, and the inverse design 

code (see highlighted text on Pages 43-44). Due to time constraints, not all codes have been 

released yet, but we are committed to open-sourcing the remaining codes as soon as possible.  

 

“Data availability 

The generated dataset is available in: 

https://www.kaggle.com/datasets/sunxiaohao/dataset-for-active-shapes-of-ac-plates 

Code availability 

The codes are available in: 

https://github.com/XiaohaoSun/ML_4DP_AC_plates/” 
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Reviewer #3 (Remarks to the Author): 

General comments: 

This paper addresses the challenge of designing active composites (ACs) with 3D shape changes 

using 4D printing technology. The authors propose an approach that combines machine learning 

(ML) with gradient-descent (GD) and evolutionary algorithm (EA) techniques for both forward 

shape prediction and inverse material-distribution design. A residual network ML model is 

developed for forward shape prediction and a global-subdomain design strategy with ML-GD 

and ML-EA is used for inverse material distribution design. The ML models enable efficient 

exploration of the large design space associated with 4D-printed ACs. The results are good, but I 

have some questions. 

 

Response: We appreciate your efforts in reviewing our work and would like to address your 

comments as follows. 

 

Comment 1. In this article, you did not say anything about the properties (constitutive model) of 

the material (from line 901 to line 909). Did you write UMAT for Abaqus when simulation? How 

can you ensure the material you printed can satisfy the properties you used for the simulation 

what is "the coefficient of thermal expansion is set to be 0.001 for active material and 0 for 

passive material. A 50-degree temperature increase is applied to the entire plate"? Even from the 

authors' previous work (literature 15 and 43), I also didn't find the constitutive model of the 

materials you use. If it can not be satisfied, this control of the 4D-printed active plate is not 

precise. You just simulate the trend of the deformation, you didn't know how much this part can 

deform. 

 

Response: Thank you for this important question. In our FE simulations, we use the neo-

Hookean model with identical moduli for both active and passive phases, and the isotropic strain 
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mismatch is 0.05 (applied through thermal expansion). The text referenced by you is for the FE 

model. In experiments, the printed phases were measured to have a modulus ratio of 0.053 and 

an active strain mismatch of 0.057. While the material properties differ between the FE model 

and experiments, we employ a multilayer composite bending theory to approximately, 

quantitatively tune the dimensions of the printed part to control its curvature, thus beyond merely 

simulating deformation trends. The details are provided in the newly added Section S9 of 

Supplementary Materials (which is too long and thus omitted here). Specifically, we tune the 

dimensions of printed parts such that they lead to curvatures close to the FE (or ML) predictions 

while satisfying the manufacturability condition. This theory’s validity is demonstrated in Figure 

R8, which presents a comparison between analytical curvatures across varying plate dimensions. 

As discussed in Section S9, this dimension modification approach can approximately 

compensate for effects of the property difference between the FE model and experiments on the 

shape-change prediction, thus offering an efficient way to applying our ML model across 

different materials (thus having different properties) and length scales. It should be noted that our 

design approach will also work by retraining a new machine learning (ML) model based on 

practical material properties (expansion mismatch and modulus difference). However, the 

dimension modification approach can streamline the process and achieve a broader applicability. 

We thus achieve quantitative control over the deformation of 4D-printed active plates. 

 

Moreover, our previous work (AC beam, now Ref.40, AFM, 2022), where a different material 

system was used, also demonstrates the effectiveness of this theoretical framework on the 

multilayer beam system with 4×24 voxels. There, the printed materials have a modulus ratio of 

0.15 and mismatch strain of 0.072 between the two printed phases. The analytical model allows 

us to convert the optimized design patterns to ensure the actual curvatures, derived from 

experimental parameters, closely matches with the simulated curvatures based on theoretical 

parameters. This further supports the validity of our dimension modification approach. 
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Figure R8. (Figure S12). (a) Schematic of a multi-layer bi-phase beam with a strain mismatch 

(left). Bending of a bilayer beam induced by the strain mismatch (right). (b) Comparison of 

theory and experiment for the relation between curvature and thickness ratio. (c) Comparison of 

theory and experiment for the relation between curvature and total thickness. (d) Schematic of a 

bilayer plate with a strain mismatch. 

 

We have a new Section S9 in Supplementary Materials and the following in main text (see 

highlighted text on Page 42): 

“Note that the material properties in experiments are different from those used in FE simulations. 

The printed two material phases show a modulus ratio of 0.053 and a strain mismatch of 0.057, 

while the FE (or ML) model assumes the identical modulus and a strain mismatch of 0.05. Such 

a property difference would result in different shape changes between ML predictions and 4D-

printed parts. This issue can be resolved by retraining a new ML model based on practical 
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material parameters and rerunning the design. Here, instead of retraining a new model, we adopt 

a strategy similar to that of our previous work[40, 41], i.e., tune the print dimension to 

approximately compensate for the effect of property differences through an analytical model for 

the local curvature. Details are provided in Section S9 of Supplementary Materials. This 

dimension modification strategy offers an efficient way to applying our ML model across 

different materials and length scales.” 

 

 

Comment 2. In the supplementary videos, all parts are only shown in their final manufactured 

form, which seems perfect. The deformation process of these parts is not shown at all. Therefore, 

although it looks perfect, readers will question how these parts that "perfectly" fit the desired 

shape are "manufactured", which is better if you record the video of the deformation process, 

 

Response: Thank you for your helpful suggestion. We acknowledge the importance of showing 

not only the final shape but also the manufacturing and deformation processes to provide a 

comprehensive understanding of our work. In response, using the crumpled paper as an example, 

we have recorded a detailed video (see Supplementary Movie 7) capturing a complete process 

involving both the printing and the subsequent shape-morphing. The printed sheet is initially flat. 

Through an evaporation process at 80°C, these sheets undergo a transformation, morphing into 

the desired shapes. For the same example, the process of crumpling a paper, the identified target 

shape, and the optimized design and shape by our approach, are also shown in the video. We 

believe the video will not only facilitate the readers’ understanding of how the sheet with desired 

shape is 4D printed, but also better demonstrate the new paradigm for the intelligent design and 

fabrication of 4D printing, as presented in this study.  

 

Based on suggestion, we have added the following text. 
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Page 31 (Caption of Figure 7): 

“A complete design-fabrication process including the paper crumpling, target identification, 

inverse design, 3D printing, actuation (shape morphing), and final 4D-printed shape is shown in 

Supplementary Movie 7.” 

 

Page 33 (Section 2.7): 

“This movie also shows a complete design-fabrication process from the paper crumpling to final 

4D-printed shape.” 

 

 

Comment 3. For one side of the plate (now a square plate with specified length, width, and 

thickness), it needs a lot of time (about more than 100 hours) to generate datasets for training. Do 

you think this is meaningful? or do you have the choice to reduce the time to generate the dataset 

for training? Also for ML models, it also takes more than 10 hours to train, and the author uses 

V100 GPU, which is already very powerful. I don't think it will be greatly improved if you use 

more advanced GPUs like A100 and H100. If you use these more advanced GPUs, it will still 

take about three or four hours for training. 

 

Response: Thank you for bringing up this important question. First, the ML model is meaningful 

and beneficial for practical 4D printing design applications. Once the model is trained, it can be 

reused for efficient inverse designs of numerous target shapes. Thus, the upfront time cost (about 

105 hours) of obtaining the ML model is offset by the significant time savings of inverse design, 

when compared to conventional design methods. For example, in TO frameworks for the shape-

change design of ACs (Refs.18-19), the optimization does not need the time of training, but is 

much slower in the design stage (e.g., about 50 hours for a single target shape in Ref.18), and the 

targets are less challenging than the large-deflection, full-surface-defined target surfaces in our 
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study. As another example, existing EA-based TO frameworks (Refs.22-23) are also much 

slower: optimizing a beam structure composed of much fewer (3×24) voxels takes about 12 

hours for a single target shape (Ref.23). Here, our design approach demonstrates high efficiency 

for complicated target shapes and has general applicability to various 4D printing or shape 

morphing material systems.  

 

Second, the time needed to obtain an ML model, which involves the dataset generation (about 95 

hours) and model training (about 10 hours), can indeed be substantially reduced by leveraging 

parallel computing.  Regarding the dataset generation, the time is mostly spent on finite element 

(FE) simulations, which, in our case, were conducted in parallel across 10 groups using 10 cores 

of a CPU. This setup does not represent a substantial computational resource. In fact, our current 

CPU (Intel i9-10900) supports running 20 simulations simultaneously owing to its 10 physical 

cores with hyper-threading. By using more CPU cores (e.g., 60), which are readily available 

across multiple computers or in workstation or cluster environments, the FE simulation time can 

be significantly reduced. Similarly, the model training was performed on a single V100 GPU. We 

agree that using more advanced GPUs like A100 and H100 may not offer significant 

improvement in time cost. However, the significant time reduction could be achieved by using 

multiple GPUs, a strategy that is increasingly feasible and not difficult to implement in many 

research settings (e.g., in a cluster environment). As a reference, a recent study (Nat. Mach. 

Intell., 2023, 5, 1466–1475) employed 8 Quadro RTX 6000 GPUs for 70 hours of training. We 

can anticipate that adopting similar computational power would substantially shorten our model 

training time. 

 

Third, our approach may be adapted to accommodate the design of targets with different initial 

geometries (i.e., not limited to a square plate considered here) without training a new ML model. 

For instance, we can use cutting techniques in cases where the initial shape is triangular or 
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rectangular, or combine multiple conforming patches to construct larger surfaces. These potential 

modifications to the existing ML model and design approach for AC plates are our ongoing 

efforts. This idea was demonstrated for AC beams in our recent study (JMPS, 2024, 

doi.org/10.1016/j.jmps.2024.105561). We are also currently working on implementing this to AC 

plates. 

 

We have added discussions on the time issue, the benefits and efficiency gains of our approach 

for the design process, and the potential ways to reducing time cost through parallelization (see 

highlighted text on Pages 34-35, 38): 

Pages 34-35 

“In addition, ML allows for rapid shape predictions and efficient gradient computations via AD, 

thereby enabling the computationally low-cost GD process. This thus offers new possibilities for 

addressing the challenges faced by TO (which can be seen as FE-GD), the local minima problem 

and the complicated gradient derivation [32].  More importantly, once an accurate ML model is 

trained, it can be reused for efficient inverse designs of many different target shapes. Therefore, 

the time cost for obtaining the ML model is offset by the significant time savings of inverse 

design, when compared to conventional design methods [18, 22, 23].  Furthermore, both data 

generation and model training can be further parallelized to improve computational efficiency. 

For example, in our 10-group parallelized FE simulations, the use of 10 cores of a CPU does not 

represent a substantial computational resource. By using more CPU cores (e.g., 60), which are 

readily available across multiple computers or within a cluster, the FE simulation time can be 

significantly reduced. This also suggests the feasibility of scaling our design space (e.g., to 

45×45×2 or 90×90×2 voxels) without leading to prohibitive time costs.   

…… 

For the cases where the initial shape is not square, for example, triangular or rectangular, or those 

with finer features that cannot be adequately captured by the current design space (15 × 15 × 2 
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voxels), our design approach may still be applicable without training a new ML model. For 

example, one can use cutting if the initial shape is triangular or rectangular, or combine multiple 

conforming patches to construct surfaces containing a larger number of voxels. These potential 

modifications could expand the design space of our current ML model and are our ongoing 

efforts. This idea was demonstrated for AC beams in our recent study [41].” 

 

Page 38 

“For the dataset generation, we perform FE simulations in parallel across 10 groups, each using a 

single core of a CPU (Intel Core i9-10900), which takes about 95 hours. This setup does not 

represent a substantial computational resource. In fact, our current CPU supports running 20 

simulations simultaneously owing to its 10 physical cores with hyper-threading. Therefore, the 

FE simulation time may be significantly reduced depending on a user’s computational resource.” 

 

 

Comment 4. In lines 762 and 763, you said the coefficient of thermal expansion is set to be 

0.001 for active material and 0 for passive material. A 50-degree temperature increase is applied 

to the entire plate. So, the total expansion ratio will be 0.05 (5%) for the active material. Do you 

think this tiny change in the volume of active material will cause a huge shape change for the 

whole structure? I have this doubt due to the authors' previous work in Reference 43. In Figure 

S1 of supplementary materials in Sun et al. 2022 Advanced Functional Materials, such a tiny 

change in volume of active material (10% in that literature), will it cause more than the 180-

degree reverse of that 4D-printed beams??? Even if such a large displacement can occur, during 

the deformation process, a certain place of the part "hits" the origin on the left side of the part. 

How do you deal with this situation? This becomes a contact problem in Abaqus simulation, 

which is very complicated. 
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Response: Thank you for your interesting questions. First, the expansion strain of 0.05 indeed 

results in significant shape changes in the structure, as observed in our study. This effect is 

comparable to our previous work (now Ref.40, Sun et al. 2022 Adv. Funct. Mater.), where a 

strain of 0.1 was shown to cause extensive deformation, including more than a 180-degree 

reversal in beam structures, as depicted in Figure S1 of Ref.40. In fact, the beam can morph to 

loops under a strain mismatch of 0.1 (as the contact is neglected in our FE model). For example, 

using the bilayer beam theory (Eq.(7) of Supplementary Materials), the curvature of a bilayer 

with identical modulus and strain mismatch of 0.1 is calculated to be 0.15 mm-1 (radius of 

curvature of about 6.7 mm). As the beam length is 80 mm, it can easily achieve a 180-degree 

reverse.  In the current work on plates, a strain mismatch of 0.05 can thus achieve large shape 

changes (e.g., 90-degree deflection). It is important to note that the magnitude of shape change is 

highly dependent on the material distribution pattern, which can be seen from the variations in 

averaged maximum displacement across different datasets—fully random, island, hierarchical, 

and spinodal—as detailed in our response to Comment 1 of Reviewer 2. 

 

Second, regarding the contact problem during shape morphing, our simulations did not account 

for the potential self-contact of the plate, thus allowing for penetration within the model. This 

assumption is justified for two reasons: (1) only a small subset of the dataset exhibited shape 

changes significant enough to potentially cause contact issues, and (2) our primary focus is on 

free shape morphing, which is most relevant to the majority of 4D printing applications. While 

we recognize the importance of considering contact in certain scenarios, the complexity of 

accurately simulating contact in FE models led us to prioritize tractability and relevance to the 

intended application scope of our study. The contact effect and its applications in certain 

scenarios will be explored in our future work. 

 

We have added text on the neglection of contact effects in Section 4.1 (see highlighted text on 
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Page 37): 

“During the shape change, the potential self-contact of the plate is not accounted for.” 

 

 

Comment 5. One tiny issue, in Line 477 "(≥2x2)", why do you use "x" to represent the 

multiplication sign? Why don't you express the multiplication sign like in Line 475? 

 

Response: We thank the reviewer for pointing it out. This is a typo and we have corrected “x” to 

“×”. 

 

Comment 6. What will happen if the target shape is out of the range that the printed part can 

achieve? For example, if you want the first voxel near (0, 0, 0) to reach the point (1, 1, 1000), 

this target is impossible to reach. What impact does this situation have on your algorithm? 

 

Response: Thanks for this interesting question. The algorithm behavior depends on the loss 

function when the target shape is beyond the achievable range of the printed part. We have 

adopted two types of loss functions: (1) the weighted mean squared error (MSE) between 

achieved points and target points (see Eqs.(6) and (11)), and (2) the weighted mean normal 

distance between achieved points and target surface patches (see Eq.(13)). The response to an 

unattainable target varies depending on the specific scenario.  

 

First, if the entire target is out of reach, such as all points near (1, 1, 1000), the algorithm would 

produce a shape that deflects towards these target points. Since we always preprocess the target 

shape such as adopting appropriate boundary conditions and scaling the target surface dimension, 

we are unlikely to encounter a completely unattainable target.  
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Second, in cases where one target point is significantly out of reach while others are attainable, 

the result becomes more complex, akin to dealing with a target having severe unsmoothness or 

kinks. As the algorithm is to minimize the loss, the achieved shape is likely to be random, 

depending on the overall target profile. To improve handling of such scenarios, we have 

introduced a pre-smoothing function during revision (detailed in the newly added Section S11 of 

Supplementary Materials), which removes severely unsmooth features of the target, as shown in 

Figure R9.  

 

Third, for targets with moderate local unsmoothness or kinks, our existing algorithm setup, 

particularly the second loss function (Eq.(13)), can implicitly do the smoothing without the pre-

smoothing. This loss function allows for robust handling of irregular targets by encouraging 

achieved points to conform to the overall target surface, rather than matching each specific target 

point, which is illustrated with unsmoothed target shapes in Figures 7c and those with irregular 

boundary in Figure 7d. Thus, for unsmoothed targets, the second loss function achieves a 

smoother shape that best approximates the target. This contrasts with the pre-smoothing method 

discussed above, yet both approaches yield a similar smoothing effect.  

 

We have a new Section S11 in Supplementary Materials and the following in main text (see 

highlighted text on Page 33): 

“Note that for targets with severe unsmoothness, one can pre-smooth the target before the design, 

as shown in Figure S13. Here, without pre-smoothing, our algorithm implicitly smooths the 

target during the design.” 
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Figure R9. (Figure R7, Figure S13). The crumpled paper target shape with the severe unsmooth 

feature being intentionally introduced (top), the smoothed target shape with the unsmoothness 

being removed (bottom left), and the further smoothed target shape (bottom right). 
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Reviewer #4 (Remarks to the Author): 

General comments: This paper by Sun et al. uses machine learning to allow the forward 

prediction and inverse design of the 3D shape a 2D printed voxelated sheet will take after 

expansion of specific pattern of voxels defined by the printing process. 

 

The results show that the prediction works very well as arbitrary shapes designed by crumpling a 

piece of paper can be mapped and printed. It is difficult to comment further on the modeling as 

this is not my area of expertise. 

 

In terms of manufacturing the use of 4D printing to convert flat sheets into three dimensional 

objects is of broad interest. Bilayer structures are widely used as analytical predictions of the 

shapes may be made. However, it much more difficult to print a complex shape with non-

periodic features. This work appears to be a significant advance in the design of these types of 

4D printed materials. 

 

Response: We appreciate your positive feedback and would like to address your comments as 

follows. 

 

Comment 1. It is very useful that the modeling is tested by experimental 3D printing of the same 

materials. It is noted that the modeling considers the active material one that isotropically 

expands, while in the 3D printed parts the shape change is achieved by contraction of voxels 

through the evaporation of unreacted monomer. One assumes from the agreement between the 

experiment and the model that the corresponding ‘active’ voxel in the experimental material is 

therefore the well-cured phase. This should be more explicitly indicated in the ‘Materials and 

Methods’. 
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Response: Thanks for your valuable suggestion. We have revised the following text in Section 

4.5 to explicitly state what active and passive phases correspond to in the experiments (see 

highlighted text on Page 41): 

“Our ML optimal designs are converted into grayscale printing slices such that the active (“1”) 

and passive (“0”) voxels are printed using brighter (0% grayscale) and dimmer (60% grayscale) 

lights and thus lead to well-cured (higher-DoC) and partially-cured (lower-DoC) material phases, 

respectively. The printed structure is then heated to facilitate the monomer volatilization. The 

partially-cured phase (“0”) contains more residual monomers that can volatize at elevated 

temperatures and thus shows more volume shrinkage than the well-cured phase (“1”). The 

mismatch of the shrinkage strain thus induces the shape transformation.” 

 

 

Comment 2. It would be useful to list the voxel dimensions in the experimentally printed 

material. Looking at the scale bars in Figure 7, it appears to be roughly on the order of a 1x1x1 

mm? Building on this comment, the 3D printing material is interesting and may be useful in 

some applications, however the evaporation of acrylate monomer may be undesirable in others. 

If the dimensions at this scale for the voxels, it would be helpful to briefly discuss the 

applicability of this method to other voxelated printing schemes, perhaps using materials of 

different thermal expansion to achieve similar effects. 

 

Response: Thanks for your valuable suggestion. The AC plate has a dimension of 42 mm × 42 

mm × 0.6 mm, with a printing voxel size of (50 μm)3, which is adjustable based on the printer. 

This is distinct from the design voxel size of AC plate, which is 2.8mm×2.8mm×0.3mm in 

experiments (the AC plate has 15×15×2 design voxels).  In theory, our design approach is 

generally applicable across different length scales. To demonstrate this, we printed a smaller AC 

plate measuring 21 mm × 21 mm × 0.3 mm, with a printing voxel size of (25 μm)3, using the 
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same material system. As shown in the newly added Supplementary Movie 5, the plate achieves 

the target shape morphing.  

 

Moreover, our design approach is generally applicable to any active composite (AC) structure 

that exhibits differential dimensional changes (or mismatched strains) under proper activation 

stimuli. To demonstrate this, we have designed two additional grayscale DLP printable material 

systems that utilize different actuation mechanisms. One system operates under the same heating 

conditions, while the other uses solvent to induce the shape morphing. As shown in the newly 

added Supplementary Movie 6, both systems achieve the target shape change, demonstrating 

the applicability not only across different material systems but also under varied activation 

stimuli. 

 

The above results suggest the general applicability of our approach to various voxelated printing 

techniques that may use different materials (thus having different properties), activation stimuli, 

and on different length scales. We have added above results and discussions in our revised 

manuscript (see highlighted text on Pages 29-30, 36, 42): 

 

Pages 29-30 

For the same case, we further implement our design in a smaller AC plate halved in size. As 

shown in Supplementary Movie 5, the printed sheet morphs upon heating and eventually 

achieves the target, which validates our design on such a smaller length scale. Moreover, we 

print our optimal design using two additional material systems that employ distinct actuation 

mechanisms and successfully achieved the target shape change in both cases (see 

Supplementary Movie 6 for the shape-morphing process and the actuated sheet).  Details on the 

length scale and material systems are provided in “Methods”. 

…… 
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Moreover, our design approach demonstrates general applicability across various material 

systems, actuation mechanisms, and length scales. 

 

Page 36 

In addition, our design approach is generally applicable across various material systems, 

actuation mechanisms, and length scales. This also implies the general applicability to other 

voxelated printing techniques. 

 

Page 42 

Alternatively, two additional grayscale DLP printable material systems were presented in 

Supplementary Movie 8. The first one, which undergoes deformation under the same heating 

conditions, consists of trimethylolpropane triacrylate (Sigma-Aldrich), Ebecryl 8402, and n-butyl 

acrylate (Sigma-Aldrich) in a weight ratio of 1:2:2, with the same loading of additives (1 wt% 

photoinitiator, 0.08 wt% photoabsorber, and 0.04 wt% fluorescent dye, the same for the second 

one). The second material system is composed of poly(ethylene glycol) diacrylate (Sigma-

Aldrich) and 2-hydroxyethyl acrylate (Sigma-Aldrich) in a weight ratio of 1:1. Activation is 

achieved by swelling in acetone for approximately 7 minutes, followed by drying in air. 

 



REVIEWERS' COMMENTS 

 

Reviewer #2 (Remarks to the Author): 

 

The reviewer still believes that the innovation of this paper overlaps greatly with previous research 

(DOI: 10.1002/adfm.202109805), and it is not enough for publication in this journal. Rejection is 

strongly recommended. 

 

 

Reviewer #3 (Remarks to the Author): 

 

The manuscript can be accepted now. 

 

 

Reviewer #4 (Remarks to the Author): 

 

The authors' responses to the reviewer comments are satisfactory. 
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RESPONSE TO REVIEWERS 

 

Reviewer #2 (Remarks to the Author): 

The reviewer still believes that the innovation of this paper overlaps greatly with previous 

research (DOI: 10.1002/adfm.202109805), and it is not enough for publication in this journal. 

Rejection is strongly recommended. 

 

Response: We respectfully disagree with your assessment regarding the significance of this work 

compared to our previous research (Ref.40, AFM, 2022). As detailed in our response from the 

last round, our current work introduces significant advancements in the field of 4D printing by 

addressing inverse designs for 3D shape morphing of plates, considering that (1) the transition 

from 2D to 3D introduces significant new challenges, (2) we develop novel strategies to tackle 

the challenges, and (3) the current work has a broader range of applications in 4D printing.  

 

Reviewer #3 (Remarks to the Author): 

The manuscript can be accepted now. 

 

Reviewer #4 (Remarks to the Author): 

The authors' responses to the reviewer comments are satisfactory. 

 


