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Participants 

Starting in 2013 and ending in 2017, 224 participants (N=132 females) were recruited 

from the San Francisco Bay Area for a longitudinal study of the effects of early life adversity on 

psychobiological functioning across adolescence. Inclusion criteria were that children were ages 

9–13 years and were proficient in spoken English. Exclusion criteria were standard MRI 

contraindications (e.g., metal implants, braces), as well as a history of major neurological or 

medical illness or severe learning disabilities that would make it difficult to comprehend the 

study procedures and, for females, the onset of menses. Of the 224 participants, 187 completed 

an implicit emotion regulation task while undergoing an fMRI scan, 31 of whom were excluded 

from analyses (excessive motion: (N=28); not performing the task correctly (N=3)); 156 

participants had at least one high-quality run/scan. Five of these participants did not provide 

addresses and, therefore, do not have environmental data, and six other participants did not 

report information on parental socioeconomic indicators. Of the remaining 145 participants, 142 

reported depressive symptoms at baseline, 113 of whom also reported depressive symptoms 

four years later.  

 

Exposures Indicators 

The exposures component includes data “relating to pollution sources, releases, and 

environmental concentrations as indicators of potential human exposures to pollutants” 

(CalEnviroScreen 3.0 Report, p. 10). This component is comprised of 1) ozone concentrations 

in air; 2) PM 2.5 concentrations in air; 3) diesel particulate matter emissions; 4) drinking water 

contaminants; 5) use of certain high-hazard, high-volatility pesticides; 6) toxic releases from 

facilities; and 7) traffic density. Detailed descriptions of each indicator, adapted and quoted from 

the CalEnviroScreen 3.0 report, are provided below. 
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Ozone. Daily maximum 8-hour average concentrations for all monitoring sites in 

California were extracted from the California Air Resources Board (CARB)’s air monitoring 

network database for the summer months (May to October) for the years 2012-2014. Using 

Inverse Distance Weighting modeling, daily maximum 8-hour ozone concentrations for each 

tract were estimated from the center of each census tract and averaged across the summer 

months, which were averaged across the three years. Ozone values at census tracts with 

centers more than 50 km from the nearest monitor were not estimated using the model; for 

these tracts, the ozone value of the nearest air monitor was used (CalEnviroScreen 3.0 Report, 

pp. 22-23). 

Particulate matter (PM) 2.5. “PM is a complex mixture of aerosolized solid and liquid 

particles including such substances as organic chemicals, dust, allergens, and metals. These 

particles can come from many sources, including cars and trucks, industrial processes, wood 

burning, or other activities involving combustion. The composition of PM depends on the local 

and regional sources, time of year, location, and weather” (CalEnviroScreen 3.0 Report, p. 26). 

PM 2.5 refers to particles that have a diameter of 2.5 micrometers or less. “PM2.5 annual mean 

monitoring data was extracted for all monitoring sites in California from CARB’s air monitoring 

network database for the years 2012-2014. For all measurements in the time period, the mean 

concentrations were estimated at the geographic center of the census tract using a 

geostatistical method that incorporates the monitoring data from nearby monitors (ordinary 

kriging). Annual means were then computed for each year by averaging the quarterly estimates 

and then averaging those over the three-year period. PM2.5 values for census tracts with 

centers more than 50 km from the nearest monitor were assigned a concentration based on 

satellite observations for the years 2006-2012” (CalEnviroScreen 3.0 Report, pp. 27-28). 

Diesel particulate matter. “Diesel PM is the particle phase of diesel exhaust emitted 

from diesel engines such as trucks, buses, cars, trains, and heavy-duty equipment. This phase 

is composed of a mixture of compounds, including sulfates, nitrates, metals, and carbon 
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particles” (CalEnviroScreen 3.0 Report, p. 32). The diesel PM indicator is distinct from the 

PM2.5 indicator and includes known carcinogens as well as particles in the ultrafine range 

(aerodynamic diameter less than 0.1 micrometer).  

Diesel PM occurs from both on-road and off-road sources. “Gridded diesel PM 

emissions from on-road sources were calculated based on CARB’s on-road emission model 

(EMFAC2013) to calculate 2012 county-wide estimates of diesel PM emissions for a July 

weekday in kg/day (http://www.arb.ca.gov/msei/modeling.htm). EMFAC2013 county-wide 

emission estimates are spatially distributed to 4-km-by-4-km grid cells based on the distribution 

of regional vehicle activity represented in local agency transportation networks and Caltrans’ 

statewide transportation network (where local agency data are no available) using the Direct 

Travel Impact Model (DTIM4). Transportation networks are produced from travel demand 

modeling conducted by local agencies and Caltrans. Gridded diesel PM from non-road sources 

were calculated using county-wide estimates of diesel PM from non-road sources for a July 

weekend from CARB’s emissions inventory forecasting system, CEPAM 

(http://www.arb.ca.gov/app/emsinv/fcemssumcat2009.php). County-wide emission estimates 

are spatially distributed to 4-km-by-4-km grid cells based on a variety of gridded spatial 

surrogate datasets. Each category of emissions is mapped to a spatial surrogate that generally 

represents the expected sub-county locations of source-specific activities. The surrogates 

include: lakes and coastline; population; housing and employment; industrial employment; 

irrigated cropland; unpaved roads; single-housing units; forest land; military bases; non-irrigated 

pasture land; rail lines; non-urban land; commercial airports; and ports. Diesel PM emissions 

estimates were adjusted to account for additional diesel PM emissions from sources on the 

Mexico side of the US-Mexico border. Resulting gridded emission estimates from the on-road 

and non-road categories were summed into a single gridded dataset. Gridded diesel PM 

emissions estimated were then allocated to census tracts in ArcMap using a weighted average 

http://www.arb.ca.gov/app/emsinv/fcemssumcat2009.php
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where the proportion of a grid-cell intersecting the populated portion (populated census blocks) 

of each census tract is used as the weight” (CalEnviroScreen 3.0 Report, pp. 33-34). 

Drinking water contaminants. A drinking water contaminant metric was calculated for 

each census tract through 1) identification of drinking water system boundaries; 2) associating 

drinking water contaminant data with each water system and calculating average concentrations 

for each contaminant and system, and 3) re-allocating the average water contaminant 

concentration from the system boundaries to census tracts. Monitoring data for a subset of 

contaminants tested in drinking water across California were obtained from CDPH’s Water 

Quality Monitoring database from 2005-2013. These contaminants included: arsenic, cadmium, 

hexavalent chromium, dibromochoropropane, lead, nitrate (NO3), perchlorate, radium 226 and 

radium 228, total trihalomethanes, tetrachloroethylene, trichloroethylene, 1,2,3-

trichloropopanne, and uranium. “Time-weighted average concentrations of each contaminant 

were calculated for each year for each sample source within a system. The average yearly 

concentrations were then averaged to create a source concentration. Then, the source 

concentrations within a system were averaged to calculate one concentration value for each 

chemical in each system. Areas without system or sample source data were assigned the 

average groundwater quality data for sources in the township in which they were located (raw or 

untreated community or non-community water system data, Domestic Well Project water quality 

data, and Priority Basin water quality data). People in these areas were assumed to drink 

groundwater” (CalEnviroScreen 3.0 Report, p. 40). 

Pesticide use. “Production agricultural pesticide use records were obtained for the 

entire state for the years 2012, 2013, and 2014. Production pesticide use (total pounds of 

selective active ingredient, filtered for hazard and volatility) for Meridien-Township-Range-

Selection (MTRS) records were matched to census tracts and divided by each census tract’s 

area” (CalEnviroScreen 3.0 Report, pp. 47-48). 
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Toxic releases from facilities. “The US Environmental Protection Agency (EPA) 

maintains a toxic substance inventory of on-site releases to air, water, and land, and 

underground injection of any classified chemical, as well as quantities transferred off-site, that 

are reported by each facility. US EPA has a computer-based screening tool called Risk 

Screening Environmental Indicators (RSEI) that analyzes these releases and models potential 

toxic exposures” (CalEnviroScreen 3.0 Report, p. 53). The Toxic Release Inventory (TRI) 

maintains a database of emissions and other release for certain toxic chemicals that is updated 

annually. Census tract-level estimates of “toxicity-weighted concentrations of modeled chemical 

releases to air from facility emissions and off-site incineration (averaged over 2011 to 2013) 

were made by taking a land-area weighted average of the block-level values for each tract. 

Census tracts were ordered based on their scores and were assigned percentiles” 

(CalEnviroScreen 3.0 Report, p. 56). 

Traffic density. “Traffic density is used to represent the number of mobile sources in a 

specified area, resulting in human exposures to chemicals that are released into the air by 

vehicle exhaust, as well as other effects related to large concentrations of motor vehicles” 

CalEnviroScreen 3.0 Report, p. 59). A 150-meter buffer was placed around each census tract to 

account for roadways near tract boundaries. “The traffic volume data (from TrafficMetrix) was 

linked to the corresponding road segment (from TeleAtlas) in a geographic information system 

(GIS). The buffered census tracts were intersected with the linked data on traffic volumes and 

roads. For each road within the buffer, a length-adjusted volume was calculated and summed 

for all roads in the buffer. The total amount of road length within the buffered census tract was 

also calculated. Due to differences in the length of road segments across the state, a length-

adjusted traffic volume metric was selected. This metric multiplies traffic volumes by the length 

of the road segment. Traffic density was then calculated by dividing the sum of all length-

adjusted traffic volumes within the buffered census tract (vehicle-km/hr) by the sum of the length 

of all road segments within the buffered census tract (km). Traffic density (vehicles-km/hr/km) is 



 

7 

represented as the number of vehicles (adjusted by road segment lengths in kilometers) per 

hour per kilometer of roadways within the buffered census tract for 2013” (CalEnviroScreen 3.0 

Report, p. 61). 

 

Environmental Effects Indicators 

The environmental effects component includes “adverse environmental conditions 

caused by pollutants” (CalEnviroScreen 3.0 Report, p. 10). This component represents “the 

presence of pollutants in a community, rather than exposure to pollutants (CalEnviroScreen 3.0 

Report, p. 13). Environmental effects include environmental degradation, ecological effects, and 

threats to the environment and communities, which can have harmful effects on different 

components of the ecosystem (e.g., limiting people’s use of ecosystem resources such as 

fishing or swimming). Indicators in the environmental effects component include 1) toxic cleanup 

sites; 2) groundwater threats from leaking underground storage sites and cleanups; 3) 

hazardous waste facilities and generators; 4) impaired water bodies; and 5) solid waste sites 

and facilities. Detailed descriptions of each of these indicators, adapted from the 

CalEnviroScreen 3.0 report, are presented below. 

Toxic cleanup sites. “Data on cleanup site type, status, and location for the entire state 

were obtained from Department of Toxic Substances Control (DTSC)’s EnviroStor database 

(downloaded on December 2016) and mapped and geocoded in ArcMap. Polygon boundaries of 

California National Priority List sites were identified and sites were assigned a score of 10 or 12, 

indicating a federal Superfund site. Remaining sites were scored on a weighted scale of 0 to 12 

in consideration of both the site type and status. Higher weights were applied to Superfund, 

State Response sites, cleanups, and sites undergoing active remediation and oversight by 

DTSC, relative to those with little or no state involvement. The weights for all sites were 

adjusted based on the distance they fell from populated census blocks. Sites further than 

1000m from any populated census block were excluded from the analysis. Site weights were 



 

8 

adjusted by multiplying the weight by 1 for sites less than 250m, 0.5 for sites 250-500m, 0.25 for 

sites 500-750m, and 0.1 for sites 750-1000m from the nearest populated census blocks within a 

given tract. Each census tract was scored based on the sum of the adjusted weights (in 

ArcMap)” (CalEnviroScreen 3.0 Report, pp. 67-68). 

Groundwater threats. The storage and disposal of hazardous materials on land and in 

underground storage tanks at various types of commercial, industrial, and military sites pose 

threats to groundwater quality through the leakage of hazardous substances that degrade soil 

and groundwater and increase volatile contaminants in the air. Data on cleanup site type, status, 

and location for the entire state were obtained from GeoTracker (downloaded on December 

2016) and mapped and geocoded. Sites that were undergoing permit process (proposed) and 

those no longer accepting waste (closing/closed), which were not indicative of a hazard or 

environmental risk, were excluded. “Each remaining site was scored on a weighted scale of 1 to 

15 in consideration of both the site type and status, which were then adjusted based on the 

distance they fell from populated census blocks. Site weights were adjusted by multiplying the 

weight by 1 for sites less than 250m, 0.5 for sites 250-500m, 0.25 for sites 500-750m, and 0.1 

for sites 750-1000m from the nearest populated census blocks within a given tract. Sites outside 

of a census tract, but less than 1000m from one of that tract’s populated blocks were similarly 

adjusted based on the distance to the nearest block from that tract. Each census tract was 

scored based on the sum of the adjusted weights for sites it contains or is near” 

(CalEnviroScreen 3.0 Report, pp. 74-75). 

Hazardous waste generators and facilities. “Most hazardous waste must be 

transported from hazardous waste generators to permitted recycling, treatment, storage, or 

disposal facilities by registered hazardous waste transporters” (CalEnviroScreen 3.0 Report, p. 

82). These processing and disposal of hazardous waste may contaminate nearby air, water, and 

soil. Permitted facility data were obtained from the Department of Toxic Substances Control 

(DTSC) website (downloaded December 2016). “Facilities were scored on a weighted scale in 
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consideration of the type and permit status for the facility and then mapped or geocoded. 

Hazardous waste generator data were obtained from DTSC from the Hazardous Waste Tracking 

System for 2012 to 2014 and only large quantity generators (producing over 1,000 kg of waste 

per month2 for at least one of the three years) and generators producing RCRA waste were 

included. Facilities were scored on a weighted scale in consideration of the volume of waste 

generated. Site locations were then mapped or geocoded and the weights for facilities were 

adjusted based on the distance they fell from populated census blocks. Site weights were 

adjusted by multiplying the weight by 1 for facilities less than 250m, 0.5 for sites 250-500m, 0.25 

for sites 500-750m, and 0.1 for sites 750-1000m from the nearest populated census blocks 

within a given tract” (CalEnviroScreen 3.0 Report, pp. 83-84). 

Impaired water bodies. “Contamination of California streams, rivers, and lakes by 

pollutants can compromise the use of the water body for drinking, swimming, fishing, aquatic life 

protection, and other beneficial uses, making such bodies ‘impaired.’ Data on water body type, 

water body identification, and pollutant type for 2012 were downloaded from the State Water 

Resources Control Board website and all water bodies were identified in all census tracts. The 

number of pollutants listed in streams or rivers that fell within 1 kilometer (km) or 2 km of a 

census tract’s populated blocks were counted. The 2 km buffer distance was applied to major 

rivers (>100 km in length, plus the Los Angeles River and Imperial Valley canals and drainage 

ways). The 1 km buffer distance was applied to all smaller streams/rivers. The number of 

pollutants listed in lakes, bays, estuaries or shoreline that fell within 1 km or 2 km of a census 

tract’s populated blocks were counted. The 2 km buffer distance was applied to major lakes or 

bays greater than 25 square kilometers in size, plus all the Sacramento/San Joaquin River Delta 

waterways. The 1 km buffer distance was applied for all other lakes/bays. These pollutant 

counts were summed for every census tract and each census tract was scored based on the 

sum of the number of individual pollutants found within and/or bordering it. For example, if two 
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stream sections within a census tract were both listed for the same pollutant, the pollutant was 

only counted once” (CalEnviroScreen 3.0 Report, pp. 89-91). 

Solid waste sites and facilities. The California Department of Resources Recycling 

and Recovery (CalRecycle) maintains data on waste facilities that operate within the state, 

including abandoned, closed, or illegal sites. Closed, illegal, and abandoned waste sites as of 

December 2016 were scored on a weighted scale based on CalRecycle’s prioritization 

categories. Active solid waste sites as of December 2016 were scored on a weighted scale 

based on the type of solid waste operation (e.g., solid waste landfill, construction, composting). 

“The weights for all sites, including the large landfill perimeters, were adjusted based on the 

distance they fell from populated census blocks. Site weights were adjusted by multiplying the 

weight by 1 for sites less than 250m, 0.5 for sites 250-500m, 0.25 for sites 500-750m, and 0.1 

for sites 750-1000m from the nearest populated census blocks within a given tract. Odor 

complaints regarding composting facilities are commonly made more than 1000 m from these 

facilities. Because of this concern the buffer distances (and site weights) for composting sites 

were adjusted as follows: 1 for sites less than 500m, 0.5 for sites 500 – 1000m, 0.25 for sites 

1000 – 1500m, and 0.1 for sites 1500 – 2000m from the nearest populated census blocks within 

a given tract. Each census tract was scored based on the sum of the adjusted weights for sites 

it contains or is near” (CalEnviroScreen 3.0 Report, p. 96). 

  

Pollution Burden Percentile 

For each indicator, the indicator values for the census tracts for the entire state were 

ordered from highest to lowest and a percentile value was assigned to each census tract. The 

percentiles for all the individual indicators in each component were then averaged, representing 

the score for that component. When combining the exposures and environmental effects 

components to calculate pollution burden scores, the environmental effects score was half-

weighted because CalEnviroScreen determined the “contribution to possible pollutant burden 
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from the environmental effects component to be less than those from sources in the exposures 

component” (CalEnviroScreen 3.0 Report, page 13-14). Pollution burden scores for each 

census tract were divided by the maximum value observed in the state and then multiplied by 

10. These scores were then ordered from highest to lowest and a percentile score was 

calculated.  

 

Socioeconomic Indicators 

Educational Attainment. Data from the 2011-2015 American Community Survey (ACS) 

estimates was used to calculate the proportion of the population with less than a high school 

education for each census tract.  

Housing Burdened Low-Income Households. Data from the 2009-2013 Housing and 

Urban Development Comprehensive Housing Affordability Strategy were used to estimate the 

proportion of households per tract with household incomes less than 80% of the county median 

and renter or homeowner costs that exceed 50% of household income.  

Poverty. Data from the 2011-2015 ACS was used to calculate the proportion of 

individuals in each tract living below 200 percent of the federal poverty line.  

Unemployment. Data from the 2011-2015 ACS was used to calculate, per tract, the 

“percent of the population over the age of 16 that is unemployed and eligible for the labor force. 

[This measure] excludes “retirees, students, homemakers, institutionalized persons except 

prisoners, those not looking for work, and military personnel on active duty” (CalEnviroScreen, 

p. 143). 

 

MRI Acquisition 

Neuroimaging data were acquired at the Stanford Center for Cognitive and 

Neurobiological Imaging using a 3T General Electric (GE) Discovery MR750 scanner with a 32-

channel head coil (Nova Medical). We acquired a structural T1-weighted IR-prep, fast SPGR 



 

12 

(3D BRAVO) sequence (repetition time [TR]=6.3ms; echo time [TE]=3.1ms; flip angle=12°; 

matrix=256 x 256; FOV=23.04cm, slice thickness=0.9mm, voxel resolution=0.9mm isotropic, 

acquisition time=5:16) and two runs of the functional MRI task using T2*-weighted gradient echo 

EPI pulse sequences (TR=2000ms; TE=30ms; flip angle=77°; matrix=70 x 70; FOV=22.4cm, 

slice thickness=3mm, voxel resolution=3.2mm x 3.2mm x 3.0mm, acquisition time=5:54).  

MRI Preprocessing 

Anatomical T1w images were first processed with FreeSurfer (v.6.0.1) (1) for surface-

based registration, followed by functional processing using fMRIPrep (v.20.2.1) (2,3). A detailed 

description of the fMRIPrep protocol is described below in the boilerplate generated from 

fMRIPrep. In short, the pipeline generated 1) two runs of fMRI data corrected for susceptibility-

distortion artifacts and spatially registered to MNI standard space using a pediatric-specific 

template for individuals ages 7.5-13.5 years (4), which were then transformed to adult MNI152 

space; and 2) confound regressors used in individual-level modeling.  

 

fMRIPrep Methods Boilerplate 

Results included in this manuscript come from preprocessing performed 

using fMRIPrep 20.2.1 (Esteban, Markiewicz, et al. (2018); Esteban, Blair, et al. (2018); 

RRID:SCR_016216), which is based on Nipype 1.5.1 (Gorgolewski et al. (2011); Gorgolewski et 

al. (2018); RRID:SCR_002502). 

Anatomical data preprocessing 

A total of 1 T1-weighted (T1w) images were found within the input BIDS dataset. The T1-

weighted (T1w) image was corrected for intensity non-uniformity (INU) 

with N4BiasFieldCorrection (Tustison et al. 2010), distributed with ANTs 2.3.3 (Avants et al. 

2008, RRID:SCR_004757), and used as T1w-reference throughout the workflow. The T1w-

reference was then skull-stripped with a Nipype implementation of 

the antsBrainExtraction.sh workflow (from ANTs), using MNIPediatricAsym:cohort-4 as target 
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template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-

matter (GM) was performed on the brain-extracted T1w using fast (FSL 5.0.9, 

RRID:SCR_002823, Zhang, Brady, and Smith 2001). Volume-based spatial normalization to two 

standard spaces (MNIPediatricAsym:cohort-4, MNI152NLin2009cAsym) was performed through 

nonlinear registration with antsRegistration (ANTs 2.3.3), using brain-extracted versions of both 

T1w reference and the T1w template. The following templates were selected for spatial 

normalization: MNI’s unbiased standard MRI template for pediatric data from the 4.5 to 18.5y 

age range [(???), RRID:SCR_008796; TemplateFlow ID: MNIPediatricAsym:cohort-4], ICBM 

152 Nonlinear Asymmetrical template version 2009c [Fonov et al. (2009), RRID:SCR_008796; 

TemplateFlow ID: MNI152NLin2009cAsym], 

Functional data preprocessing 

For each of the 8 BOLD runs found per subject (across all tasks and sessions), the 

following preprocessing was performed. First, a reference volume and its skull-stripped version 

were generated using a custom methodology of fMRIPrep. A B0-nonuniformity map 

(or fieldmap) was directly measured with an MRI scheme designed with that purpose (typically, 

a spiral pulse sequence). The fieldmap was then co-registered to the target EPI (echo-planar 

imaging) reference run and converted to a displacements field map (amenable to registration 

tools such as ANTs) with FSL’s fugue and other SDCflows tools. Based on the estimated 

susceptibility distortion, a corrected EPI (echo-planar imaging) reference was calculated for a 

more accurate co-registration with the anatomical reference. The BOLD reference was then co-

registered to the T1w reference using flirt (FSL 5.0.9, Jenkinson and Smith 2001) with the 

boundary-based registration (Greve and Fischl 2009) cost-function. Co-registration was 

configured with nine degrees of freedom to account for distortions remaining in the BOLD 

reference. Head-motion parameters with respect to the BOLD reference (transformation 

matrices, and six corresponding rotation and translation parameters) are estimated before any 

spatiotemporal filtering using mcflirt (FSL 5.0.9, Jenkinson et al. 2002). BOLD runs were slice-
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time corrected using 3dTshift from AFNI 20160207 (Cox and Hyde 1997, RRID:SCR_005927). 

The BOLD time-series (including slice-timing correction when applied) were resampled onto 

their original, native space by applying a single, composite transform to correct for head-motion 

and susceptibility distortions. These resampled BOLD time-series will be referred to 

as preprocessed BOLD in original space, or just preprocessed BOLD. The BOLD time-series 

were resampled into standard space, generating a preprocessed BOLD run in 

MNIPediatricAsym:cohort-4 space. First, a reference volume and its skull-stripped version were 

generated using a custom methodology of fMRIPrep. Several confounding time-series were 

calculated based on the preprocessed BOLD: framewise displacement (FD), DVARS and three 

region-wise global signals. FD was computed using two formulations following Power (absolute 

sum of relative motions, Power et al. (2014)) and Jenkinson (relative root mean square 

displacement between affines, Jenkinson et al. (2002)). FD and DVARS are calculated for each 

functional run, both using their implementations in Nipype (following the definitions by Power et 

al. 2014). The three global signals are extracted within the CSF, the WM, and the whole-brain 

masks. Additionally, a set of physiological regressors were extracted to allow for component-

based noise correction (CompCor, Behzadi et al. 2007). Principal components are estimated 

after high-pass filtering the preprocessed BOLD time-series (using a discrete cosine filter with 

128s cut-off) for the two CompCor variants: temporal (tCompCor) and anatomical (aCompCor). 

tCompCor components are then calculated from the top 2% variable voxels within the brain 

mask. For aCompCor, three probabilistic masks (CSF, WM and combined CSF+WM) are 

generated in anatomical space. The implementation differs from that of Behzadi et al. in that 

instead of eroding the masks by 2 pixels on BOLD space, the aCompCor masks are subtracted 

a mask of pixels that likely contain a volume fraction of GM. This mask is obtained by 

thresholding the corresponding partial volume map at 0.05, and it ensures components are not 

extracted from voxels containing a minimal fraction of GM. Finally, these masks are resampled 

into BOLD space and binarized by thresholding at 0.99 (as in the original implementation). 
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Components are also calculated separately within the WM and CSF masks. For each CompCor 

decomposition, the k components with the largest singular values are retained, such that the 

retained components’ time series are sufficient to explain 50 percent of variance across the 

nuisance mask (CSF, WM, combined, or temporal). The remaining components are dropped 

from consideration. The head-motion estimates calculated in the correction step were also 

placed within the corresponding confounds file. The confound time series derived from head 

motion estimates and global signals were expanded with the inclusion of temporal derivatives 

and quadratic terms for each (Satterthwaite et al. 2013). Frames that exceeded a threshold of 

0.5 mm FD or 1.5 standardised DVARS were annotated as motion outliers. All resamplings can 

be performed with a single interpolation step by composing all the pertinent transformations 

(i.e. head-motion transform matrices, susceptibility distortion correction when available, and co-

registrations to anatomical and output spaces). Gridded (volumetric) resamplings were 

performed using antsApplyTransforms (ANTs), configured with Lanczos interpolation to 

minimize the smoothing effects of other kernels (Lanczos 1964). Non-gridded (surface) 

resamplings were performed using mri_vol2surf (FreeSurfer). First, a reference volume and its 

skull-stripped version were generated using a custom methodology of fMRIPrep. Susceptibility 

distortion correction (SDC) was omitted. The BOLD reference was then co-registered to the T1w 

reference using flirt (FSL 5.0.9, Jenkinson and Smith 2001) with the boundary-based 

registration (Greve and Fischl 2009) cost-function. Co-registration was configured with nine 

degrees of freedom to account for distortions remaining in the BOLD reference. Head-motion 

parameters with respect to the BOLD reference (transformation matrices, and six corresponding 

rotation and translation parameters) are estimated before any spatiotemporal filtering 

using mcflirt (FSL 5.0.9, Jenkinson et al. 2002). BOLD runs were slice-time corrected 

using 3dTshift from AFNI 20160207 (Cox and Hyde 1997, RRID:SCR_005927). The BOLD time-

series (including slice-timing correction when applied) were resampled onto their original, native 

space by applying the transforms to correct for head-motion. These resampled BOLD time-
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series will be referred to as preprocessed BOLD in original space, or just preprocessed BOLD. 

The BOLD time-series were resampled into standard space, generating a preprocessed BOLD 

run in MNIPediatricAsym:cohort-4 space. First, a reference volume and its skull-stripped version 

were generated using a custom methodology of fMRIPrep. Several confounding time-series 

were calculated based on the preprocessed BOLD: framewise displacement (FD), DVARS and 

three region-wise global signals. FD was computed using two formulations following Power 

(absolute sum of relative motions, Power et al. (2014)) and Jenkinson (relative root mean 

square displacement between affines, Jenkinson et al. (2002)). FD and DVARS are calculated 

for each functional run, both using their implementations in Nipype (following the definitions by 

Power et al. 2014). The three global signals are extracted within the CSF, the WM, and the 

whole-brain masks. Additionally, a set of physiological regressors were extracted to allow for 

component-based noise correction (CompCor, Behzadi et al. 2007). Principal components are 

estimated after high-pass filtering the preprocessed BOLD time-series (using a discrete cosine 

filter with 128s cut-off) for the two CompCor variants: temporal (tCompCor) and anatomical 

(aCompCor). tCompCor components are then calculated from the top 2% variable voxels within 

the brain mask. For aCompCor, three probabilistic masks (CSF, WM and combined CSF+WM) 

are generated in anatomical space. The implementation differs from that of Behzadi et al. in that 

instead of eroding the masks by 2 pixels on BOLD space, the aCompCor masks are subtracted 

a mask of pixels that likely contain a volume fraction of GM. This mask is obtained by 

thresholding the corresponding partial volume map at 0.05, and it ensures components are not 

extracted from voxels containing a minimal fraction of GM. Finally, these masks are resampled 

into BOLD space and binarized by thresholding at 0.99 (as in the original implementation). 

Components are also calculated separately within the WM and CSF masks. For each CompCor 

decomposition, the k components with the largest singular values are retained, such that the 

retained components’ time series are sufficient to explain 50 percent of variance across the 

nuisance mask (CSF, WM, combined, or temporal). The remaining components are dropped 
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from consideration. The head-motion estimates calculated in the correction step were also 

placed within the corresponding confounds file. The confound time series derived from head 

motion estimates and global signals were expanded with the inclusion of temporal derivatives 

and quadratic terms for each (Satterthwaite et al. 2013). Frames that exceeded a threshold of 

0.5 mm FD or 1.5 standardised DVARS were annotated as motion outliers. All resamplings can 

be performed with a single interpolation step by composing all the pertinent transformations 

(i.e. head-motion transform matrices, susceptibility distortion correction when available, and co-

registrations to anatomical and output spaces). Gridded (volumetric) resamplings were 

performed using antsApplyTransforms (ANTs), configured with Lanczos interpolation to 

minimize the smoothing effects of other kernels (Lanczos 1964). Non-gridded (surface) 

resamplings were performed using mri_vol2surf (FreeSurfer). 

Many internal operations of fMRIPrep use Nilearn 0.6.2 (Abraham et al. 2014, 

RRID:SCR_001362), mostly within the functional processing workflow. For more details of the 

pipeline, see the section corresponding to workflows in fMRIPrep’s documentation. 

Copyright Waiver 

The above boilerplate text was automatically generated by fMRIPrep with the express 

intention that users should copy and paste this text into their manuscripts unchanged. It is 

released under the CC0 license. 
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Individual-Level Modeling of fMRI Data 

fMRIPrep outputs were analyzed using FSL’s (v. 6.0.1) FEAT (5,6). The first five volumes 

of each dataset were removed to allow for the stabilization of the longitudinal magnetization. 

The data were spatially smoothed (FWHM=5mm) and underwent high-pass temporal filtering 

(100.0s). Individual-level modeling was conducted using FSL’s FMRIB’s Improved Linear Model 

with pre-whitening to improve estimation of each voxel’s time series. The voxel-wise general 

linear model (GLM) included regressors for each of the five task conditions and selected 

confounds generated from fMRIPrep: framewise displacement (FD), head-motion (six rigid-body 

parameters, temporal derivatives, and quadratic terms), and six anatomical components derived 

from component-based noise correction (CompCor) (7). Motion outliers (frames > 0.5mm FD or 

1.5 DVARS) were censored by adding single-TR regressors at censored volumes. We excluded 

scans with more than 20% of volumes marked as outliers (n=28; mean FD = 0.16mm, 

SD=0.10). A double-gamma convolution was used to model the hemodynamic response 

function. Runs were combined using a fixed-effects model using FLAME1 (FMIRB’s Local 

Analysis of Mixed Effects; (8).  

Group-Level Whole-Brain Analyses 

To examine whether pollution burden was associated with neural activation during 

implicit emotion regulation and whether effects differed by affective valence, we conducted 

group-level whole-brain GLM analyses using FLAME1 on the condition x valence contrast (i.e., 

[Negative Label > Negative Match] > [Positive Label > Positive Match]) with pollution burden 

percentile scores (mean-centered) entered as a regressor in the GLM. Participant sex (-1=male, 

1=female), age (mean-centered), household socioeconomic disadvantage (mean-centered), 

https://doi.org/10.1109/42.906424
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neighborhood socioeconomic disadvantage (mean-centered), time difference between pollution 

measurement and scan date (mean-centered), and mean FD (mean-centered) were included as 

covariates. Z (Gaussianized T) statistic images were thresholded at Z>3.1, with a corrected 

cluster significance threshold of p<.025 (Bonferroni-corrected alpha=0.05/2 tests [whole-brain 

activation and PPI]). Anatomical localization of each cluster was defined using the FSL Harvard-

Oxford probabilistic atlas. Following up a significant interaction of condition, valence, and 

pollution burden, we extracted parameter estimates of brain activation in the significant clusters 

from the Label > Match contrasts for each valence and conducted simple effects analyses for 

each valence to determine how pollution burden was related to implicit emotion regulation (i.e., 

Label > Match) of positively- vs. negatively-valenced stimuli. 

Main Effects of Task 

Whole-brain analyses examining the main effect of task conditions indicated that 

matching (relative to labeling) emotional stimuli activated visual cortex regions, amygdala, 

precentral, superior, and middle frontal regions that did not differ between positively- and 

negatively-valenced stimuli (Tables S4; Figure S3). Labeling (relative to matching) emotional 

stimuli activated temporal cortex regions, superior, inferior, and orbito- frontal regions, and the 

cingulate, and cerebellum, with greater activation in paracingulate and dorsolateral PFC in the 

regulation of positively- than of negatively-valenced stimuli (Table S5; Figure S4).  

Whole-Brain GLM Results 

Whole-brain analyses indicated that pollution burden was associated with bilateral 

medial prefrontal cortex (MPFC) activation for the condition x valence contrast (i.e., [Negative 

Label > Negative Match] > [Positive Label > Positive Match]) (left MPFC: -14, 56, 10, Z max = 

4.11, 126 voxels; right MPFC: 14, 36, 6, Z max = 3.77, 146 voxels; Figure 1A). To probe the 

nature of the interaction, parameter estimates of left and right MPFC clusters were extracted 

from the Label > Match contrasts for each valence. The associations of pollution burden with left 

and right MPFC do not differ in slope (b=0.07, p=.474; Table S3 & Figure S5); consequently, we 
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averaged the MPFC parameter estimates across hemispheres in subsequent analyses. Further, 

visual inspection of the scatterplots depicting the association between pollution burden with 

bilateral MPFC by valence suggests that pollution burden was positively associated with MPFC 

activation for the Negative Label > Negative Match contrast, but not for the Positive Label > 

Positive Match contrast (Figure 1B and 1C). That is, greater pollution burden was associated 

with greater bilateral MPFC activation during implicit affective regulation of negatively-, but not 

of positively-, valenced stimuli. 

 

Exploratory Analyses of Environmental Indicators 

 We conducted exploratory analyses to determine which specific environmental 

indicator(s) moderated associations between MPFC-DMN connectivity during implicit regulation 

of negatively-valenced stimuli and slopes of depressive symptoms. We conducted least 

absolute shrinkage and selection operator (LASSO) regression analyses, entering all of the 

environmental indicators (z-scored), their interactions with MPFC-DMN connectivity (z-scored), 

and all covariates (z-scored) simultaneously as predictors to determine whether there was a 

combination of environmental indicators that moderated the association between MPFC-DMN 

connectivity and the slope of depressive symptoms. LASSO is a regression analysis that 

performs both feature selection and regularization to select a subset of variables that are most 

strongly predictive of outcomes while shrinking non-predictive variables to zero to prevent 

overfitting. This approach has recently been used to identify factors that predict borderline 

personality disorder, depression, and conduct disorders in adolescents (9). We used the glmnet 

package in R to perform the LASSO. Similar to Beeney et al.’s (2021) procedure, we randomly 

split data into a training set (70%) and testing set (30%). We selected the lambda value that 

minimizes the mean square error (MSE) of the training set via cross-validation using 10-fold 

cross-validation and then used this lambda (0.0265) to run LASSO on the test set. The model 

retained seven interaction terms that best predicted slopes of depressive symptoms, including 
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most covariates (Table S5). Based on results from the LASSO regression, the environmental 

indicators that moderated the association between MPFC-DMN connectivity during implicit 

regulation of negative emotions and slopes in depressive symptoms were ambient ozone, diesel 

PM, toxic release from facilities, and living near cleanup sites, groundwater threats, hazardous 

waste facilities, and impaired water bodies. 

Sensitivity Analyses: Testing for Residual Confounding 

Although we controlled for variables that could be confounds in our models, there still 

may be effects of residual confounding. While there is little we can do to reduce the effects of 

unmeasured confound variables (10) or measurement error (11), one source of residual 

confounding can stem from mis-specifying the confound variables in our models (e.g., assuming 

that there are linear associations between confound variables and the outcome variable when 

the associations may, in fact, be non-linear) (12). Thus, we examined the bivariate plots of each 

continuous confound variable (i.e., age at scan, household socioeconomic disadvantage, 

neighborhood socioeconomic disadvantage, time difference between pollution measurement 

and scan dates, and mean FD) with each outcome variable (i.e., MPFC activation, MPFC-DMN 

connectivity, MPFC-IFG connectivity, depressive symptoms intercept, and depressive symptoms 

slope) to check for non-linearity (Figure S6A-E). Examination of the plots indicated that, except 

for a non-linear association between depressive symptoms intercept and slope (Figure S6E), 

modeling covariates using linear terms in the models is appropriate. Thus, we also conducted 

brain-behavior analyses predicting depressive symptoms slopes including the quadratic term of 

depressive symptoms intercept in the models. Analyses indicated that including the quadratic 

term of initial levels of depressive symptoms did not change our findings (Table S8). 

Sensitivity Analyses: Clustering Participants by Census Tract 

There were 125 unique census tracts in our sample of 145 people, indicating that 20 

people resided in the same census tract with at least one other participant in the study. 

Therefore, we reran our analyses in a multilevel modeling framework with census tract as the 
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unit of analysis. Results indicated that using census tract as a grouping variable did not change 

the results (Table S9). Furthermore, the ICC was 0.04, suggesting that the correlations among 

observations within census tracts are low and that it is not necessary to cluster participants by 

census tract in our analyses. 

Sensitivity Analyses: Including Early Life Adversity as a Covariate 

Early Life Adversity. We assessed participants’ exposure to early life adversity (ELA) 

through a structured interview using a modified version of the Traumatic Events Screening 

Inventory for Children (TESI-C; Ford et al., 2002). Using the TESI, we asked participants if they 

have experienced more than 30 types of life events, including direct exposure to or witnessing 

of severe accidents, illness or disaster, family or community conflict or violence, and sexual 

molestation. Each type of event endorsed by a participant was followed up with questions to 

obtain a deeper characterization of the experience. For example, participants were asked if they 

have “ever been in a really bad accident, like a car accident, a fall, or fire, where you or 

someone else could have been (or actually was) badly injured or killed.” If this item was 

endorsed, participants were then asked how many times such an event happened (if multiple 

times, each event was recorded as a separate event), when the event happened, and whether 

and how badly they or someone else were really hurt.  After the interview, the administrator then 

presented each event to a panel of three trained coders who, blind to the participants’ subjective 

severity ratings, used a modified version of the UCLA Life Stress Coding System (13,14) to rate 

the objective severity of each event on a scale ranging from 0 (not impactful) to 4 (extremely 

severe and impactful), with half-point increments (inter-rater ICC=0.99). If there were any 

discrepancies among coders in ratings for an event, the coders discussed their ratings to arrive 

at a consensus score for the event that was then used in analyses. Cumulative adversity 

severity scores were computed by summing the maximum objective severity scores for each 

type of stressor endorsed (e.g., (15–17)). 
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 After adding ELA as a covariate, the interaction between pollution burden and MPFC-

DMN connectivity during Negative Label > Negative Match on the slope of depressive 

symptoms remained significant (Table S10). 

Sensitivity Analyses: Examining the Intercept and Slope of Externalizing Symptoms as 

Outcomes 

Externalizing Symptoms. Participants completed the Youth Self Report (YSR; (18)), a 

self-report measure assessing emotional and behavioral problems. Participants rated 112 items 

on a 3-point scale (0=not true, 1=somewhat or sometimes, 2=very true or often true). We used 

the externalizing problems score, which comprise the aggressive behavior and rule-breaking 

behavior syndrome scales, in our analyses. 

As we did for depressive symptoms, we conducted linear mixed effects models with 

random intercepts and age slopes to estimate the intercepts and slopes of externalizing 

symptoms across the three timepoints for each participant. We modeled self-reported 

externalizing symptoms as a function of age (centered at 11 years, the mean age at T1) and 

extracted the intercept and slope parameter estimates for each participant, and tested whether 

pollution burden moderated associations between MPFC-DMN connectivity during Negative 

Label > Negative Match and both initial levels and slopes of externalizing symptoms. 

In contrast to our findings on depressive symptoms slope, pollution burden did not 

significantly moderate the association between MPFC-DMN connectivity Negative Label > 

Negative Match and slopes of externalizing symptoms (Table S11). 
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Variables (Range) Complete Data Missing fMRI 
data t or X2 p 

N 145 79   

Sex 87 females/58 
males (60%/40%) 

44 females/35 
males (56%/44%) 0.16 .69 

Age (T1) (9-13 years) 11.41 (1.06) 11.21 (1.01) -1.38 .17 

Race/Ethnicity   19.95 .0013 

African-American 8 (5.5%) 11 (13.9%)   

Asian 19 (13.1%) 5 (6.33%)   

Biracial 29 (20%) 18 (22.8%)   

Hispanic 9 (6.2%) 11 (13.9%)   

Other 5 (3.45%) 9 (11.4%)   

White 75 (51.72%) 25 (31.6%)   
Pollution Burden Percentile (0.16-
91.45) 29.80 (20.59) 38.57 (25.05) -2.77 .006 

Parent Education (2-8) 4.96 (1.24) 4.77 (1.40) -1.02 .31 
Income-to-Needs Ratio (0.05-
1.97) 1.33 (0.52) 1.17 (0.62) -1.87 .06 

Depressive Symptoms (T1) (0-11) 2.23 (2.57) 2.01 (1.99) 0.67 .51 
 
Table S1. Comparison of demographic and study variables between participants with at least 

one high-quality fMRI run and complete data (N=145) and those with missing/low-quality fMRI 

data (N-79). 
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Indicator (units) CalEnviroScreen 3.0 CalEnviroScreen 4.0 p 

 Measurement 
Time Mean (SD) Measurement 

Time Mean (SD)  

ozone (ppm) 2012-2014 0.035 (0.004) 2017-2019 0.037 (0.004) < .001 

PM 2.5 (ug/m3) 2012-2014 9.31 (0.94) 2015-2017 8.37 (0.51) < .001 
diesel PM (kg/day in 3.0; 
tons/year in 4.0) 2012 19.92 (12.15) 2016 0.20 (0.18) --* 

drinking water contaminants 
(contaminant index) 2005-2013 319.72 (210.71) 2011-2019 323.4 (111.54) .62 

pesticides (pounds/mile2) 2012-2014 20.67 (173.21) 2017-2019 5.3 (35.01) .14 
toxic releases from facilities 
(toxicity-weighted 
concentration index) 

2011-2013 272.61 (409.49) 2017-2019 317.26 (519.68) .13 

traffic density (vehicle-km 
per hour/km) 2013 902.79 (560.44) 2017 1259.17 (834.34) < .001 

cleanup sites (weighted 
distance) 2016 11.3 (21.57) 2021 10.36 (19.65) .026 

groundwater threats 
(weighted distance) 2016 26.96 (36.14) 2021 29.78 (38.84) .008 

hazardous waste facilities 
(weighted distance) 2012-2014 0.46 (1.56) 2018-2020 0.79 (1.58) < .001 

impaired water bodies (sum 
of number of pollutants 
found within water body) 

2012 2.65 (3.59) 2018 2.75 (3.61) .19 

solid waste facilities 
(weighted distance) 2016 1.33 (3.98) 2021 1.13 (3.5) .098 

pollution burden score  34.6 (10.08)  34.86 (10.5) .46 
 

Table S2. Comparison of CalEnviroScreen indicators between versions 3.0 and 4.0. *Statistical 

test not conducted due to difference in units reported. 
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 MPFC Activation  
(Negative Label > Negative Match) 

Predictors b 95% CI p 
Intercept -38.64 -94.96 – 17.68 0.178 
Sex 3.14 -5.34 – 11.61 0.467 
Age 1.88 -2.01 – 5.77 0.342 
Household Socioeconomic 
Disadvantage -4.49 -9.61 – 0.62 0.085 

Neighborhood Socioeconomic 
Disadvantage 4.57 -1.12 – 10.25 0.115 

Mean FD 53.7 16.46 – 90.94 0.005 
Time Difference -0.001 -0.014 – 0.012 0.893 
Pollution Burden 0.4 0.18 – 0.61 <0.001 
Hemisphere -2.11 -8.98 – 4.76 0.546 
Pollution Burden x Hemisphere 0.07 -0.12 – 0.26 0.474 
Random Effects 
σ2 284.05 
τ00 ID 367.3 
ICC 0.56 
N ID 143 
Observations 286 
Marginal R2 / Conditional R2 0.173 / 0.639 
 

Table S3. Results from linear mixed effects analyses testing whether the slope of pollution 

burden and MPFC activation during Negative Label > Negative Match differed between left and 

right hemispheres. FD = framewise displacement.  
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Region Hemisphere Voxels x y z Z max p 
Negative Match > Negative Label 
Occipital cortex/V1 L 27697 -8 -86 0 12.30 < .001 
 R  12 -86 4 11.90  
Precentral gyrus R 2714 46 6 26 7.94 < .001 
 L 285 -28 -6 48 4.76 < .001 
Amygdala R 167 28 -2 -16 5.09 .004 
Middle frontal gyrus L 117 -44 4 34 5.22 .024 
Positive Match > Positive Label 
Primary Visual/V1 L 23864 -8 -86 0 11.6 < .001 
 R  14 -84 2 11.50  
Precentral gyrus R 583 48 6 26 6.37 < .001 
Superior frontal gyrus R 546 22 -2 50 6.43 < .001 
Intraparietal sulcus L 167 -44 -38 48 4.98 .005 
Thalamus L 160 -22 -28 -2 5.97 .007 
Amygdala R 142 24 0 -16 5.05 .012 
VMPFC L 105 -8 62 -4 4.90 .045 

 

Table S4. Results from whole-brain analyses identifying regions that were more active during 

Match relative to Label conditions for Negatively- vs. Positively-valenced stimuli, cluster-

corrected at Z > 3.1, p < .05. 
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Region Hemisphere Voxels x y z Z max p 
Negative Label > Negative Match 
Middle temporal gyrus L 7367 -44 -40 2 6.96 < .001 
Posterior cingulate L 2548 -2 -24 38 4.94 < .001 
Central opercular cortex R 175 38 6 14 3.98 .003 
Superior frontal gyrus L 139 -8 14 60 4.96 .011 
Cerebellum R 123 28 -72 -32 4.74 .020 
Precuneus L 118 -22 -48 32 5.02 .024 
Positive Label > Positive Match 
Superior temporal gyrus L 3183 -52 -34 0 9.19 < .001 
Middle temporal gyrus R 849 50 -30 -6 5.96 < .001 
Superior frontal gyrus L 2037 -2 32 38 5.77 < .001 
Inferior frontal gyrus L 1963 -52 20 24 7.41 < .001 
Frontal pole L 1541 -22 52 32 5.73 < .001 
 R 1249 32 60 6 5.63 < .001 
Angular gyrus R 969 54 -54 46 5.92 < .001 
DLPFC L 539 -40 6 46 4.89 < .001 
 R 440 44 24 38 5.22 < .001 
Orbitofrontal/Insula cortex R 491 48 22 -10 4.86 < .001 
Cerebellum R 317 26 -72 -28 5.46 < .001 
Cingulate gyrus L 311 -4 -10 34 4.50 < .001 
Temporal Pole L 202 -50 10 -20 4.38 .002 
(Positive Label > Positive Match) > (Negative Label > Negative Match) 
Paracingulate gyrus R 230 6 24 52 4.07 < .001 
DLPFC R 182 44 36 40 4.12 .004 

 

Table S5. Results from whole-brain analyses identifying regions that were more active during 

Label relative to Match conditions for Negatively- vs. Positively-valenced stimuli, and regions 

that showed a difference in Label > Match by valence, cluster-corrected at Z > 3.1, p < .05. 
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 Depressive Symptoms 

 Baseline (Intercept) Longitudinal Changes (Slope) 

 b SE t p b SE t p 

Intercept 1.19 0.48 2.49 .01 0.24 0.20 1.21 .23 

Sex 0.12 .20 0.62 .54 0.10 0.08 1.34 .18 

Age -0.02 0.09 -0.26 .80 -0.05 0.03 -1.53 .13 

Household Socioeconomic 
Disadvantage 0.10 0.11 0.90 .37 0.01 0.05 0.29 .77 

Neighborhood Socioeconomic 
Disadvantage 0.02 0.13 0.13 .90 -0.01 0.05 -0.26 .80 

Pollution Burden Percentile -0.004 0.005 -0.85 .40 -0.001 0.002 -0.63 .53 

Mean FD -0.16 0.84 -0.20 .84 -0.0004 0.33 -0.001 .99 

Time Difference 0.001 0.0003 2.26 .03 -0.000004 0.0001 -0.03 .97 

MPFC-IFG Connectivity 0.012 0.10 0.12 .90 -0.05 0.04 -1.20 .23 

MPFC-IFG Connectivity x 
Pollution Burden Percentile  -0.0005 0.005 -0.09 .93 -0.0004 0.002 -0.19 .85 

Baseline Depressive Symptoms -- -- -- -- 0.25 0.05 5.31 <.001 

Baseline Depressive Symptoms 
(Quadratic) -- -- -- -- -0.14 0.03 -4.75 <.001 

 
Table S6. Results from regression analyses testing whether MPFC-IFG connectivity during 

Negative Label > Negative Match was related to baseline (left) and/or longitudinal changes 

(right) in depressive symptoms, and whether association differed by pollution burden. Analysis 

examining longitudinal changes in depressive symptoms additional controlled for baseline 

depressive symptoms (linear and quadratic). Age, baseline depressive symptoms, and pollution 

burden percentile are mean-centered. 
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Variable Coefficients 
Intercept 0.3118 
Age  

Sex 0.0349 
Neighborhood Socioeconomic Disadvantage  

Household Socioeconomic Disadvantage  

Time Difference 0.0138 
Mean FD -0.0240 
Depressive Symptoms Intercept 0.1491 
Depressive Symptoms Intercept (Quadratic) -0.0690 
MPFC-DMN Connectivity 0.1022 
ozone  

PM 2.5  

diesel PM 0.0402 
drinking water -0.0087 
pesticides -0.0408 
toxic releases  

traffic density -0.0007 
cleanup sites  

groundwater threats  

hazardous waste facilities  

impaired water bodies 0.0624 
solid waste facilities -0.0906 
MPFC-DMN Connectivity x ozone 0.1724 
MPFC-DMN Connectivity x PM 2.5  

MPFC-DMN Connectivity x diesel PM 0.0444 
MPFC-DMN Connectivity x drinking water  
MPFC-DMN Connectivity x pesticides  
MPFC-DMN Connectivity x toxic releases 0.0622 
MPFC-DMN Connectivity x traffic density  

MPFC-DMN Connectivity x cleanup sites 0.0404 
MPFC-DMN Connectivity x groundwater threats 0.0209 
MPFC-DMN Connectivity x hazardous waste facilities 0.0514 
MPFC-DMN Connectivity x impaired water bodies -0.1261 
MPFC-DMN Connectivity x solid waste facilities  

 

Table S7. Results from LASSO regression analysis predicting slopes of depressive symptoms. 
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 Depressive Symptoms Slope 

 b SE t p 

Intercept 0.23 0.2 1.22 .22 

Sex 0.12 0.07 1.22 .18 

Age -0.05 0.03 -1.34 .11 

Household Socioeconomic Disadvantage 0.02 0.05 0.36 .72 

Neighborhood Socioeconomic 
Disadvantage -0.01 0.05 -0.24 .81 

Mean FD -0.04 0.3 -0.13 .90 

Time Difference -0.0001 0.0001 -0.45 .65 

Pollution Burden Percentile -0.002 0.002 -1.12 .27 

MPFC-DMN Connectivity 0.06 0.05 1.15 .25 

MPFC-DMN Connectivity x Pollution Burden 
Percentile  0.006 0.002 2.40 .018 

Baseline Depressive Symptoms 0.25 0.05 5.38 < .001 

Baseline Depressive Symptoms (Quadratic) -0.13 0.03 -4.76 < .001 

 
Table S8. Results from regression analyses testing whether MPFC-DMN connectivity during 

Negative Label > Negative Match was related to longitudinal changes in depressive symptoms, 

and whether association differed by pollution burden, additionally controlling for baseline 

depressive symptoms (linear and quadratic). Age, baseline depressive symptoms, and pollution 

burden percentile are mean-centered. 
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  Depressive Symptoms Slope 
 b 95% CI p 
Intercept 0.24 -0.14 – 0.62 0.217 

Age -0.05 -0.11 – 0.02 0.183 

Sex 0.12 -0.03 – 0.26 0.117 

Household Socioeconomic Disadvantage 0.02 -0.07 – 0.11 0.716 

Neighborhood Socioeconomic Disadvantage -0.01 -0.11 – 0.09 0.812 

Pollution Burden Percentile -0.002 -0.006 – 0.002 0.256 

MPFC-DMN Connectivity 0.06 -0.04 – 0.17 0.255 

Time Difference -0.0001 -0.0003 – 0.0002 0.642 

Mean FD -0.04 -0.68 – 0.60 0.891 

Depressive Symptoms Baseline 0.25 0.16 – 0.34 <0.001 

Depressive Symptoms Baseline (Quadratic) -0.13 -0.19 – -0.08 <0.001 

MPFC-DMN Connectivity x Pollution Burden 
Percentile 0.01 0.0012 – 0.01 0.018 

Random Effects 
σ2 0.14 

τ00 census tract 0.01 

ICC 0.04 

N census tract 125 

Observations 145 

Marginal R2 / Conditional R2 0.251 / 0.283 
 
Table S9. Results from multilevel regression analyses using census tract as a grouping variable 

testing whether MPFC-DMN connectivity during Negative Label > Negative Match was related 

to longitudinal changes in depressive symptoms, and whether association differed by pollution 

burden. Age, baseline depressive symptoms, and pollution burden percentile are mean-

centered. 
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 Depressive Symptoms 

 Baseline (Intercept) Longitudinal Changes (Slope) 

 b SE t p b SE t p 

Intercept 0.90 0.46 1.97 .05 0.28 0.20 1.40 .16 

Sex .19 0.18 1.05 .30 0.11 0.07 1.49 .14 

Age -0.02 0.08 -0.27 .79 -0.04 0.03 -1.31 .19 

Household Socioeconomic 
Disadvantage 0.0004 0.11 0.03 .99 0.03 0.05 0.62 .53 

Neighborhood Socioeconomic 
Disadvantage .001 0.12 0.11 .99 -0.01 0.05 -0.26 .80 

Mean FD -0.37 0.79 -0.47 .64 -0.02 0.32 -0.07 .94 

Time Difference 0.005 0.0003 1.85 .07 -0.00004 0.0001 -0.37 .71 

Pollution Burden Percentile -0.01 0.005 -1.14 .25 -0.002 0.002 -1.12 .27 

MPFC-DMN Connectivity 0.17 0.13 1.30 .19 0.06 0.05 1.06 .29 

MPFC-DMN Connectivity x 
Pollution Burden Percentile  -0.005 0.006 -0.77 .44 0.01 0.002 2.49 .014 

Baseline Depressive 
Symptoms -- -- -- -- 0.26 0.05 5.46 <.001 

Baseline Depressive 
Symptoms (Quadratic) -- -- -- -- -0.13 0.03 -4.78 <.001 

Early Life Adversity 0.06 0.016 3.59 <.001 -0.01 0.007 -0.97 .33 

 

Table S10. The interaction between pollution burden percentile (mean-centered) and MPFC-

DMN connectivity during Negative Label > Negative Match on slopes of depressive symptoms 

remained significant after additionally controlling for early life adversity. 
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 Externalizing Symptoms 

 Baseline (Intercept) Longitudinal Changes (Slope) 

 b SE t p b SE t p 

Intercept 9.82 1.69 5.79 < .001 0.29 0.39 0.74 .46 

Sex -0.89 0.67 -1.33 .19 0.04 0.15 0.25 .80 

Age 0.003 0.30 .012 .99 -0.03 0.07 -0.37 .71 

Household Socioeconomic 
Disadvantage 0.79 0.43 1.86 .07 -0.02 0.10 -0.18 .85 

Neighborhood 
Socioeconomic Disadvantage -0.07 0.45 -0.16 .87 -0.10 0.10 -0.92 .36 

Mean FD 3.26 2.098 1.09 .28 0.52 0.69 0.76 .45 

Time Difference 0.0003 0.001 0.32 .75 -0.0002 0.0002 -0.69 .49 

Pollution Burden Percentile -0.01 0.018 -0.30 .76 -0.01 0.004 -1.74 .08 

MPFC-DMN Connectivity -0.18 0.49 -0.37 .71 0.15 0.11 1.37 .17 

MPFC-DMN Connectivity x 
Pollution Burden Percentile  -0.02 0.02 -1.12 .27 0.01 0.005 1.76 .08 

Baseline Externalizing 
Symptoms -- -- -- -- -0.002 0.02 -0.12 .91 

Early Life Adversity 0.29 0.06 4.56 < .001 -0.0001 0.016 -0.006 .99 

 

Table S11. The interaction between pollution burden percentile (mean-centered) and MPFC-

DMN connectivity during Negative Label > Negative Match on externalizing symptoms 

intercepts and slopes were not significant. 
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Figure S1. Boxplots representing the distribution of pollution burden percentiles and associated 

indicators. Orange, red, and dark red lines indicate 70th, 80th, and 90th percentiles, 

respectively. 
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Figure S2. Boxplots representing the distribution of percentiles of neighborhood socioeconomic 

disadvantage indicators. Higher percentiles indicate higher levels of disadvantage. Orange, red, 

and dark red lines indicate 70th, 80th, and 90th percentiles, respectively. 
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Figure S3. Results from whole-brain cluster analyses depicting clusters/regions that were more 

active during Negative Match > Negative Label (top) and during Positive Match > Positive Label 

(bottom), cluster-corrected at Z > 3.1, p < .05. 
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Figure S4. Results from whole-brain cluster analyses depicting clusters/regions that were more 

active during Negative Label > Negative Match (top left) and during Positive Label > Positive 

Match (bottom left), and regions that differed between Positive and Negative valence, cluster-

corrected at Z > 3.1, p < .05. 
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Figure S5. Scatterplots depicting associations of pollution burden percentile with activation in 

right MPFC (top) and left MPFC (bottom) during Negative Label > Negative Match (left) and 

Positive Label > Positive Match (right). 
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Figure S6. Bivariate plots of covariates (age at scan, household socioeconomic disadvantage, 

neighborhood socioeconomic disadvantage, time difference between pollution measurement 

and brain scan, and mean framewise displacement) with each outcome variable - (A) bilateral 

MPFC activation, (B) MPFC-DMN connectivity, (C) MPFC-IFG connectivity, (D) depressive 

symptoms intercept. For (E) depressive symptoms slopes, bivariate plot with depressive 

symptoms intercept is also included. 


