Environ Health Perspect

DOI: 10.1289/EHP13948

Note to readers with disabilities: *EHP* strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in *EHP* articles may not conform to <u>508 standards</u> due to the complexity of the information being presented. If you need assistance accessing journal content, please contact <u>ehpsubmissions@niehs.nih.gov</u>. Our staff will work with you to assess and meet your accessibility needs within 3 working days.

Supplemental Material

The Role of Biodiversity in the Development of Asthma and Allergic Sensitization: A Stateof-the-Science Review

Inês Paciência, Needhi Sharma, Timo T. Hugg, Aino K. Rantala, Behzad Heibati, Wael K. Al-Delaimy, Maritta S. Jaakkola, and Jouni J.K. Jaakkola

Table of Contents

PRISMA checklist

Table S1. Characteristics of studies included in the comprehensive review (n=82).

Table S2. Main results of studies included in the comprehensive review (n=82) and summary of evidence.

Table S3. Microbiota composition between cases and controls for the main phyla/genera detected or effect estimate for the main phyla/genera detected.

Table S4. Summary of the evidence on the association between outer layer biodiversity and respiratory outcomes (based on information included in Table 1 "*Outer layer biodiversity*").

Table S5. Summary of the evidence on the association between inner layer biodiversity and respiratory outcomes (based on information included in Table 1 *"Inner layer biodiversity"*).

References

PRISMA checklist

Section and Topic	Item #	Checklist item	Location where item is reported
TITLE			
Title	1	Identify the report as a systematic review.	1
ABSTRACT			
Abstract	2	See the PRISMA 2020 for Abstracts checklist.	2
INTRODUCTION	[
Rationale	3	Describe the rationale for the review in the context of existing knowledge.	3
Objectives	4	Provide an explicit statement of the objective(s) or question(s) the review addresses.	3
METHODS			
Eligibility criteria	5	Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.	4
Information sources	6	Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted.	4
Search strategy	7	Present the full search strategies for all databases, registers and websites, including any filters and limits used.	4
Selection process	8	Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process.	4
Data collection process	9	Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process.	4-5
Data items	10a	List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect.	4-5
	10b	List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.	4-5
Study risk of bias assessment	11	Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process.	NA
Effect measures	12	Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.	NA
Synthesis methods	13a	Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)).	5
	13b	Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions.	5
	13c	Describe any methods used to tabulate or visually display results of individual studies and syntheses.	5
	13d	Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.	5

Section and Topic	Item #	Checklist item	Location where item is reported
	13e	Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression).	NA
	13f	Describe any sensitivity analyses conducted to assess robustness of the synthesized results.	NA
Reporting bias assessment	14	Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).	NA
Certainty assessment	15	Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome.	NA
RESULTS			
Study selection	16a	Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in the review, ideally using a flow diagram.	5-7
	16b	Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded.	NA
Study characteristics	17	Cite each included study and present its characteristics.	5-7
Risk of bias in studies	18	Present assessments of risk of bias for each included study.	NA
Results of individual studies	19	For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (e.g. confidence/credible interval), ideally using structured tables or plots.	NA
Results of	20a	For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies.	NA
syntheses	20b	Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect.	NA
	20c	Present results of all investigations of possible causes of heterogeneity among study results.	NA
	20d	Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.	NA
Reporting biases	21	Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed.	NA
Certainty of evidence	22	Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.	NA
DISCUSSION			
Discussion	23a	Provide a general interpretation of the results in the context of other evidence.	7-13
	23b	Discuss any limitations of the evidence included in the review.	7-13
	23c	Discuss any limitations of the review processes used.	7-8
	23d	Discuss implications of the results for practice, policy, and future research.	10-13
OTHER INFORMA	TION		

Section and Topic	Item #	Checklist item	Location where item is reported
Registration and	24a	Provide registration information for the review, including register name and registration number, or state that the review was not registered.	4
protocol	24b	Indicate where the review protocol can be accessed, or state that a protocol was not prepared.	4
	24c	Describe and explain any amendments to information provided at registration or in the protocol.	7-8
Support	25	Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review.	13
Competing interests	26	Declare any competing interests of review authors.	13
Availability of data, code and other materials	27	Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review.	14

From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: 10.1136/bmj.n71

For more information, visit: <u>http://www.prisma-statement.org/</u>

NA: not applicable

Reference, study year (country)	Study population	Study design	Study size	Follow-up period	Definition of health outcome and period of assessment	Method of data collection for exposure assessment and time-period	(Quali)quantitative results
					Outer layer biodiversity		
Ege, et al. ¹ , 2011 (Germany)	Children (6- 13 years)	Case-control	1 511		Questionnaires (respiratory and allergic symptoms and asthma diagnosis); atopic sensitization was evaluated by specific IgE antibodies. Cross-sectional survey performed during childhood	Mattress dust samples; single-strand conformation polymorphism (SSCP) gels. Cross-sectional survey performed during childhood	quantitative
Ege, et al. ² , 2012 (Germany)	Children (≈ 8 years)	Cross- sectional	489		Questionnaire (asthma); atopic sensitization was evaluated by specific IgE. Cross-sectional survey performed during childhood	Mattress dust samples; single-stranded DNA and analyzed on SSCP gels. Cross- sectional survey performed during childhood	quantitative
Hanski, et al. ³ , 2012 (Finland)	Children (14- 18 years)	Cross- sectional	118		Atopic sensitization was evaluated by skin prick testing and specific IgE. Cross- sectional survey performed during adolescence (2010)	Environmental biodiversity based on land use types surrounding the home within 3km; skin samples, V1-V3 regions of 16S rRNA gene were sequenced. Cross- sectional survey performed during adolescence (2010)	quantitative
Lynch, et al. ⁴ , 2014 (USA)	Children (3 years)	Cohort	560	3 years	Atopic sensitization was evaluated by specific IgE at age three.	Dust samples (living room) collected in the 1 st year of life; 16S rRNA gene were sequenced. First year of life	qualitative
Ciaccio, et al. ⁵ , 2015 (USA)	Children (2.4-4.8 years)	Cross- sectional	19 dwellings		Questionnaires (asthma). Cross-sectional survey performed during childhood (between October 2008 and November 2011)	Dust samples; 16S rRNA gene were sequenced. Cross-sectional survey performed during childhood (between October 2008 and November 2011)	qualitative
Ruokolainen, et al. ⁶ , 2015 (Finland and Estonian)	Children and young adults (0.5-20 years)	Cross- sectional	1 044		Atopic sensitization was evaluated by specific IgE. Cross-sectional survey performed during childhood/early adulthood (between 2003 and 2012)	Environmental biodiversity based on land use types. Cross-sectional survey performed during childhood/early adulthood (between 2003 and 2012)	quantitative
Valkonen, et al. ⁷ , 2015 (Germany, Austria and Switzerland)	Children (6- 12 years)	Cross- sectional	224		Questionnaire (asthma and atopy). Cross- sectional survey performed during childhood	Mattress dust samples, bands based on the gradient gel electrophoresis (DGGE). Cross-sectional survey performed during childhood	quantitative
Tischer, et al. ⁸ , 2016 (Germany)	Children aged 6 and 10 years	Cohort	189	10 years	Parent-reported questionnaires (Wheezing in the preceding 12 months at age of 6, 12, 18, 24 months and at 4, 6, and 10 years of age); allergen sensitization was determined by skin prick testing at 18, 36 and 60 months	Dust samples (collected after birth from living room floors). 16S rRNA gene were sequenced	quantitative

Table S1. Characteristics of studies included in the comprehensive review (n=82)

Birzele, et al. ⁹ , 2017 (Austria)	Children (6- 12 years)	Cross- sectional	86		Questionnaire (asthma). Cross-sectional survey performed during childhood	Mattress dust and nasal samples. V3-V5 regions of 16S rRNA gene were sequenced. Cross-sectional survey performed during childhood	quantitative
Cavaleiro Rufo, et al. ¹⁰ , 2017 (Portugal)	Children (8- 10 years)	Cross- sectional	858		Questionnaire (asthma); allergic sensitization was determined by skin prick testing. Cross-sectional survey performed during childhood	Diversity scores of fungi: number of different fungal species. Cross-sectional survey performed during childhood	quantitative
Campbell, et al. ¹¹ , 2017 (14 different countries)	26–54-year- old adults	Cohort	10 201	5 years	Questionnaire and bronchial hyperresponsiveness to define current asthma; atopic sensitization was evaluated by specific IgE at 41.9 (SD: 7.2) years of age	Biodiversity score based on childhood (before 5 years old) exposure to cats, dogs, day care, bedroom sharing and older siblings	quantitative
Dannemiller, et al. ¹² , 2016 (USA)	Children (5- 10 years)	Cross- sectional	196		Questionnaires (active asthma, severe asthma); atopic sensitization was evaluated by specific IgE. Cross-sectional survey performed during childhood	Dust samples; V4 regions of 16S rRNA gene were sequenced. Cross-sectional survey performed during childhood	quantitative
Karvonen, et al. ¹³ , 2017 (Finland)	Children (1 and 6 years)	Cohort	410	6 years	Questionnaires (asthma, wheezing, cough and atopic dermatitis, at the age of 2, 12, 18, and 24 months, and thereafter annually); atopic sensitization was evaluated by specific IgE (age of 1 and 6 years)	Dust samples (collected at 2 months of age), qPCR for microbial DNA	quantitative
Donovan, et al. ¹⁴ , 2018 (New Zealand)	Children (18 years)	Cohort	49 956	18 years	Pharmacy and hospital discharge records (asthma) at 18 years of age	Environmental biodiversity based on vegetation diversity (total number of natural landcover types). Mean lifetime exposure (prenatal to age 18)	quantitative
Lai, et al. ¹⁵ , 2018 (USA)	Children (average 8.1 years old)	Randomized controlled trial	25		Telephone survey of the child's parent or caretaker (asthma) at 8.1 years of age	Dust samples from classrooms and homes; shotgun metagenomics sequencing at 8.1 years of age	quantitative
Loo, et al. ¹⁶ , 2018 (Singapore)	Children (3- 60 months)	Cohort	50	5 years	Questionnaires administered at 3, 6, 9, 12, 15, 18, 24, 36, 48 and 60 months; allergen sensitization was determined by skin prick testing (SPT) at 18, 36 and 60 months. Allergic subjects have a positive SPT to at least one of the tested allergens at year 5 and have ever given positive replies to questions on allergic outcomes. Non- allergic subjects have no positive SPT and answered "no" to all questions on allergy in the first 5 years of life.	Dust samples (bed, sofa, and play area). V3-V4 regions of 16S rRNA gene were sequenced at the year 5.5 follow up	qualitative

O'Connor, et al. ¹⁷ , 2018 (USA)	Children (3 and 7 years)	Cohort	442	7 years	Questionnaires (asthma) and spirometry with bronchodilation at 7 years of age	Dust samples collected at 3 months of age; 16S rRNA gene were sequenced	qualitative
Pekkanen, et al. ¹⁸ , 2018 (7 European countries)	Adults (29– 55 years)	Cross- sectional	397 (cases: 199; controls: 198)		Questionnaire (asthma). Cross-sectional survey performed during adulthood	Mattress dust samples; denaturing gradient gel electrophoresis and qPCR assays. Cross-sectional survey performed during adulthood	quantitative
Valkonen, et al. ¹⁹ , 2018 (7 European countries)	Adults (29– 55 years)	Cross- sectional	397		Questionnaire (asthma); atopic sensitization was evaluated by specific IgE. Cross-sectional survey performed during adulthood	Mattress dust samples; qPCR assays. Cross-sectional survey performed during adulthood	qualitative
Karvonen ²⁰ , 2019 (Finland)	Children (10.5 years)	Cohort	373	10.5-year follow-up	Parent-reported questionnaires (ever and current asthma) at 10.5-year follow-up	Dust samples (living rooms) at two months of age. V4 regions of 16S rRNA gene were sequenced	quantitative
Kirjavainen, et al. ²¹ , 2019 (Finland)	Children (6 years)	Cohort	431	6 years	Parent-reported questionnaires (ever and current asthma) at 6 years of age; atopic sensitization was evaluated by specific IgE	Dust samples (living room floor from farm and non-farm homes) collected at two months of age. V4 regions of 16S rRNA gene were sequenced	quantitative
Cavaleiro Rufo, et al. ²² , 2020 (Portugal)	Children (8- 10 years)	Cross- sectional	858		Questionnaire (asthma and allergic diseases); allergic sensitization was determined by skin prick testing; spirometry with bronchodilation. Cross- sectional survey performed during childhood	species richness index (SRI): included 4 vertebrate groups (amphibians, birds, reptiles and small mammals), totaling 89 different species. Cross-sectional survey performed during childhood	quantitative
Fu, et al. ²³ , 2020 (Malaysia)	Children (14- 16 years)	Cross- sectional	309		Questionnaires (asthma symptoms) and validated asthma score to define asthma severity. Cross-sectional survey performed during childhood/adolescence	Floor dust from classrooms; 16S rRNA gene were sequenced. Cross-sectional survey performed during childhood/adolescence	quantitative
Gangneux, et al. ²⁴ , 2020 (France)	Children and adults	Case-control	30 dwellings (cases: 15; controls: 15)		Medical diagnosis (asthma) assessed during childhood and adulthood	Dust samples collected during childhood and adulthood; 16S rRNA gene were sequenced	quantitative
Adams, et al. ²⁵ , 2021 (Finland and Netherlands)	Children (≈ 9 years)	Cohort	2734	1 year	Questionnaires (respiratory symptoms – wheeze, nocturnal dry cough, rhinitis) administered during late fall/early winter 2008	Settled dust samples from classrooms collected during late winter/early spring 2009, late spring/early summer 2009 and during late winter/early spring 2010; 16S rRNA gene were sequenced	quantitative
Cavaleiro Rufo, et al. ²⁶ , 2021 (Portugal)	Children (4 and 7 years	Cohort	1 050	7 years	Questionnaire (asthma and allergic diseases at the ages of 4 and 7)	Species richness index (SRI): included 4 vertebrate groups (amphibians, birds, reptiles and small mammals), totalling 89 different species, assessed at birth	quantitative
Cox, et al. ²⁷ , 2021 (USA)	Children (7 and 12 years)	Cross- sectional	170		Questionnaires (asthma, rhinitis, and wheeze in the previous 12 months); atopic sensitization was evaluated by skin prick	Dust samples collected at 7 years of age;	quantitative

testing, radioallergosorbent (RAST) and by specific IgE, assessed at 7 and 12 years of age

Donovan, et al. ²⁸ , 2021 (USA)	Adults	Cross- sectional	26 367 census tracts		Census (asthma). Cross-sectional survey performed during adulthood	Plant diversity based on data from the Global Biodiversity Information Facility (GBIF). Cross-sectional survey performed during adulthood	quantitative
Fu, et al. ²⁹ , 2021 (China)	Young adults (IQR 20–23 years)	Cross- sectional	357		Questionnaires (asthma symptoms) and score of asthma symptoms performed in November and December 2013.	Settled air dust and floor dust samples from dormitory rooms in November and December 2013; 16S rRNA gene were sequenced	quantitative
Fu, et al. ³⁰ , 2021 (China)	Children (15- 18 years)	Cross- sectional	1332		Questionnaires (asthma and rhinitis symptoms) performed in March 2088	Floor dust from classrooms (4 from rural areas and 5 from urban areas) collected in March 2008; 16S rRNA gene were sequenced	quantitative
Hyytiäinen, et al. ³¹ , 2021 (Finland and Germany)	Children (10 years)	Cohort	506	10 years	Atopic sensitization was evaluated by specific IgE at the age of 10 years	Floor dust samples (collected at the child age of 2-3 months); V4 regions of 16S rRNA gene were sequenced	quantitative
Lehtimäki, et al. ³² , 2021 (Denmark)	Children (6 years)	Cohort	700	6 years	Questionnaire (asthma by age 6 years based on quantitative symptom algorithm); atopic sensitization was evaluated by skin prick testing and by specific IgE. evaluated at 6 years of age	Environmental biodiversity based on land use types at birth; Airway and gut microbiota samples collected during 1 st year of life, V4 region of 16S rRNA gene were sequenced	quantitative
Winnicki, et al. ³³ , 2022 (Denmark)	Individuals born 1995– 2015	Cohort	40 249	23 years	Hospital contacts for asthma ICD-10 diagnoses or filled prescriptions on asthma medication from 1995 to 2018	Danish Biodiversity Map – bioscore (including plants, macrofungi, vertebrates and a subset of insect taxa) assessed during early childhood	qualitative
					Inner layer biodiversity		
Bisgaard, et al. ³⁴ , 2007 (Denmark)	Children (5 years)	Cohort	321	5 years	Clinical diagnosis (asthma) assessed at 5 years of age; atopic sensitization was evaluated by specific IgE at 4 years of age	Hypopharyngeal samples collected at 1 month of age; culture approach	quantitative
Hilty, et al. ³⁵ , 2010 (Ireland)	Children (1- 17 years) and adults (37.6±18.2 – 52.9±11.1 years)	Cross- sectional	24 adults and 23 children		Clinical diagnosis (asthma, COPD). Cross- sectional survey performed during childhood and adulthood	Nose and oropharynx samples (adults) and broncho-alveolar lavage (children); 16S rRNA gene were sequenced. Cross- sectional survey performed during childhood and adulthood	qualitative
Bisgaard, et al. ³⁶ , 2011 (Denmark)	Children (6 years)	Cohort	411	6 years	Clinical diagnosis (asthma at 6 years); atopic sensitization was evaluated by skin prick testing and by specific IgE during	Stool samples collected at 1 and 12 months of age; 16S rRNA gene were sequenced combined with denaturing	quantitative

					the first 6 years of life $(\frac{1}{2}, \frac{1}{2}, 4, and 6)$ years of age)	gradient gel electrophoresis and conventional culturing	
Cardenas, et al. ³⁷ , 2012 (Ecuador)	Children (±10.2 months)	Case-control	48 (cases: 24 with non- infectious early onset wheezing; controls: 24)		Clinical diagnosis (wheeze) assessed at 10.2 months of age	Oropharyngeal samples collected at 10.2 months of age; V3-V5 region of 16S rRNA gene were sequenced	qualitative
Marri, et al. ³⁸ , 2013 (USA)	Adults (≈ 26 years)	Cross- sectional	20		Questionnaire (asthma). Cross-sectional survey performed during adulthood	Induced sputum samples; V6 region of 16S rRNA gene were sequenced. Cross- sectional survey performed during adulthood	qualitative
Abrahamsson, et al. ³⁹ , 2014 (Sweden)	Children (7 years)	Cohort	47	7 years	Questionnaire (asthma) and exhaled nitric oxide at 7 years of age	Stool samples collected during the first year of life (1 week, 1 month, 1 year); 16S rRNA gene were sequenced	quantitative
Park, et al. ⁴⁰ , 2014 (Korea)	Adults (53.4±17.1 to 68.9±7.2)	Cross- sectional	47 (cases: 18 with asthma, 17 with COPD; controls; 12		NA Cross-sectional survey performed during adulthood	Oropharynx samples; V1-V3 region of 16S rRNA gene were sequenced. Cross- sectional survey performed during adulthood	quantitative
Arrieta, et al. 41, 2015 (Canada)	Children (3 years)	Case-control	319 (cases: 22 with atopy + wheeze, 87 with atopy, 136 with wheeze; controls: 74)		Questionnaire (asthma, wheeze); atopic sensitization was evaluated by skin prick testing at ages 1, 3 years	Stool samples collected during the first 100 days of life; V3 region of 16S rRNA gene were sequenced	qualitative
Denner, et al. ⁴² , 2016 (USA)	Adults (44.2±1.8 and 34.3±3.0 years)	Cross- sectional	58		Clinical diagnosis (severe asthma). Cross- sectional survey performed during adulthood	Endobronchial brushings and bronchoalveolar lavage fluid samples; V4 region of 16S rRNA gene were sequenced. Cross-sectional survey performed during adulthood	qualitative
Hevia, et al. ⁴³ , 2016 (Spain)	Adults (≈ 39 years)	Cross- sectional (case-control)	43		Clinical diagnosis (asthma); atopic sensitization was evaluated by specific IgE and by skin prick testing. Cross-sectional survey performed during adulthood	Stool samples; 16S rRNA gene were sequenced. Cross-sectional survey performed during adulthood	qualitative
Hua, et al. ⁴⁴ , 2016 (USA)	Adults (±45.5 years)	Cross- sectional	1879		Questionnaire (asthma). Cross-sectional survey performed during adulthood	Stool samples; V4 region of 16S rRNA gene were sequenced. Cross-sectional survey performed during adulthood	quantitative
Stiemsma, et al. ⁴⁵ , 2016 (Canada)	Children (4 years)	Case-control	76 (cases: 39; controls: 37)		Questionnaires (asthma) performed at 4 years of age	Stool samples collected at 3 month and 1 year of age; V3 region of 16S rRNA gene were sequenced	qualitative

Zhang, et al. ⁴⁶ , 2016 (UK)	Adults (35.4±10.3 – 47.9±10.9 years)	Cross- sectional	56		Clinical diagnosis (severe asthma). Cross- sectional survey performed during adulthood	Induced sputum samples; V3-V5 region of 16S rRNA gene were sequenced. Cross- sectional survey performed during adulthood	qualitative
Chiu, et al. ⁴⁷ , 2017 (Taiwan)	Children (3-5 years)	Case-control	87 (cases: 32 with asthma, 23 with rhinitis; controls: 32)		Clinical diagnosis (asthma) performed between August 2013 to July 2015	Throat swabs collected between August 2013 to July 2015; V3- V4 region of 16S rRNA gene were sequenced	qualitative
Depner, et al. ⁴⁸ , 2017 (Germany, Austria and Switzerland)	Children (12 years)	Cross- sectional	333		Questionnaires (asthma). Cross-sectional survey performed during childhood	Throat (327) and nasal (68) samples; Cross-sectional survey performed during childhood	quantitative
Li, et al. ⁴⁹ , 2017 (China)	Adults (39.6±8.6 to 52.0±9.3 years)	Case-control	113 (cases: 49 non-smoking asthma patients, 25 with severe asthma, 24 with non- severe asthma; controls: 15)		Severe asthma was defined according to the ERS/ATS guidelines on severe asthma, while asthma severity was based on the GINA criteria; atopic sensitization was evaluated by skin prick testing. Cross- sectional survey performed during adulthood	Induced sputum samples; V3-V5 region of 16S rRNA gene were sequenced. Cross- sectional survey performed during adulthood	quantitative
Ruokolainen, et al. ⁵⁰ , 2017 (Finnish and Russian Karelia)	Children (14- 20 years)	Cohort	180	10 years	Questionnaires (asthma); atopic sensitization was evaluated by specific IgE assessed in 2003, 2010 and 2012	Skin microbiota collected in 2012; V1-V3 region of 16S rRNA gene were sequenced	qualitative
Arrieta, et al. ⁵¹ , 2018 (Ecuador)	Children (5 years)	Case-control	97 (cases: 27 children with atopic wheeze; controls: 70)		Questionnaires (wheeze in the previous 12 months and with evidence of atopy based on a positive skin prick test response) performed at 5 years of age	Stool samples collected at 3 months of age; 16S rRNA gene were sequenced	qualitative
Durack, et al. ⁵² , 2018 (USA)	Adults (28- 39 years)	Cross- sectional	45		Methacholine challenge test (asthma); atopic sensitization was evaluated by specific IgE. Cross-sectional survey performed during adulthood	Bronchial brushings, oral wash and induced sputum samples. In subset of 27 adults, intranasal brushings were also collected; V4 region of 16S rRNA gene were sequenced. Cross-sectional survey performed during adulthood	qualitative
Fazlollahi, et al. ⁵³ , 2018 (USA)	Adults (≈ 32 years)	Cross- sectional	72		Questionnaire (exacerbated asthma); Clinical diagnosis (asthma). Cross- sectional survey performed during adulthood	Nasal samples; V3-V4 region of 16S rRNA gene were sequenced. Cross- sectional survey performed during adulthood	qualitative

Kim, et al. ⁵⁴ , 2018 (South Korea)	Children (6- 10 years)	Case-control	92 (62 cases: 31 with asthma and 30 with asthma in remission; controls: 31)		Asthma was diagnosed by pediatric allergists based on symptoms and methacholine challenge test; atopic sensitization was evaluated by skin prick testing and by specific IgE, assessed between June, 2014, and January, 2016	Nasopharyngeal samples collected between June, 2014, and January, 2016; 16S rRNA gene were sequenced	qualitative
Okba, et al. ⁵⁵ , 2018 (Egypt)	Adults (18- 45 years)	Case-control	120 (cases: 80; controls: 40)		Questionnaire (asthma); atopic sensitization was evaluated by skin prick testing. Cross-sectional survey performed during adulthood	Stool samples; culture-based approach. Cross-sectional survey performed during adulthood	qualitative
Stokholm, et al. ⁵⁶ , 2018 (Denmark)	Children (5 years)	Cohort	690	5 years	Diary records (asthma) at age 5 years	Stool samples collected during the 1 st year of life; 16S rRNA gene were sequenced	qualitative
Wang, et al. ⁵⁷ , 2018 (UK)	Adults (36- 80 years)	Case-control	221		NA Cross-sectional survey performed during adulthood	Stool samples; Cross-sectional survey performed during adulthood	qualitative
Bannier, et al. ⁵⁸ , 2019 (Netherlands)	Children (6 years)	Case-control	252 (cases: 202; controls: 50)		Clinical diagnosis (asthma); atopic sensitization was evaluated by specific IgE at 6 years of age	Stool samples collected at 2-4 aged; V3- V4 region of 16S rRNA gene were sequenced	qualitative
Espuela-Ortiz, et al. ⁵⁹ , 2019 (USA)	Children and young adults (6-21 years)	Case-control	114 (cases: 57; controls: 57)		Clinical diagnosis (asthma). Cross- sectional survey performed during childhood and early adulthood	Saliva samples; V4 region of 16S rRNA gene were sequenced. Cross-sectional survey performed during childhood and early adulthood	quantitative
Lee, et al. ⁶⁰ , 2019 (South Korea)	Adults (18- 45 years; ≥ 65 years)	Cross- sectional	80		Clinical diagnosis (airway obstruction reversibility, methacholine challenge test, symptoms, treatment). Cross-sectional survey performed during adulthood	Upper airway nasopharyngeal samples; 16S rRNA gene were sequenced. Cross- sectional survey performed during adulthood	qualitative
Pang, et al. ⁶¹ , 2019 (China)	Adults (37- 41 years)	Case-control	36 (cases: 10 eosinophilic asthma, 14 non- eosinophilic asthma; controls: 12)		Clinical diagnosis and spirometry with bronchodilation. Survey performed during adulthood	Induced sputum samples; V3-V4 region of 16S rRNA gene were sequenced. Survey performed during adulthood	qualitative
Powell, et al. ⁶² , 2019 (UK)	Children (24 months)	Cohort	159	24 months	Medical records (wheeze) assessed after the 2 years visit	Oropharyngeal samples collected at six time-points (6 weeks, 6, 9, 12, 18 and 24 months of age); V3-V5 region of 16S rRNA gene were sequenced	qualitative
Samra, et al. ⁶³ , 2019 (South Korea)	Children (5- 12 years)	Cross- sectional	118		Hospital visits (asthma attack) and methacholine/provocholine challenge test; atopic sensitization was evaluated by skin prick testing and by specific IgE. Cross-	Urine bacteria-derived extracellular vesicle (EV)s. Cross-sectional survey performed during childhood	qualitative

					sectional survey performed during childhood		
Thorsen, et al. ⁶⁴ , 2019 (Denmark)	Children (6 years)	Cohort	700	6 years	Daily diary (asthma); atopic sensitization was evaluated by skin prick testing and by specific IgE at 6 years of age	Airways samples collected at age 1 month; 16S rRNA gene were sequenced	quantitative
Al Bataineh, et al. ⁶⁵ , 2020 (United Arab Emirates)	Children (7 years) and adults (52 years)	Case-control	40 (cases: 21 asthmatics; controls: 19)		Questionnaire (asthma) Survey performed during childhood and adulthood	Expectorated sputum samples; 16S rRNA gene were sequenced. Survey performed during childhood and adulthood	qualitative
Chiu, et al. ⁶⁶ , 2020 (Taiwan)	Children (4-5 years)	Case-control	60 (cases: 20 with allergic rhinitis, 19 with allergic asthma; controls: 22)		Questionnaire (asthma, atopic diseases). Survey performed during childhood	Stool and airway samples; V3-V4 region of 16S rRNA gene were sequenced. Survey performed during childhood	qualitative
Patrick, et al. 67, 2020 (Canada)	Children (5 years)	Cohort	917	5 years	Record from the British Columbia Ministry of Health Chronic Disease Dashboard (asthma) at age 5 years	Stool samples collected at 3 and 12 months of age; 16S rRNA gene were sequenced	quantitative
Ruokolainen, et al. ⁶⁸ , 2020 (Finland and Estonian)	Children (18 months of age)	Cross- sectional	717		Atopic sensitization was evaluated by specific IgE at 18 months of age	Stool, nasal and skin samples of 6-month- old; V1-V3 region of 16S rRNA gene were sequenced	qualitative
Toivonen, et al. ⁶⁹ , 2020 (Finland)	Children (7 years)	Cohort	923	7 years	Medical records (asthma) at age 7 years	Nasal samples collected at ages 2, 13, and 24 months; V4 region of 16S rRNA gene were sequenced	quantitative
Ham, et al. ⁷⁰ , 2021 (South Korea)	Adults (49- 58.44 years)	Case-control	97 (cases: 42 with non- severe asthma, 32 with severe asthma; controls: 23)		Spirometry with bronchodilation and methacholine or mannitol challenge test (asthma) performed between December 2016 and June 2017	Airway (sputum) and stool samples collected between December 2016 and June 2017; V3-V4 region of 16S rRNA gene were sequenced	qualitative
Niemeier-Walsh, et al. ⁷¹ , 2021 (USA)	Children (12 years)	Cohort	40	12 years	Questionnaire (asthma); atopic sensitization was evaluated by skin prick testing at 12 years of age	Saliva and induced sputum samples collected at age 14 years; 16S rRNA gene were sequenced	quantitative
Samra, et al. ⁷² , 2021 (South Korea)	Children (≈ 10 years)	Cross- sectional	49		Atopic sensitization was evaluated by skin prick testing and by specific IgE. Cross- sectional survey performed during childhood	Urine samples (bacterial extracellular vesicles); 16S rRNA gene were sequenced. Cross-sectional survey performed during childhood	qualitative
Schei, et al. ⁷³ , 2021 (Norway)	Children (6 years)	Cohort	278	6 years	Questionnaires (asthma) at 6 years of age	Stool samples collected at 4 timepoints between 0 and 2 years	quantitative

Seppo, et al. ⁷⁴ , 2021 (USA)	Children (3 years)	Cohort	104	3 years	Telephone follow-up for allergic symptoms by a paediatric allergist (asthma, respiratory symptoms, atopic diseases) by 3 years of age	Stool samples collected between 2 weeks and 6 months of age; V4 region of 16S rRNA gene were sequenced	qualitative
Turek, et al. ⁷⁵ , 2021 (Australia)	Adults (±56 years)	Cross- sectional	529		Questionnaire (asthma). Cross-sectional survey performed during adulthood	Posterior oropharyngeal samples; V4 region of 16S rRNA gene were sequenced. Cross-sectional survey performed during adulthood	qualitative
Bar et al. ⁷⁶ , 2022 (Poland)	Children (6– 17 years of age)	Cross- sectional	38 (19 asthmatic and 19 healthy group)		Asthma doctor-diagnosed	Exhaled breath condensates and oropharyngeal samples; V3-V4 regions of 16S rRNA gene were sequenced. Cross- sectional survey performed during childhood	quantitative
Lee-Sarwar et al. ⁷⁷ , 2022 (USA)	Children (6 years)	Cohort	657 mother– child pairs	6 years	Questionnaires (asthma) at 3 and 6 years of age; asthma as having early, transient or active asthma phenotypes.	Stool samples collected at ages 3-6 months, 1 and 3 years; V4 region of 16S rRNA gene were sequenced	quantitative
Lee-Sarwar et al. ⁷⁸ , 2022 (USA)	Children (6 years)	Cohort	657 mother– child pairs	6 years	Questionnaires, wheeze proportion between ages 3 and 5 years	Stool samples collected at 3 years of age; V4 region of 16S rRNA gene were sequenced	quantitative
Tsai et al. ⁷⁹ , 2022 (Taiwan)	Children (36 months)	Cross- sectional	87 (36 with allergic respiratory diseases and atopy, 21 with atopy alone, and 30 healthy controls)		Asthma doctor-diagnosed (asthma, wheezing symptoms, or use of asthma medication during the last 12 months). Allergic sensitization: total IgE level ≥100 kU/L	Nasopharyngeal swabs collected at 36 month; V3-V4 regions of 16S rRNA gene were sequenced. Cross-sectional survey performed during childhood	quali(quanti)tative
Zheng et al. ⁸⁰ , 2022 (China)	Children (5 to 14 years)	Cross- sectional	57 (20 healthy children, 27 allergic asthmatic children, and 10 non-allergic asthmatic children)		Asthma doctor-diagnosed (GINA)	Stool samples; V4 region of 16S rRNA gene were sequenced. Cross-sectional survey performed during childhood	qualitative
Mubanga et al. ⁸¹ , 2023 (Sweden)	Children (9- 14 years)	Cohort	355		national health registers and questionnaires (Allergic asthma was defined as a composite outcome based on an asthma diagnosis (questionnaire) and IgE). Groups: Non-allergic asthma, allergy only (IgE+) and allergic asthma	Stool samples	qualitative

Thorsen et al. ⁸² , 2023 (Denmark)	Children (7 years)	Cohort	285	7	Questionnaire (asthma), persistent wheeze/asthma by age 7	Nasopharyngeal swabs from 1-month neonates; V3-V4 regions of 16S rRNA gene were sequenced	quantitative
---	-----------------------	--------	-----	---	---	---	--------------

results reported as median (minimum-maximum) *results reported as mean (standard deviation)

Reference, study year (country)	Study population	Covariates	Main results	Summary of evidence on the association [*]
		Outer	layer biodiversity	
Ege, et al. ¹⁰³ , 2011 (Germany)	Children (6-13 years)	Living in a farm	Bacteria diversity score (number of detectable bands) PARSIFAL aOR _{asthma} (95 %CI)=0.65 (0.45; 0.94) aOR _{allergic} sensitization (95 %CI)=0.86 (0.65; 1.15) GABRIELA aOR _{asthma} (95 %CI)=0.87 (0.73; 1.03) aOR _{allergic} sensitization (95 %CI)=0.93 (0.79; 1.11) PCA 4 PARSIFAL aOR _{asthma} (95 %CI)=0.62 (0.42; 0.91) PCA 5 PARSIFAL aOR _{asthma} (95 %CI)=0.62 (0.42; 0.91)	↓↓ asthma ↓ allergic sensitization
Ege, et al. ¹⁰⁴ , 2012 (Germany)	Children (≈ 8 years)	farming, family history of atopy, parental education, and mutually for all associated bands	Band 248 OR_{asthma} (95% CI)=0.46 (0.24; 0.89) Band 394 OR_{asthma} (95% CI)=0.56 (0.32; 0.97) Band 506 OR_{asthma} (95% CI)=0.58 (0.38; 0.88) For a low cut-off: Band 394 OR_{asthma} (95% CI)=0.17 (0.04; 0.72) Band 506 OR_{asthma} (95% CI)=0.17 (0.04; 0.72) Band 506 OR_{asthma} (95% CI)=0.41 (0.20; 0.83) For a high cut-off: Band 300 OR_{asthma} (95% CI)=2.42 (1.18; 4.95) Band 318 OR_{asthma} (95% CI)=2.32 (1.07; 5.06) Band 427 OR_{asthma} (95% CI)=0.45 (0.23; 0.89)	↓↓ asthma ↑↑ asthma [band 300, 318 (high cut off)]

Table S2. Main results of studies included in the comprehensive review (n=82) and summary of evidence

			PC1env (forested and agricultural land):	
			$\beta_{\text{atopy}} = -0.52, p = 0.0059$	
Hanski, et al. ³⁴ , 2012 (Finland)	Children (17-18 years)		Flowering: $\beta_{atopy}=-0.10, p=0.0016$ Gammaproteobacteria on the skin	↓↓ atopy
			$\beta_{\text{atopy}} = -0.31, p = 0.015$	
Lynch, et al. ⁷ , 2014 (USA)	Children (3 years)	race/ethnicity, gender, mean perceived stress of the mother in the year after birth, and number of smokers in the home	Children with the highest exposure to specific bacteria during their first year were least likely to develop recurrent wheeze and allergic sensitization	↓ wheeze and allergic sensitization
Ciaccio, et al. ¹⁰⁵ , 2015 (USA)	Children (2.4-4.8 years)		No significant difference in genus-level richness was found between the asthma homes and control homes	no evidence of effect: asthma
Ruokolainen, et al. ³⁵ , 2015 (Finland and Estonian)	Children and young adults (0.5-20 years)	age and data set (study cohort)	Land-use gradient OR _{allergic} sensitization=1.00 (p=0.997) among children aged 0.5-1 OR _{allergic} sensitization=0.83 (p=0.698) among children aged 1.5-3 OR _{allergic} sensitization=0.33 (p=0.034) among children aged 6-12 OR _{allergic} sensitization=0.09 (p=0.003) among children/young adults aged 13-20 OR _{allergic} sensitization=0.42 (p=0.008) among children/young adults aged 0.5-20	↓↓ allergic sensitization
Valkonen, et al. ¹⁰⁶ , 2015 (Germany, Austria and Switzerland)	Children (6-12 years)	sex and age	There was also a protective trend (<i>p</i> =0.097) of high bacterial diversity (Shannon index) on atopy. Individual bacterial groups and diversity were not clearly associated with asthma. 7 and 2 bands: associated to a protective and adverse risk from developing allergic sensitization, respectively; 5 and 1 bands: associated to be a protective and adverse risk from developing asthma, respectively. exposed non-farm children: <i>Shannon index</i> Median (min; max) _{asthma} =2.56 (1.93; 2.95) Median (min; max) _{atopy} =2.62 (0.68; 3.01) Median (min; max) _{healthy children} =2.71 (2.30; 3.05) non-exposed non-farm children: <i>Shannon index</i> Median (min; max) _{asthma} =2.59 (2.36; 2.88)	 ↓ atopy no evidence of effect: asthma ‡ asthma and allergic sensitization (bands 1, 2, 5, 7) ↓↓ asthma and atopy (median)

			Median (min; max) _{atopy} =2.54 (2.01; 3.02) Median (min; max) _{healthy children} =2.68 (1.87; 3.04)	
Tischer, et al. ¹⁰⁷ , 2016 (Germany)	Children aged 6 and 10 years	sex, maternal education, and season of dust sampling	<i>bacterial diversity:</i> sensitization to aero-allergens at 6y 3^{rd} tertile: aOR (95%CI)=0.45 (0.18; 1.11) sensitization to aero-allergens at 10 years 3^{rd} tertile: aOR (95% CI)=0.45 (0.18; 1.11) wheezing at 10 years 3^{rd} tertile: aOR (95% CI)=1.00 (0.45; 2.06)	↓ allergic sensitization no evidence of effect: wheezing
		farming and for the	Mattress dust: <i>Richness</i> aOR _{asthma} (95% CI)=0.48 (0.22; 1.02) Shannon index aOR _{asthma} (95% CI)=0.41 (0.21; 0.83)	
Birzele, et al. ²⁰ , 2017 (Austria)	Children (6-12 years)	measurement in nasal swabs or mattress dust	Nasal samples: <i>Richness</i> aOR _{asthma} (95% CI)= 0.63 (0.38; 1.06) Shannon index aOR _{asthma} (95% CI)=0.66 (0.39; 1.12)	↓ asthma
Cavaleiro Rufo, et al. ¹⁰⁸ , 2017 (Portugal)	Children (8-10 years)	age and height	No significant association were observed between diversity score and asthma 3 rd quartile: OR _{allergic sensitization} (95% CI)=0.63 (0.40; 0.98) 4 th quartile: OR _{allergic sensitization} (95% CI)=0.60 (0.40; 0.92)	no evidence of effect: asthma
Campbell, et al. ⁸⁷ , 2017 (14 different countries)	26–54-year-old adults	age, sex, study center, smoking, family history of allergic disease	lived in an inner city: <i>microbial load score 2</i> ORallergic sensitization (95% CI)=0.77 (0.55; 1.09) OR _{current} asthma (95% CI)=0.80 (0.32; 2.00) OR allergic sensitization and asthma (95% CI)=1.16 (0.47; 2.88) <i>microbial load score 3</i> ORallergic sensitization (95% CI)=0.70 (0.49; 1.00) OR _{current} asthma (95% CI)=0.48 (0.17; 1.34) OR allergic sensitization and asthma (95% CI)=1.26 (0.50; 3.13) <i>microbial load score 4/5</i> ORallergic sensitization (95% CI)=0.61 (0.41; 0.90) OR _{current} asthma (95% CI)=0.31 (0.08; 1.11)	 ↓ asthma ↓↓ allergic sensitization (microbial load score 3 and 4/5) ↑ allergic sensitization and asthma

			OR allergic sensitization and asthma (95% CI)=1.57 (0.60; 4.10)	
			Bacterial richness	
			ORasthma severity (95% CI)=0.55 (0.30; 0.99) among all children	
			ORasthma severity (95% CI)=0.38 (0.16; 0.90) among atopic children	
Dannemiller, et al. ¹⁰⁹ , 2016 (USA)	Children (5-10 years)		low bacterial richness: OR _{asthma severity} (95% CI)=0.77 (0.34; 1.75) among atopic children	↓ asthma severity ↓↓ asthma severity (all children) (bacterial
			Ractarial concentration	richness)
			OP $(0.5% CI) = 1.04 (0.60; 1.82)$ among all children	
			$OR_{asthma seventy} (95\% CI) = 1.04 (0.00, 1.82) among at onic children$	
			ORasthma severity (95% CI)=0.94 (0.42: 2.11) among non-atopic children	
			No significant association were observed between microbial quantity or	no evidence of effect:
			diversity scores and asthma or respiratory symptoms up to the age of 6 years and current asthma and sensitization to inhalant allergen at 6 years of age	asthma and allergic sensitization
Karvonen, et al. ¹¹⁰ , 2017 (Finland)	Children (1 and 6 years)	study cohort, farming, maternal history of allergic diseases, gender, number of older siblings, smoking during pregnancy. Models of sensitization to inhalant allergens are additionally adjusted for floor type of dust sampling	Quantity score 2nd quintile: aORasthma ever (95% CI)=1.73 (0.67; 4.45) 3rd quintile: aORasthma ever (95% CI)=2.24 (0.87; 5.75) 4th quintile: aORasthma ever (95% CI)=1.78 (0.67; 4.69) 5th quintile: aORasthma ever (95% CI)=0.34 (0.09; 1.36) 2nd quintile: aORcurrent asthma (95% CI)=0.34 (0.09; 1.36) 2nd quintile: aORcurrent asthma (95% CI)=2.01 (0.59; 6.79) 4th quintile: aORcurrent asthma (95% CI)=2.01 (0.59; 6.79) 4th quintile: aORcurrent asthma (95% CI)=1.86 (0.55; 6.32) 5th quintile: aORcurrent asthma (95% CI)=0.39 (0.07; 2.11) 2nd quintile: aORwheezing (95% CI)=0.65 (0.35; 1.22) 3rd quintile: aORwheezing (95% CI)=0.89 (0.49; 1.62) 4th quintile: aORwheezing (95% CI)=0.73 (0.43; 1.24) 2nd quintile: aORallergic sensitization (95% CI)=2.19 (0.92; 5.23) 3rd quintile: aORallergic sensitization (95% CI)=1.32 (0.51; 3.40) 5th quintile: aORallergic sensitization (95% CI)=1.50 (0.61; 3.70) Diversity score	<pre>\$ allergic sensitization (diversity score) ↓↓ current asthma, wheezing (diversity score)</pre>

			5 score: aOR _{asthma ever} (95% CI)=0.69 (0.27: 1.78)	
			6 score: aOR asthma ever (95% CI)=1.03 (0.43; 2.49)	
			7-8 score: $aOR_{asthma ever}$ (95% CI)=0.64 (0.15; 2.76)	
			5 score: aOR _{current asthma} (95% CI)=0.30 (0.10; 0.89)	
			6 score: aOR _{current asthma} (95% CI)=0.35 (0.12; 0.94)	
			7-8 score: aOR _{current asthma} (95% CI)=0.40 (0.07; 2.29)	
			5 score: aOR _{wheezing} (95% CI)=0.68 (0.38; 1.20)	
			6 score: aOR _{wheezing} (95% CI)=0.54 (0.30; 0.97)	
			7-8 score: aOR _{wheezing} (95% CI)=0.14 (0.06; 0.32)	
			5 score: aORallergic sensitization (95% CI)=2.10 (0.84; 5.27)	
			6 score: aORallergic sensitization (95% CI)=2.16 (0.86; 5.45)	
			7-8 score: aOR _{allergic sensitization} (95% CI)=0.42 (0.12; 1.50)	
Donovan, et al. ³³ , 2018 (New Zealand)	Children (18 years)	roads, air pollution, ethnicity, gender, birth outcomes, parents' occupation, parents' education, parents' smoking status, antibiotic use, number of siblings, mesh block size and birth order	Vegetation diversity (lifetime) aOR _{asthma} (95% CI)=0.933 (0.885; 0.985)	↓↓ asthma
			Classroom microbial diversity	
	Children (average 8.1	age, gender, ethnicity, and	aOR _{asthma} symptoms (95% CI)=1.07 (1.00; 1.14)	
Lai, et al. 111, 2018 (USA)	vears old)	season		↑↑ asthma
	,,		Home microbial diversity	
			$aOR_{asthma symptoms} (95\% C1) = 1.00 (1.00; 1.00)$	
L = = = = 1 112 2018 (Sim = = = = = =)	Ch(1)		no significant difference in Snannon or Simpson's diversity indices of	no evidence of effect:
Loo, et al, 2018 (Singapore)	Children (5-60 monuls)		allergic subjects	allergic sensitization
		gender race maternal	Bacterial α_{-} and β_{-} diversity did not differ significantly between the	
		asthma, and maternal	homes of children that did or did not develop asthma, nor did these	no evidence of effect:
O'Connor, et al. ³¹ , 2018 (USA)	Children (3 and 7 years)	Perceived Stress Scale	diversity measures differ between the homes of the children that did or	asthma and allergic
		score	did not develop at opy at age 7	sensitization
		. 1 11	Band L3B49_8 (2 nd tertile):	
Pekkanen, et al. 113, 2018 (7	$A dulta (20, 55 \dots)$	age, sex, parental allergy,	aOR _{asthma} (95% CI)=2.499 (1.455; 4.291)	↑↑ actions
European countries)	Adults (29–55 years)	current smoking and		
		nousenoia density	Band L3B53_7 (2 nd tertile):	

			aOR _{asthma} (95% CI)=2.206 (1.214; 4.007)	
			<i>Band L3B57_6 (2nd tertile):</i> aOR _{asthma} (95% CI)=2.399 (1.378; 4.178) 3 rd tertile: aOR _{asthma} (95% CI)=2.319 (1.299; 4.140)	
			Bana L3B/1_9 (2 ^{ma} tertile): aOR _{asthma} (95% CI)=2.197 (1.214; 3.974)	
Valkonen, et al. ¹¹⁴ , 2018 (7 European countries)	Adults (29–55 years)	parental allergy, smoking status, household density, gender, age, and center	No significant associations were observed between microbial species and asthma and allergic sensitization	no evidence of effect: asthma and allergic sensitization
Karvonen ¹⁹ , 2019 (Finland)	Children (10.5 years)	follow-up time, study cohort, living on a farm, and well-known risk factors for asthma (maternal history of allergic diseases, sex, number of older siblings, and smoking during pregnancy)	Bacterial richness: aORever asthma (95% CI)=0.61 (0.39; 0.95) aORcurrent asthma (95% CI)=0.55 (0.37; 1.12) Shannon diversity index: aORever asthma (95% CI)=0.77 (0.55; 1.07) aORcurrent asthma (95% CI)=0.76 (0.45; 1.30)	↑↑ ever asthma (bacterial richness)
Kirjavainen, et al. ¹³ , 2019 (Finland)	Children (6 years)	living on a farm, cohort, gender, the maternal history of allergic diseases, number of older siblings and smoking during pregnancy. For FaRMI - paternal history of atopic diseases and asthma, maternal and paternal education levels, birth weight, mode of delivery, indoor exposure to dog and/or cat at the age of 2 months, distance to farm, breastfeeding, consumption of farm milk, day-care attendance, regular exposure to passive tobacco smoke at the age of 1 year, house type and	farm-like relative abundance of bacteria/archaea: aORever asthma (95% CI)=0.40 (0.19; 0.82) aORever asthma (95% CI)=0.47 (0.27; 0.81) aORactive asthma (95% CI)=0.48 (0.23; 0.98)	↑↑ asthma

		age, season, type of vacuumed floor and time from last vacuuming with reference to dust sampling		
Cavaleiro Rufo, et al. ¹¹⁵ , 2020 (Portugal)	Children (8-10 years)	age (in years), sex, school, classroom, and maternal education, allergic sensitization status and diagnosis of asthma	School SRI aOR _{asthma –} functional criteria (95% CI)= 0.998 (0.992; 1.005) aOR _{asthma –} diagnosed by physician (95% CI)=1.004 (0.998; 1.011) aOR _{asthma –} clinical criteria (95% CI)=1.000 (0.992; 1.007)	‡ asthma
Fu, et al. ¹¹⁶ , 2020 (Malaysia)	Children (14-16 years)	gender, race, smoking, and parental asthma/allergy	Number of OTUs OR _{asthma} severity (95% CI)=1.00 (0.99; 1.01)	↑ asthma
Gangneux, et al. ¹¹⁷ , 2020 (France)	Children and adults		Shannon index asthma group (mean±SD): 3.94 ± 0.22 control group: 3.68 ± 0.67 , p=0.5393).	↑ asthma
Adams, et al. ¹¹⁸ , 2021 (Finland and Netherlands)	Children (\approx 9 years)	gender, age, and moisture damage in the home, educational level	Bacterial richness and diversity Middle category: aOR _{symptoms score} (95% CI)=1.43 (1.36; 1.50) Highest category aOR _{symptoms score} (95% CI)= 1.26 (1.09; 1.46)	↑↑ asthma
Cavaleiro Rufo, et al. ¹¹⁹ , 2021 (Portugal)	Children (4 and 7 years	distance to the nearest major road, motorway or highway, sex, household crowding, maternal education, neighborhood socioeconomic deprivation and maternal history of	ORasthma at the age of 7 (95% CI)=3.58 (1.09; 11.79) ORallergic sensitization at the age of 4 (95% CI)=2.00 (1.04; 3.86) ORallergic sensitization at the age of 7 (95% CI)=2.35 (1.20; 4.63) Highest tertile of SRI: ORasthma at the age of 7 (95% CI)=2.28 (0.67; 7.64) OR whezzing at the age of 7 (95% CI)=2.51 (1.08; 5.88)	↑↑ asthma, allergic sensitization and wheezing
Cox, et al. ¹²⁰ , 2021 (USA)	Children (7 and 12 years)	race (Black or non-Black), pets, neighborhood socioeconomic status, cockroaches, dust mites, and rodents	Bacteria associated with the absence of the health outcomes OR _{asthma at 7} years (95% CI)=0.76 (0.64; 0.91) OR _{asthma at 12} years (95% CI)=0.91 (0.81; 1.01) OR _{wheeze at 7} years (95% CI)=0.84 (0.73; 0.96) OR _{wheeze at 12} years (95% CI)=0.84 (0.69; 1.03) OR _{allergic sensitization at 7 years (95% CI)=0.93 (0.87; 1.00) ORallergic sensitization at 12 years (95% CI)=0.91 (0.83; 1.00) Bacteria associated with the presence of the health outcomes OR_{asthma at 7} years (95% CI)=1.06 (0.97; 1.15) OR_{asthma at 12} years (95% CI)=1.31 (1.15; 1.49) OR_{wheeze at 12} years (95% CI)=1.17 (1.05; 1.31)}	 ↓↓ asthma and wheezing at 7 years ↓ allergic sensitization (bacteria associated with the absence of the health outcomes) ↑↑ asthma at 12 years, wheezing and allergic sensitization (bacteria associated with the

			ORallergic sensitization at 7 years (95% CI)=1.13 (1.05; 1.22) ORallergic sensitization at 12 years (95% CI)=1.18 (1.04; 1.34)	presence of the health outcomes)
Donovan, et al. ¹²¹ , 2021 (USA)	Adults	race, socioeconomic status, air pollution and proximity to roads	<i>Taxonomic plant diversity</i> β _{asthma} (95% CI)= -0.0527 (-0.00637; -0.0417)	↓↓ asthma
Fu, et al. ¹²² , 2021 (China)	Young adults (IQR 20– 23 years)	gender, smoking and parental asthma	Bacterial richness settled air dust: aOR _{asthma} symptoms (95% CI)=0.97 (0.86; 1.1) floor dust: aOR _{asthma} symptoms (95% CI)=0.85 (0.63; 1.14)	↓ asthma
Fu, et al. ¹²³ , 2021 (China)	Children (15-18 years)	Current smoking, gender and parental asthma and allergies	Number of OTUs $\beta_{wheezing}$ (95% CI)= -0.2525 (-0.8228; 0.3178) $\beta_{breathlessness}$ (95% CI)= 0.0754 (-0.1659; 0.3167) $\beta_{rhinitis}$ (95% CI)= -1.48 (-4.302; 1.342)	↓ wheezing
Hyytiäinen, et al. ¹²⁴ , 2021 (Finland and Germany)	Children (10 years)	gender, parental atopy, number of older siblings and season of dust sampling in both cohorts; maternal education, living on a farm and cohort, and the number of different pet species indoors in LUKAS; and parental education, study center and age of the mother during delivery in LISA.	Bacterial richnessLISA cohortMiddle tertile: aORallergic sensitization (95% CI)=0.99 (0.62; 1.58)Highest tertile: aORallergic sensitization (95% CI)=0.71 (0.44; 1.15)LUKAS cohortMiddle tertile: aORallergic sensitization (95% CI)= 0.84 (0.43; 1.65)Highest tertile: aORallergic sensitization (95% CI)=1.60 (0.66; 3.87)Shannon indexLISA cohortMiddle tertile: aORallergic sensitization (95% CI)=1.60 (0.66; 3.87)Shannon indexLISA cohortMiddle tertile: aORallergic sensitization (95% CI)=0.76 (0.48; 1.20)LUKAS cohortMiddle tertile: aORallergic sensitization (95% CI)=1.98 (1.04; 3.78)Rural children:Bacterial richnessMiddle tertile: aORallergic sensitization (95% CI)=1.34 (0.57; 3.15)Highest tertile: aORallergic sensitization (95% CI)=3.63 (1.05; 12.56)Shannon indexMiddle tertile: aORallergic sensitization (95% CI)=3.86 (1.06; 14.11)Suburban children:Bacterial richness	<pre>\$ allergic sensitization ^↑ allergic sensitization (rural children, bacterial richness, and Shannon index) ↓↓ allergic sensitization (suburban children, bacterial richness)</pre>

Bisgaard, et al. ⁵⁷ , 2007 (Denmark)	Children (5 years)	sex, gestational age at birth, maternal smoking during the third trimester, maternal use of antibiotics	The prevalence of asthma was 33% in colonized children and 10% in those not colonized (OR (95% CI)=4.57 (2.18; 9.57). No significant association was observed between colonization and allergic sensitization at 4 years (OR (95% CI)=1.28 (0.65; 2.54).	↑↑ asthma↑ allergic sensitization at4 years (colonization)
		Inner	layer biodiversity	
Winnicki, et al. ¹²⁶ , 2022 (Denmark)	Individuals born 1995– 2015	Family history of asthma, income, education, age and sex	Medium levels of the bioscore: aHR <i>Medication and hospital diagnosis asthma</i> (95% CI): 1.01 (0.95; 1.08) aHR <i>Hospital diagnosis asthma</i> (95% CI): 0.97 (0.87; 1.09) High levels of the bioscore: aHR <i>Medication and hospital diagnosis asthma</i> (95% CI): 1.13 (0.99; 1.28) aHR <i>Hospital diagnosis asthma</i> (95% CI): 0.72 (0.55; 0.94)	↓ asthma ↓↓ asthma (hospital diagnosis, high levels of the bioscore)
Lehtimäki, et al. ¹²⁵ , 2021 (Denmark)	Children (6 years)	pet ownership, day care attendance during the first year of life, length of the breast-feeding period, exposure to passive smoking, family income, parental education, number of older siblings, home type, mode of delivery, parental diagnosis of asthma, eczema and rhinitis, and use of antibiotics during the first year of life	<i>Urbanized airway bacterial profile</i> at 1 week: OR _{asthma} (95% CI)=1.25 (1.01; 1.55) at 1 month: OR _{asthma} (95% CI)=1.22 (1.00; 1.48) <i>urbanized gut bacterial profile</i> at 1 month: OR _{asthma} (95% CI)=1.29 (1.05; 1.59) at 1 year: OR _{asthma} (95% CI)=1.24 (1.02; 1.53) OR _{any allergic sensitization} (95% CI)=1.28 (1.03; 1.59) OR _{aeroallergen sensitization} (95% CI)=1.24 (0.98; 1.57)	↑↑ asthma ↑ aeroallergen sensitization (urbanized gut bacterial profile)
			Middle tertile: aORallergic sensitization (95% CI)=0.09 (0.01; 0.70) Highest tertile: aORallergic sensitization (95% CI)=0.74 (0.07; 7.92) Shannon index Middle tertile: aORallergic sensitization (95% CI)=0.59 (0.12; 2.90) Highest tertile: aORallergic sensitization (95% CI)=2.09 (0.24; 18.44) Farm children: Bacterial richness Middle tertile: aORallergic sensitization (95% CI)=2.26 (0.14; 35.54) Highest tertile: aORallergic sensitization (95% CI)=2.43 (0.11; 18.70) Shannon index Middle tertile: aORallergic sensitization (95% CI)=5.67 (0.4; 79.77) Highest tertile: aORallergic sensitization (95% CI)=1.43 (0.12; 17.5)	

		during the third trimester, breast-feeding, lung function, bronchial responsiveness, and the presence or absence of older children at home		
Hilty, et al. ¹²⁷ , 2010 (Ireland)	Children (1-17 years) and adults (37.6±18.2 – 52.9±11.1 years)		Species Number of sequences of different phyla and genera were different among the groups (subjects with asthma, COPD and healthy) and considering the sample	
Bisgaard, et al. ²¹ , 2011 (Denmark)	Children (6 years)	cesarean section, mother's use of antibiotics in third trimester; solely breast feeding of the baby, or having a dog or cat at home at birth	Band richness At 1 month $aOR_{current asthma}$ (95% CI)=0.98 (0.83, 1.16) $a\beta_{specific IgE}$ (95% CI)= -0.127 (-0.227; -0.027) $a\beta_{skin prick tests}$ (95% CI)= -0.052 (-0.1560; 0.053) At 12 months $aOR_{current asthma}$ (95% CI)=0.97 (0.84; 1.12) $a\beta_{specific IgE}$ (95% CI)= -0.092 (-0.184; 0.000) $a\beta_{skin prick tests}$ (95% CI)= -0.101 (-0.211; -0.010)	↓ asthma ↓↓ allergic sensitization (specific IgE, skin prick tests) (band richness at 12 months of age and at 1 month (IgE))
Cardenas, et al. ¹²⁸ , 2012 (Ecuador)	Children (±10.2 months)		No differences were found between individuals with wheeze and healthy individuals in species richness, taxa abundances, or evenness as well as in microbial community cluster patterns (β diversity).	no evidence of effect: wheezing
Marri, et al. 55, 2013 (USA)	Adults (≈ 26 years)		Samples from asthmatic patients were associated with significantly greater bacterial diversity compared with samples from non-asthmatic subjects	↑↑ asthma
Abrahamsson, et al. ¹⁶ , 2014 (Sweden)	Children (7 years)		Shannon diversity index At 1 week Median _{asthmatic} (IQR)=1.34 (0.95; 1.64)* Median _{non-asthmatic} (IQR)=1.60 (1.42; 1.75)* Median _{atopic} (IQR)=1.71 (1.38; 1.75) Median _{non-atopic} (IQR)=1.55 (1.42; 1.79) Median _{healthy} (IQR)=1.60 (1.42; 1.80) At 1 month Median _{asthmatic} (IQR)=1.26 (0.92; 1.46)** Median _{non-asthmatic} (IQR)=1.58 (1.48; 2.10)** Median _{non-asthmatic} (IQR)=1.62 (1.42; 1.88) Median _{non-atopic} (IQR)=2.62 (2.22; 3.24) Median _{healthy} (IQR)=1.60 (1.42; 1.75)	↓ (comparing median levels among asthmatic and non-asthmatic and among atopic and non- atopic individuals) ↓↓ asthma at 7 years of age (Shannon diversity index at 1 week and 1 month)

			At 12 months Median _{asthmatic} (IQR)=2.87 (2.26; 3.24) Median _{non-asthmatic} (IQR)=2.62 (2.25; 3.24) Median _{atopic} (IQR)=2.70 (2.32; 3.21) Median _{non-atopic} (IQR)=2.62 (2.22; 3.24) Median _{healthy} (IQR)=2.82 (2.32; 3.25)	
			Number of bacterial OTUs At 1 week Median _{asthmatic} (IQR)=15 (10; 22) Median _{non-asthmatic} (IQR)=16 (13; 18)	
			At 1 month Median _{asthmatic} (IQR)=14 (12; 17) Median _{non-asthmatic} (IQR)=18 (14-22)	
			At 12 months Median _{asthmatic} (IQR)=51 (40; 73) Median _{non-asthmatic} (IQR)=47 (33; 59)	
Park, et al. ¹²⁹ , 2014 (Korea)	Adults (53.4±17.1 to 68.9±7.2)	-	 p=0.05, * p=0.007 Shannon index Mean_{asthma} (SD)=2.4 Mean_{healthy} individuals (SD)=3.5 (0.7) Number of OTUs Mean_{asthma} (SD)=128 (73) Mean_{healthy} individuals (SD)=207 (99) 	↓↓ (mean _{asthma} < mean _{healthy} individuals)
Arrieta, et al. ⁷⁰ , 2015 (Canada)	Children (3 years)		Gut community composition and diversity did not differ substantially among clinical phenotypes	no evidence of effect: atopy and wheezing
Denner, et al. ¹³⁰ , 2016 (USA)	Adults (44.2±1.8 and 34.3±3.0 years)		Specific species Differential feature selection analysis revealed significant differences in microbial diversity between asthmatic and control brush and lavage samples	‡ asthma
Hevia, et al. ¹³¹ , 2016 (Spain)	Adults (\approx 39 years)		Specific species	
Hua, et al. ¹³² , 2016 (USA)	Adults (±45.5 years)	sex, age, BMI, season, time since last antibiotic use, probiotic and vitamin use	Shannon index Middle tertile aOR _{asthma} (95% CI)=1.03 (0.642; 1.64) Lowest tertile	↑↑ asthma (richness, middle tertile)

			<i>Richness</i> Middle tertile aOR _{asthma} (95% CI)=1.68 (1.04; 2.71) Lowest tertile aOR _{asthma} (95% CI)=1.52 (0.94; 2.47)	
			<i>Chao1</i> Middle tertile aOR _{asthma} (95% CI)=1.58 (0.99; 2.52) Lowest tertile aOR _{asthma} (95% CI)=1.31 (0.82; 2.11)	
Stiemsma, et al. ⁷¹ , 2016 (Canada)	Children (4 years)	antibiotic use, delivery mode, breastfeeding, sex, parental asthma, atopic dermatitis	Gut microbial community composition at 3 months or 1 year of age did not differ between asthmatics and controls	no evidence of effect: asthma
Zhang, et al. ¹³³ , 2016 (UK)	Adults (35.4±10.3 – 47.9±10.9 years)		There were no significant differences in alpha diversity between healthy, non-severe and severe asthmatics	no evidence of effect: asthma
Chiu, et al. ¹³⁴ , 2017 (Taiwan)	Children (3-5 years)	age, sex, maternal atopy, passive smoking, older siblings, and household income	Relatively lower Chao1 and Shannon indices were found in children with asthma than in the healthy controls, but these differences were not significant. However, the Chao1 and Shannon indices in the mite- sensitized children with asthma were significantly lower than those in the healthy children without mite sensitization.	no evidence of effect: asthma ↓↓ allergic sensitization
Depner, et al. ⁵⁹ , 2017 (Germany, Austria and Switzerland)	Children (12 years)	Farming	There was no association of bacterial load with asthma status Bacterial richness aOR _{asthma in nonfarm children} (95% CI)=0.76 (0.25; 2.31)	no evidence of effect: asthma ↓ asthma (nonfarm children, bacterial richness)
Li, et al. ¹³⁵ , 2017 (China)	Adults (39.6±8.6 to 52.0±9.3 years)		Comparison between the three groups (asthmatics, severe and non- severe asthma, healthy individuals) showed that there was no significant difference in species richness and bacterial diversity as assessed by the Chao, Ace, Shannon and Simpson indices.	no evidence of effect: asthma

Number of OTUs ↓ (comparing mean Meannon-asthmatic (SD)=142.67 (30.89) between non-asthmatic Meannon-severe asthma (SD)=147.13 (49.85) and (non-)severe asthma) Mean_{severe asthma} (SD)=135.36 (57.10) Ruokolainen, et al. 50, 2017 Children (14-20 years) Specific species -----(Finnish and Russian Karelia)

aORasthma (95% CI)=1.35 (0.85; 2.13)

			The profile of <i>Acinetobacter lwoffii</i> in skin samples from sensitized Finns differed from all other samples (R ² =0.0014, p =0.002). No significant differences were found between sensitized and healthy subjects for <i>Acinetobacter johnsonii</i> . For <i>Micrococcus</i> sp. profiles tended to differ between healthy and sensitized among the Russian subjects (R ² =0.002, p =0.043)	
Arrieta, et al. ¹³⁶ , 2018 (Ecuador)	Children (5 years)	antibiotic use during pregnancy or the first year of life, duration of antibiotic use during pregnancy or the first year of life, type of delivery, household potable water, number of respiratory tract infections during the first year of life, eosinophilia at 7 months, and number of diarrheal episodes during the first year of life	Atopic wheeze did not explain any significant changes in α - or β -bacterial diversity	no evidence of effect: allergic sensitization
Durack, et al. ¹³⁷ , 2018 (USA)	Adults (28-39 years)		Faith's Phylogenetic diversity trended to be higher in allergic asthmatic adults compared to non-allergic non-asthmatics in bronchial brushing samples. No such trend was observed in comparison of the other sample types from the same individuals. No significant difference in the relative abundance of specific genera were observed in any of the four samples between subjects with atopic asthma and healthy subjects.	no evidence of effect: asthma
Fazlollahi, et al. ⁵¹ , 2018 (USA)	Adults (≈ 32 years)	age, sex, allergic rhinitis, last upper respiratory infection, recent antibiotic use, antihistamine use, nasal steroid use, inhaled steroid use, systemic steroid use	There was a positive trend between nasal bacterial alpha diversity and asthma activity. However, these differences in phylogenic diversity were not statistically significant. Healthy controls, subjects with non-exacerbated asthma, and subjects with exacerbated asthma demonstrated distinct nasal microbiome compositions.	no evidence of effect: asthma
Kim, et al. ¹³⁸ , 2018 (South Korea)	Children (6-10 years)		The number of observed OTUs and the Shannon diversity index in control group were lower than those in the asthma and remission groups, but the differences were not statistically significant	no evidence of effect: asthma
Okba, et al. ¹³⁹ , 2018 (Egypt)	Adults (18-45 years)	sex, age, body mass index, time since last antibiotic use, probiotic and vitamin use	Specific species Atopic asthma is significantly associated with gut microbiota <i>Lactobacilli</i> and <i>E. coli</i>	

Stokholm, et al. ⁶⁷ , 2018 (Denmark)	Children (5 years)	older siblings, duration of exclusive breastfeeding, hospitalization after birth, antibiotic use, and delivery mode	There were no significant associations between α -diversity (Shannon diversity and Chao1 indices) at any time point and asthma risk. Microbial populations were significantly different at 1 year in children who had asthma at age 5 compared to non-asthmatics ($R^2 = 0.6\%$, $p=0.003$).	no evidence of effect: asthma
Wang, et al. 140, 2018 (UK)	Adults (36-80 years)		The α -diversities at the three levels (genes, MGSs and KEGG) show difference between asthma and control groups.	‡ asthma
Bannier, et al. ¹⁴¹ , 2019 (Netherlands)	Children (6 years)	sex, breastfeeding, birth season, atopy parents, siblings, parental smoking status, day care attendance	At preschool age, microbial richness and Shannon index were not different between wheezers and healthy controls.	no evidence of effect: wheezing
Espuela-Ortiz, et al. ⁵³ , 2019 (USA)	Children and young adults (6-21 years)	age, sex, or genetic ancestry between cases and controls	Shannon index Mean _{asthma} (SD)=2.12 (0.23) Mean _{healthy controls} (SD)=2.01 (0.24) Pielou index Mean _{asthma} (SD)= 0.81 (0.04) Mean _{healthy controls} (SD)=0.79 (0.05)	$\uparrow\uparrow (Mean_{asthma} > Mean_{healthy controls})$
Lee, et al. ¹⁴² , 2019 (South Korea)	Adults (18-45 years; ≥ 65 years)		Young adults: Bacterial diversity was not significantly different between asthmatics and non-asthmatics Elderly: Bacterial diversity was not significantly different between asthmatics and non-asthmatics	no evidence of effect: asthma
Pang, et al. ¹⁴³ , 2019 (China)	Adults (37-41 years)		Eosinophilic asthma and non-eosinophilic asthma showed a significant difference on Chao1, observed species and Shannon indexes among the three groups. Compared with healthy individuals, the asthmatics showed a significant decreased diversity (observed species index), richness (Chao1 and Shannon indexes) and evenness (Pielou evenness index. As for the asthmatics, non-eosinophilic asthma showed a significant decreased diversity, richness and evenness compared with eosinophilic asthma.	↑↑ asthma
Powell, et al. ⁴⁴ , 2019 (UK)	Children (24 months)	ethnicity, family history of atopy (fixed), presence of fever and the use of antibiotics in the 4 weeks prior to visit (time-varying)	Considering Bray–Curtis dissimilarities, no differences in microbiota composition were found between wheezers and non-wheezers.	no evidence of effect: wheezing
Samra, et al. ¹⁴⁴ , 2019 (South Korea)	Children (5-12 years)		Dysbiosis among children with atopic asthma compared to the controls	↑ asthma

				Shannon index (at age 1 month) Median _{asthma} (IQR)=1.56 (1.11; 1.90)	
				Richness at 2000 reads Median _{asthma} (IQR)=30 (25-36)	
				Richness at 10000 reads Median _{asthma} (IQR)=49 (40-57)	
	Thorsen, et al. ¹⁵ , 2019 (Denmark)	Children (6 years)	paternal asthma, older siblings, and season of birth	β-diversity Bray-Curtis=2.21, p=0.019 UniFrac=2.27, p=0.046	↑↑ asthma
			Bacterial asthma score (abundance) aHRasthma development by 6 years (95% CI)=1.36 (1.13; 1.63) aHRtransient early asthma (95% CI)=1.33 (1.04; 1.72) aHRlate-onset phenotypes (95% CI)=1.92 (1.23; 3.11) aHRever asthma (95% CI)=1.44 (1.17; 1.79) aHRcurrent asthma at 6 years (95% CI)=1.61 (1.15; 2.30) aHRasthma and allergic sensitization (95% CI)=1.67 (1.03; 2.69)		
	Al Bataineh, et al. ¹⁴⁵ , 2020 (United Arab Emirates)	Children (7 years) and adults (52 years)		Specific species A significant difference of bacterial composition (Bacteroidetes, Firmicutes, Fusobacteria and Proteobacteria phyla) between asthmatic and non-asthmatic controls was found among asthmatic groups compared to healthy groups	
	Chiu, et al. ¹⁴⁶ , 2020 (Taiwan)	Children (4-5 years)		In the airway microbiota, Chao1 and Shannon indices were significantly reduced in children with mite sensitization and were significantly lower in children with mite-sensitized rhinitis but not asthma than those in the healthy children without mite sensitization. In the stool microbiota, no difference was noted in the bacterial richness and diversity regarding the mite sensitization and its relevance to rhinitis and asthma.	↓↓ allergic sensitization (airway microbiota) no evidence of effect: asthma (airway and stool microbiota) and allergic sensitization (stool microbiota)
	Patrick, et al. ¹⁴⁷ , 2020 (Canada)	Children (5 years)	study centre, sex, presence of older siblings, mode of delivery, birthweight, season of birth, breastfeeding, ethnicity, tobacco smoke exposure, parental atopy, and	<i>Chao1 index</i> aOR _{asthma} (95% CI)=0.68 (0.46; 0.99)	↓↓ asthma

		exposure to environmental nitrogen dioxide		
Ruokolainen, et al. ⁹⁴ , 2020 (Finland and Estonian)	Children (18 months of age)		In the skin samples from Estonia, diversity tended to be higher in sensitized children as compared to healthy children (p =0.028). Significant differences between healthy and sensitized children were observed both in the nasal and stool samples, but only among Finnish children (MRM on Bray-Curtis: nasal: R ₂ =0.02; stool R ² =0.01)	$\uparrow\uparrow$ allergic sensitization
Toivonen, et al. ¹⁷ , 2020 (Finland)	Children (7 years)	sex, household siblings, parental asthma, and child's eczema at age 13 months	$\label{eq:shannon index} Shannon index \\ At 2 months \\ Median_{asthma} (IQR)=1.11 (0.71; 1.38) \\ Median_{non-asthma} (IQR)=0.92 (0.50; 1.40) \\ At 13 months \\ Median_{asthma} (IQR)=1.29 (0.47; 2.26) \\ Median_{non-asthma} (IQR)=0.87 (0.45; 1.70) \\ At 24 months \\ Median_{asthma} (IQR)=0.53 (0.29; 1.03) \\ Median_{non-asthma} (IQR)=0.73 (0.32; 1.31) \\ \end{tabular}$	\$\$ asthma (comparing mean value of Shannon diversity index at different moments)
Ham, et al. ¹⁴⁸ , 2021 (South Korea)	Adults (49-58.44 years)		The asthma patients did not differ from the heathy individuals in terms of the α and β diversity of the lung and gut microbiomes. Similarly, the 2 groups did not differ in terms of the relative abundance of microbiome genera or species in the sputum. Stool samples: the healthy individuals and asthma patients did not differ significantly in terms of α diversity, composition, or relative abundance of genera or species.	no evidence of effect: asthma
Niemeier-Walsh, et al. ¹⁴ , 2021 (USA)	Children (12 years)	gender, asthma status, and mother's education as a measure of socioeconomic status	Sputum: Shannon index Meanasthmatics (95% CI)=3.7 (3.6; 3.8) Meannon-asthmatics (95% CI)=3.6 (3.4; 3.7) Observed ASVs (amplicon sequence variants) Meanasthmatics (95% CI)=179 (154; 204) Meannon-asthmatics (95% CI)=166 (147; 185) Phylogenetic diversity Meanasthmatics (95% CI)=8.6 (7.6; 9.6) Meannon-asthmatics (95% CI)=8.4 (7.8; 9.0)	$\uparrow\uparrow$ (Mean _{asthma} > Mean _{non-} asthmatics)

Samra, et al. ¹⁴⁹ , 2021 (South Korea)	Children (≈ 10 years)		Bacterial composition, Shannon diversity index and Faith phylogenetic diversity were higher in the allergic subjects compared to the healthy subjects	↓ allergic sensitization
Schei, et al. ¹⁸ , 2021 (Norway)	Children (6 years)		Bacterial abundance (at 2 years of age) ORever asthma at 6 years (95% CI)=1.21 (0.53; 2.78)	↑ asthma
Seppo, et al. ⁵² , 2021 (USA)	Children (3 years)	maternal atopy, delivery mode, cat and dog exposure, infant gender, maternal and infant antibiotics	α diversity in gut microbiome was not significantly enriched in atopic compared to non-atopic infants.	no evidence of effect: allergic sensitization
Turek, et al. ¹⁵⁰ , 2021 (Australia)	Adults (±56 years)		84 OTUs were in relatively low abundance among asthmatic subjects. Results shows differences in α diversity between asthmatics and unaffected non-smoking subjects.	↓ asthma
Bar et al. ¹⁵¹ , 2022 (Poland)	Children (6–17 years of age)		EBC samples: Asthmatic children had a higher abundance of bacterial species (Shannon diversity index, mean 3.029 ± 0.462 vs. 2.642 ± 0.424 , p=0.026)	$ \uparrow \uparrow (Mean_{asthma} > Mean_{non-} \\ asthmatics) $
Lee-Sarwar et al. ¹⁵² , 2022 (USA)	Children (6 years)	sex, race/ethnicity, VDAART study site, and analyses of stool samples collected at age 3-6 months were additionally adjusted for exact age at stool sample collection	Age at stool sample: 3-6 months Shannon Index Transient asthma (vs no asthma): β (95% CI)=0.001 (-0.17; 0.17) Active asthma (vs no active asthma); β (95% CI)=-0.06 (-0.20; 0.08) Early asthma (vs no active asthma); β (95% CI)=-0.001 (-0.12; 0.12) Faith's Phylogenetic Diversity Transient asthma (vs no asthma): β (95% CI)=0.07 (-0.19; 0.32) Active asthma (vs no active asthma); β (95% CI)=-0.14 (-0.35; 0.06) Early asthma (vs no early asthma); β (95% CI)=-0.02 (-0.19; 0.15) 1 year Shannon Index Transient asthma (vs no asthma): β (95% CI)=-0.02 (-0.14; 0.10) Active asthma (vs no active asthma); β (95% CI)=-0.01 (-0.11; 0.10) Early asthma (vs no early asthma); β (95% CI)=-0.06 (-0.15; 0.03) Faith's Phylogenetic Diversity Transient asthma (vs no asthma): β (95% CI)=-0.04 (-0.13; 0.16) Active asthma (vs no active asthma); β (95% CI)=-0.07 (-0.10; -0.03) Early asthma (vs no early asthma); β (95% CI)=-0.02 (-0.19; 0.15)	‡ asthma ↑ asthma (Shannon index, transient asthma (3-6 months; active and early asthma (3 years). Faith's Phylogenetic Diversity, transient asthma (3-6 months, 3 years); active asthma (1 year, 3 years); early asthma (3 years)) ↓ asthma

			3 years	
			Shannon Inday	
			Transient asthma (us no asthma): β (05% CI)- 0.02 (0.12: 0.07)	
			Active esthme (vs no estive esthme): β (05% CI)=0.07 (0.02; 0.15)	
			Active astinina (\sqrt{s} no active astinina), p (95% CI)=0.07 (-0.02, 0.15)	
			Early asthma (vs no early asthma); β (95% C1)=0.03 (-0.04; 0.10)	
			Faith's Phylogenetic Diversity	
			Transient asthma (vs no asthma): β (95% CI)=0.05 (-0.13; 0.22)	
			Active asthma (vs no active asthma); β (95% CI)=0.09 (-0.06; 0.25)	
			Early asthma (vs no early asthma); β (95% CI)=0.05 (-0.07; 0.19)	
L Samuer et al. 153 2022			Fecal alpha diversity was not associated with wheeze proportion	
Lee-Sarwar et al. 2022	Children (6 years)	VDAART study site	(Shannon index: Pearson r=-0.12, p=0.21; Simpson index: Pearson r=-	↓ wheezing
(USA)			0.10, <i>p</i> =0.27)	
			Children with atopy alone had a significantly lower Chao1 index than	
Tsai et al. 154, 2022 (Taiwan)	Children (36 months)		healthy controls ($p=0.035$). Higher Shannon index was present in	↑ asthma
			children with atopy alone than in the healthy controls $(p>0.05)$	
			Chao1 ($p = 0.025$) and Simpson ($p = 0.024$) indices showed significant	
		age, gender and body mass	differences among the three groups (non-allergic asthma, allergic	
Zheng et al. ¹⁵⁵ , 2022 (China)	Children (5 to 14 years)	index	asthma and healthy controls). A higher bacterial richness and a lower	↓↓ asthma
			diversity in asthma group was observed.	
			No statistically significant evidence for differences in within-sample	
Mubanga et al. ¹⁵⁶ , 2023	Children (9-14 years)	twin-pairs	alpha diversity between exposure groups (Shannon: $p=0.59$, Simpson:	no evidence of effect:
(Sweden)	(×),		p=0.33	asthma
Thorsen et al. ¹⁵⁷ , 2023		log(library size) and	Shannon diversity index: HR (95% CI)=0.72 (0.42: 1.22)	
(Denmark)	Children (7 years)	sequencing run	Eaith's phylogenetic diversity: HR (95% CI)= $1.02 (0.88 \cdot 1.18)$	‡ asthma
(Dominark)		sequencing run	1 and 5 phylogenetic diversity. The (7576 Cr) 1.02 (0.00, 1.10)	

* $\downarrow\downarrow$ significant evidence of lower risk (statistically significant, p<0.05); \downarrow suggestive evidence of lower risk (trending, but p>0.05); \uparrow contradictory findings; \uparrow suggestive evidence of higher risk (trending, but p>0.05); $\uparrow\uparrow$ significant evidence of higher risk (statistically significant, p<0.05); no evidence of effect (for qualitative results). Arrows represents direction and strength of evidence based on the statistical significance for each study. Some studies contributed more than one results and are represented by different colours. -- covariates (confounders) were not described in the article

aOR: adjusted odds ratio; COPD: Chronic Obstructive Pulmonary Disease; HR; hazard ratio; IQR: interquartile range; MRM: multiple regression on distance matrices; OTUs: operational taxonomic units; PC: principal component; PCA: principal component analysis; SD: standard deviation; SRI; species richness index; 95% CI: 95% confidence interval.

Reference, study year (country)	Comula	(Quali)quantitative	Tarra	Relative ab	undance (%)*	Effect estimate
	Sample	results	Taxa	Case	Control	Effect estimate
Bisgaard, et al. ³⁴ , 2007 (Denmark)	Airway samples	quantitative (aHR (95%				
		CI) test for wheezing and				
		presence of bacteria)				
			First wheezy episode			
			Streptococcus pneumoniae			1.53 (0.97; 2.40)
			Haemophilus influenzae			1.27 (0.82; 1.97)
			Moraxella catarrhalis			1.76 (1.08; 2.85)
			Staphylococcus aureus			0.97 (0.74; 1.26)
			At least one			1.50 (1.08; 2.10)
			Persistent wheeze			
			Streptococcus pneumoniae			1.41 (0.65; 3.07)
			Haemophilus influenzae			2.73 (1.36; 5.48)
			Moraxella catarrhalis			1.53 (0.72; 3.25)
			Staphylococcus aureus			1.00 (0.59; 1.68)
			At least one			2.01 (1.13; 3.57)
			Acute severe exacerbation			
			Streptococcus pneumoniae			2.02 (0.79; 5.17)
			Haemophilus influenzae			3.78 (1.70; 8.40)
			Moraxella catarrhalis			2.52 (0.92; 5.51)
			Staphylococcus aureus			1.09 (0.58; 2.05)
			At least one			3.14 (1.57; 6.30)
			Hospitalization			
			Streptococcus pneumoniae			2.33 (0.72; 7.54)
			Haemophilus influenzae			4.09 (1.65; 10.15)
			Moraxella catarrhalis			2.93 (1.06; 8.11)
			Staphylococcus aureus			1.32 (0.58; 2.99)
			At least one			3.57 (1.55; 8.23)
Hilty, et al. ³⁵ , 2010 (Ireland)	Airway samples	quantitative (numbers of				
		sequences) between				
		asthma and healthy				
		control groups				
			Phyla			
			Proteobacteria	181	27	

Table S3. Microbiota composition between cases and controls for the main phyla/genera detected or effect estimate for the main phyla/genera detected

		Bacterioidetes	179	151	
		<i>Firmicutes</i> [⊥]	134	103	
		Fusobacteria [⊥]	19	11	
		$Actinobacteria^{\perp}$	12	11	
		Genera			
		Actinobacteria/Corvnebacterium ^{\perp}	0	2	
		Other Actinobacteria ^{\perp}	12	9	
		Bacteroidetes/Prevotella	158	121	
		Other Bacteroidetes ^{\perp}	21	30	
		Firmicutes/Stanbylococcus ¹	21	3	
		Firmicutes/Streptococcus ¹	56	28	
		$E_{imminutes}/Subprotococcus$	J0 45	20	
		Firmicules/Velilohelid	43 21	41	
		Ducto chaotonia (I a survey 1:1)	31 109	51	
		Proteobacteria/Haemophilus	108	15	
		Proteobacteria/Neisseria	44	11	
		Other Proteobacteria	29	3	
		Fusobacterium	19	11	
·	asthma; allergic sensitization (Specific IgE, skin prick test (SPT))) (1 month; 12 months)	$Enterobacteriaceae^{\perp}$			1 month:
					0.94 (0.46; 1.92) _{asthma} 0.062 (-0.372; 0.496) _{IgE} -0.091 (-0.647; 0.465) _{SPT}
					12 months: 1.20 (0.40; 3.64) _{asthma} -0.248 (-0.844; 0.347) _{IgE} 0.058 (-0.752; 0.867) _{SPT}
		Enterococcaceae [⊥]			1 month: 1.17 (0.55; 2.51) _{asthma} -0.107 (-0.586; 0.372) _{IgE} 0.084 (-0.531; 0.698) _{SPT}
					12 months:

				1.30 (0.61 to 2.75) _{asthma} 0.211 (-0.222 to 0.645) _{IgE} -0.066 (-0.616 to 0.484) _{SPT}
			Staphylococcaceae	1 month: 1.69 (0.83 to 3.46) _{asthma} 0.508 (0.059 to 0.957) _{IgE} 0.183 (-0.382 to 0.748) _{SPT}
				12 months: 0.72 (0.16 to 3.21) _{asthma} 0.146 (-0.513 to 0.805) _{IgE} 0.044 (-1.004 to 1.092) _{SPT}
			Anaerobes [⊥]	1 month: 0.94 (0.39 to 2.26) _{asthma} -0.113 (-0.662; 0.437) _{IgE} 0.002 (-0.672; 0.677) _{SPT}
				12 months: 1.30 (0.55; 3.07) _{asthma} 0.432 (-0.093; 0.957) _{IgE} 0.496 (-0.112; 1.104) _{SPT}
Cardenas, et al. ³⁷ , 2012 (Ecuador)	Airway samples	quantitative (OR (95% CI) test for wheezing)		
			Actinobacteria/Actinomyces Actinobacteria/Atopobium Actinobacteria/Corynebacterium Bacteroidetes/Bacteroidales Bacteroidetes/Flavobacteriaceae Bacteroidetes/Prevotella Firmicutes/Gemella Firmicutes/Gemella Firmicutes/Staphylococcus Firmicutes/Veillonella Fusobacteria/Leptotrichia Proteobacteria/Haemophilus	$\begin{array}{c} 1.10 \ (1.02; \ 1.20) \\ 2.27 \ (1.89; \ 2.71) \\ 25.0 \ (17.0; \ 36.7) \\ 0.55 \ (0.44; \ 0.69) \\ 12.1 \ (7.55; \ 19.3) \\ 0.20 \ (0.15; \ 0.27) \\ 1.38 \ (1.27; \ 1.50) \\ 0.40 \ (0.33; \ 0.49) \\ 0.39 \ (0.30; \ 0.50) \\ 124.1 \ (59.0; \ 161.2) \\ 0.59 \ (0.56; \ 0.62) \\ 0.42 \ (0.33; \ 0.53) \\ 2.12 \ (1.82; \ 2.47) \end{array}$
			Proteobacteria/Moraxella	0.79 (0.72; 0.88)

Proteobacteria/Neisseriaceae

1.19 (1.09; 1.30)

			Proteobacteria/Pasteurellaceae			0.20 (0.13; 0.29)
Marri, et al. ³⁸ , 2013 (USA)	Airway samples	quantitative (genera median percentage (%)) between asthma and healthy control groups	Proteobacteria Fusobacteria Firmicutes Bacteroidetes Actinobacteria Unknown	37 2 47 1 10 3	15 3 63 1 14 4	
Abrahamsson, et al. ³⁹ , 2014 (Sweden)	Stool samples	quantitative (phyla mean relative abundance (%)) (1 week; 1 month; 12 months) [⊥] from infants who did or did not develop asthma at 7 years of life	Actinobacteria Proteobacteria Bacteriodetes Firmicutes Verrucomicrobia	26; 48; 5 18; 12; 5 7; 5; 12 49; 34; 80 <1; <1; 2	23; 34; 14 19; 13; 17 14; 17; 10 44; 36; 70 <1; 1; 2	
Park, et al. ⁴⁰ , 2014 (Korea)	Airway samples	quantitative (phyla mean relative abundance (%)) between asthma and healthy control groups	Firmicutes Proteobacteria Bacteroidetes Actinobacteria Fusobacteria Cyanobacteria Spirochaetes Tenericutes	59.79 35.61 2.62 1.62 0.38 0 0 0	48.37 29.02 16.2 5.86 0.45 0.45 0.45 0.02 0.02	
Denner, et al. ⁴² , 2016 (USA)	Airway samples	qualitative (phyla and genera mean relative abundance (%)) between asthma and healthy control groups		ж		

		("+" and "-" are based on <i>Figure 1</i> (of the specific study) for the Relative abundance (%) of bacteria at the phylum and genera level identified in each sampling group)	Proteobacteria Firmicutes Bacteroidetes Actinobacteria Lactobacilus Prevotella Actinomyces	+++ + + + ++ ++ +	+ + ++ ++ + +	
Hevia, et al. ⁴³ , 2016 (Spain)	Stool samples	quantitative (phyla mean relative abundance (%))	Euryarchaeota ^{\perp} Other ^{\perp} Acidobacteria ^{\perp} Actinobacteria Bacteroidetes ^{\perp} Cyanobacteria ^{\perp} Firmicutes ^{\perp} Fusobacteria ^{\perp} Lentisphaerae ^{\perp} Proteobacteria ^{\perp} Synergistetes ^{\perp} Tenericutes ^{\perp} TM7 ^{\perp} Verrucomicrobia ^{\perp} Unassignable;Other ^{\perp} Unclassified;Other ^{\perp}	$\begin{array}{c} 3.70\\ 6.06\\ 0\\ 2.61\\ 27.3\\ 0.08\\ 61.4\\ 0.003\\ 0.01\\ 2.13\\ 0.0025\\ 0.17\\ 0.00056\\ 0.25\\ 0\\ 0.044\end{array}$	$\begin{array}{c} 0.0003\\ 6.62\\ 6.12\\ 1.17\\ 22.4\\ 0.036\\ 67.0\\ 0.00016\\ 0.019\\ 1.58\\ 0.425\\ 0.29\\ 0.00097\\ 0.415\\ 4.14\\ 0.032\end{array}$	
Stiemsma, et al. ⁴⁵ , 2016 (Canada)	Stool samples	differentially abundant OTUs identified by Deseq2 among asthmatics ("+" and "-" are based on <i>Figure 1</i> (of the specific study) for the differentially abundant OTUs decreased and				

		increased in asthmatics; "+": Log2 Fold change >0 (increased in the respective group); "-": Log2 Fold change <0 (decreased in the respective group))	3 months Firmicutes Clostridiaeceae Clostridium neonatale ^{\perp} Clostridiales Lachnospira ^{\perp}	++ ++ ++ -	- - - ++	
			1-year RF32 Lachnospiraceae (OTU 15) ^{\perp} Lachnospiraceae (OTU 40) Lachnospiraceae (OTU 26) ^{\perp} Rothia Veillonella ^{\perp}	- ++ ++ ++ ++ ++	+++ - - - - -	
Zhang, et al. ⁴⁶ , 2016 (UK)	Airway samples	quantitative (OR (95% CI) test for asthma [non- severe; severe])	Proteobacteria Fusobacteria Firmicutes Bacteroidetes			$\begin{array}{c} 2.26 \ (1.94; \ 2.64); \\ 1.21 \ (1.03; \ 1.40) \\ 0.50 \ (0.40; \ 0.63); \\ 0.38 \ (0.31; \ 0.48) \\ 1.00 \ (0.87; \ 1.16); \\ 2.15 \ (1.89; \ 2.45) \\ 0.62 \ (0.54; \ 0.71); \\ 0.62 \ (0.54; \ 0.70) \end{array}$
Chiu, et al. ⁴⁷ , 2017 (Taiwan)	Airway samples	quantitative (Phylum/Genus mean (+/-, standard deviation) relative abundance (%)) between asthma and healthy control groups	Bacteroidetes/Porphyromonas [⊥] Firmicutes/Moryella [⊥]	2.35 ± 2.20 0.66 ± 1.59	2.96 ± 2.83 0.57 ± 1.00	

			Fusobacteria/Fusobacterium [⊥] Proteobacteria/Aggregatibacter [⊥] Proteobacteria/Haemophilus [⊥] Proteobacteria/Neisseria [⊥] Proteobacteria/Moraxella [⊥] Firmicutes/Butyrivibrio Firmicutes/Parvimonas Firmicutes/Selenomonas	$\begin{array}{c} 4.83 \pm 4.54 \\ 0.62 \pm 1.67 \\ 5.26 \pm 4.57 \\ 4.33 \pm 4.84 \\ 0.62 \pm 2.41 \\ 0.03 \pm 0.07 \\ 0.19 \pm 0.31 \\ 0.61 \pm 0.84 \end{array}$	5.07 ± 5.22 0.62 ± 1.25 5.40 ± 5.54 2.86 ± 2.42 0.50 ± 1.17 0.09 ± 0.19 0.48 ± 0.75 0.57 ± 0.72	
Depner, et al. ⁴⁸ , 2017 (Germany, Austria and Switzerland)	Airway samples	quantitative (OR (95% CI) test for asthma) [†]	Proteobacteria (nose) Moraxella (nose)			2.44 (1.07; 5.59) 3.78 (2.02: 7.05
Li, et al. ⁴⁹ , 2017 (China)	Airway samples	quantitative (class, order or family median relative abundance (%) for asthma [non-severe; severe])				
			$Gamma proteobacteria^{\perp}$	4.121; 5.507	6.152	
			$Enterobacteriales^{\perp}$	0; 0	0	
			$Pseudomonadales^{\perp}$	0.029; 0.154	0.053	
			$Enterobacteriaceae^{\perp}$	0; 0	0	
			Porphyromonadaceae	3.955; 4.466	6.175	
			<i>Pseudomonadaceae</i> ^L (NSA vs. healthy)	0.024; 0.116	0.032	
Arrieta, et al. ⁵¹ , 2018 (Ecuador)	Stool samples	qualitative (genus relative abundance (%)) between atopic wheeze and healthy control groups ("+" and "-" are based on <i>Figure 1</i> (of the specific study) for the Log fold change of OTUs that are significantly (false discovery rate < 0.05) abundant between atopic wheeze and control				

		subjects calculated by using DESeq2; "+": increased in the respective group; "-": decreased in the respective group)	Bacteroides Bifidobacterium Veillonella	- - ++	++ ++	
Durack, et al. ⁵² , 2018 (USA)	Airway samples	qualitative (frequency distribution of specific genera (%) atopic asthma; atopy without asthma and healthy controls) ("+" and "-" are based on <i>Figure 4</i> (of the specific study) for the Frequency distribution of specific genera (present in at least 20% of participants for each group) for OTUs; "+": increased in the respective group; "-": decreased in the respective group)	Prevotella Haemophilus Streptococcus Fusobacterium Neisseria Aggregatibacter Other	++;+ +;+ -;+ ++;+ ++;+ -;+ ++;+	- - + 	
Fazlollahi, et al. ⁵³ , 2018 (USA)	Airway samples	quantitative (phylum relative abundance (%) for asthma [non-exacerbated; exacerbated])	Proteobacteria ^{\perp} Fusobacteria ^{\perp} Firmicutes ^{\perp} Others ^{\perp}	19.4; 17.5 0.7; 0.6 44.2; 39.6 0.6; 0.6	10.1 0.4 48.7 0.8	

			Bacteroidetes Actinobacteria [⊥]	3.0; 3.5 32.1; 38.2	1.0 39.0
Kim, et al. ⁵⁴ , 2018 (South Korea)	Airway samples	qualitative (phylum relative abundance (%) for asthma and healthy controls) ("+" and "-" are based on <i>Figure 1</i> (of the specific study) for the Phylum composition; "+": increased in the respective group; "-": decreased in the respective group)	Proteobacteria Firmicutes Fusobacteria Bacteroidetes	- + +	+
Okba, et al. ⁵⁵ , 2018 (Egypt)	Stool samples	quantitative (relative abundance (%) for asthma and healthy controls)			
			Female		
			$Lactobacilli^{\perp}$	20	10
			E. $coli^{\perp}$	87.5	90
			$Kelbsiella^{\perp}$	20	10
			$Proteus^{\perp}$	12.5	0
			$Enterobacter^{\perp}$	15	30
			Enterococci [⊥]	7.5	0
			$Serratia^{\perp}$	0	0
			$Citrobacter^{\perp}$	5	0
			$Bacteroids^{\perp}$	0	0
			$Provedencia^{\perp}$	2.5	0
			$Morganella^{\perp}$	0	0
			$Pseudomonas^{\perp}$	0	0
			S. $aureus^{\perp}$	0	0
			Male		
			Lactobacilli	35	0
			$F col^{\perp}$	86	90
			$Kelbsiella^{\perp}$	25	40
			nciosicilu	23	עד

			Proteus [⊥] Enterobacter [⊥] Enterococci [⊥] Serratia [⊥] Citrobacter [⊥] Bacteroids [⊥] Provedencia [⊥] Morganella [⊥] Pseudomonas [⊥] S. aureus [⊥]	$ \begin{array}{r} 17.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 5 \\ 5 \\ 0 \\ 2.5 \\ 10 \\ 0 \\ \end{array} $	10 0 0 10 0 0 0 0 0 10	
Stokholm, et al. ⁵⁶ , 2018 (Denmark)	Stool samples	quantitative (relative abundance (%) for asthma and healthy controls)	Roseburia Veillonella Alistipes Flavonifractor	0.27 0.94 0.04 0.05	0.66 0.29 0.35 0.07	
Bannier, et al. ⁵⁸ , 2019 (Netherlands)	Stool samples	quantitative (aOR (95% CI), <i>Bifidobacterium</i> as a reference group, for asthma and wheezing)	Asthma Bifidobacterium-Blautia Prevotella Wheezing Bifidobacterium-Blautia Prevotella			1.454 (0.707; 2.994) 0.707 (0.276; 1.809) 1.167 (0.537; 2.540) 4.282 (0.940; 19.51)
Espuela-Ortiz, et al. ⁵⁹ , 2019 (USA)	Airway samples	quantitative (genera mean relative abundance (%) between children with and without asthma)	Aggregatibacter Atopobium Streptococcus Veillonella	2.3 1.2 13.0 11.1	1.6 0.9 18.3 8.0	
Lee, et al. ⁶⁰ , 2019 (South Korea)	Airway samples	qualitative (young adults; elderly) between asthma and healthy control groups.				

		("+" and "-" are based on <i>Figure 1</i> (of the specific study) for the composition of phylum between the groups; "+": increased in the respective group; "-": decreased in the respective group)	 Actinobacteria [⊥] Proteobacteria	+; ++ ++; +	++;+ +;++
Powell, et al. ⁶² , 2019 (UK)	Airway samples	quantitative (differential abundance; wheezing) results based on the longitudinal differential abundance analysis in early-life wheeze. The sign of the difference area provides information on the direction of the abundance shift (e.g., there was an increase in the abundance of a Neisseria OTU over time in children with wheeze)	Early-life wheeze (doctor- confirmed wheeze vs. no wheeze) <i>OTU42 Granulicatella</i> (9-12 months) <i>OTU43 Prevotella</i> (18-24 months)	-1.118 -1.147	
			<i>OTU68: Neisseria</i> (9-24 months) Early-life wheeze (recurrent wheeze vs. no. wheeze)	+5.993	
			OTU42 Granulicatella (9-24 months)	-4.999	
			months) <i>OTU68 Neisseria</i> (12-24 months)	-2.637 +3.581	

			OTU76 Provotella (12-24	2	000	
			months)	-2.	0,0	
Samra at al 63 2010 (South Korea)	Urine complex	quantitativa (mean relativa	montals)			
Samia, et al. , 2019 (South Rolea)	Office samples	abundance (%) for atopic				
		asthma and healthy				
		control groups))				
		control groups))	Micrococcaceae	6 39	1 72	
			Micrococcaceae(f)	4 59	0.93	
			$Propionibacteriaceae^{\perp}$	4.59	0.95	
			Propionibacterium ¹	1.70	0.86	
			Methylobacteriaceae	9.59	1.12	
			Methylobacteriaceae(f)	9.39 1.74	0.45	
			Methylobacterium	7.85	0.45	
			Rhizohiaceae [⊥]	1.05	9.36	
			$A arobacterium^{\perp}$	+.70 1 60	9.50 8.52	
			Sphingomonadaceae [⊥]	15 70	11 25	
			Sphingomonadaceae(f)	1 93	0.46	
			$Alcalia on a coao^{\perp}$	3.67	6.81	
			A chromobacter ^{\perp}	3.60	6.68	
			$Comamonadaceae^{\perp}$	5.00	4 52	
			Comamonadaceae(f)	1.58	4.52 0.71	
			Enterobacteriaceae	3 36	8.98	
			Enterobacteriaceae(f)	2.84	8.72	
			$M_{oraxellaceae}^{\perp}$	3 99	4 42	
			$Fnhydrobacter^{\perp}$	0.39	0.45	
Thorsen et al ⁶⁴ 2019 (Denmark)	Airway samples	quantitative (taxon mean	Emilyarobacici	0.57	0.15	
Thorsen, et al. , 2013 (Definitark)	r in way sumples	relative abundance (%)				
		between asthma and				
		healthy control groups)				
			Veillonella	4.79e-2	2.83e-2	
			Prevotella	6.62e-3	2.65e-3	
			Gemella	5.16e-2	3.95e-2	
			Bacilli	7.16e-4	4.66e-4	
			Bacillales	1.77e-3	1.61e-3	
			Lactobacillus	1.48e-2	9.23e-3	
			Streptococcus	3.32e-1	3.01e-1	
			Neisseria	2.73e-2	2.15e-2	
Al Bataineh, et al. 65, 2020 (United	Airway samples	quantitative (mean relative				
Arab Emirates)		abundance (%) for asthma				
The Emilates)						

and healthy control groups)); sig differences

Adults		
Streptococcus	16.51	7.01
Granulicatella	0.86	0.56
Eikenella	0.11	0.21
Capnocytophaga	0.81	0.83
Pasteurellaceae_unclassified	0.16	0.13
Enterobacteriaceae_unclassified	0.13	0.01
Escherichia	0	0.01
SR1_unclassified	0.47	0.4
Cardiobacterium	0.03	0.06
Butyrivibrio	0	0.06
Peptococcus	0.02	0.06
Aggregatibacter	0	0.01
Bacteroidetes_unclassified	0.02	0.11
Shuttleworthia	0.01	0.02
Lactobacillus	0.01	0.02
RF39_unclassified	0.01	0.03
Bifidobacterium	0.01	0
Sphingobium	0	0
Children		
Streptococcus	14.18	14.06
Granulicatella	0.29	0.76
Eikenella	0.44	0.37
Capnocytophaga	0.33	0.47
Pasteurellaceae_unclassified	0.05	0.45
Enterobacteriaceae_unclassified	0.04	0
Escherichia	0.04	0
SR1_unclassified	0.02	0.17
Cardiobacterium	0.03	0.03
Butyrivibrio	0	0.01
Peptococcus	0	0.01
Aggregatibacter	0.01	0.02
Bacteroidetes_unclassified	0	0
Shuttleworthia	0	0
Lactobacillus	0	0.01
RF39_unclassified	0	0.01

			Sphingobium	0.02	0
Chiu, et al. ⁶⁶ , 2020 (Taiwan)	Airway and stool samples	qualitative (genus relative abundance (%) for asthma and healthy control groups) ("+" and "-" are based on <i>Figure 1</i> (of the specific study) for the Airway and stool microbial composition and abundance at the genus level; "+": increased in the respective group; "-": decreased in the respective group)	Airway samples Streptococcus Prevotella Fusobacterium Neisseria Leptotrichia Others Stool samples Streptococcus Bifidobacterium Blautia Prevotella Faecalibacterium Ruminococcus Coprococcus Others	- - + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +
Toivonen, et al. 69, 2020 (Finland)	Airway samples	quantitative (genera mean			
		relative abundance (%)			
		between asthma and			
		healthy control groups)			
			Haemophilus (13 months)	0.11	0.04
			Acinetobacter (13 months)	0.01	0.00
			Alloprevotella (2 months)	0.00	0.00

			<i>Neisseriaceae</i> genus 1 (13 months)	0.03	0.01
			Veillonella (2 months)	0.01	0.01
Niemeier-Walsh, et al. ⁷¹ , 2021 (USA)	Airway samples	qualitative (relative abundance) between asthma and healthy control groups ("+" and "-" are based on <i>Figure 5</i> (of the specific study) for the relative abundance of bacterial phyla in sputum; "+": increased in the respective group; "-": decreased in the respective group)	Bacteroidetes Proteobacteria	+++++++	+ ++
Seppo, et al. ⁷⁴ , 2021 (USA)	Stool samples	qualitative (differential bacterial features for atopic symptoms), LDA score (log 10). LDA score ranges between -4 and 4 and represents the differential bacterial features found by LEfSe (linear discriminant analysis effect size) in infants who developed or did not develop atopic symptoms. Higher LDA scores indicate features more characteristic of a group	Who developed atopic symptoms Bacteroidetes	LDA score >4	4 & <5
			Bacteroidia	LDA score >4	4 & <5
			Bacteroidales	LDA score >4	4 & <5
			Bacteroides	LDA score >4	4 & <5
			Bacteroidaceae	LDA score >4	4 & <5

			Actinomycetales Who did not develop atopic symptoms	LDA score >3 & <4
Turek, et al. ⁷⁵ , 2021 (Australia)	Airway samples	Quantitative (phylum/genus relative abundance (%) for	Lachnospiraceae	LDA score > -4
		asthma))		
		ustillu))	phylum increased in asthmatics	
			Proteobacteria	4.74
			Actinobacteria	0.23
			genus decreased in asthmatics	
			Actinomyces	4.29
			Selenomonas	1.48
			Leptotrichia	2.01
			Megasphaera	0.62
			Selenomonas	0.17
			Oribacterium	0.09
			Actinomyces	0.32
			Capnocytophaga	0.33
			Prevotella	0.20
			Streptococcus	0.02
			Selenomonas	0.08
			Unknown	0.14
			Streptococcus	0.02
			Prevotella	0.39
			Actinomyces	0.02
			Unknown	0.08
			Prevotella	0.05
			Prevotella	0.22
			Capnocytophaga	0.08
			Tannerella	0.10
Lee-Sarwar et al. 77, 2022 (USA)	Stool samples	quantitative (OR (95% CI)		
		cost for astima)	Age at stool sample (3-6 months):	

			Staphylococcus			0.24 (0.05; 0.75)transient asthma
			Bacteroides			0.39 (0.22: 0.70)early asthma
Lee-Sarwar et al. ⁷⁸ , 2022 (USA)	Stool samples	quantitative (log-fold change)				
			Top 5 taxa positively associated			
			with wheeze			
			Veillonella		2.1	
			Lachnoclostridium		2.0	
			Monoglobus	1	.8	
			Lachnospiraceae (unidentified)	1	.5	
			Ruminococcus gnavus group	1	.3	
			Top 5 taxa negatively associated			
			with wheeze			
			Sellimonas	-	1.8	
			Fusicatenibacter	-	1.8	
			Flavonifractor	-	1.8	
			Eggerthella	-	1.7	
Teri et al 79 2022 (Taimer)	Nacashammaral		Intestinimonas	-	1.5	
1 sai et al. ⁷⁷ , 2022 (1aiwan)	samples	(%)), atopy alone and				
		healthy control				
			Firmicutes/Enterococcus	0.34 ± 1.46	1.91 ± 4.63	
			Firmicutes/Bacillus	1.83±1.78	0.98±0.93	
			Firmicutes/Ruminococcaceae	0.54±0.95	0.29±0.34	
			Actinobacteria/Rhodococcus	1.16±4.53	0.09±0.16	
			Proteobacteria/Acinetobacter	4.98±12.39	0.07 ± 0.06	
			Proteobacteria/Moraxella	4.24±5.96	1.21±1.86	
			Proteobacteria/Alkaninaiges	0.08 ± 0.23	0.36±0.68	
			Proteobacteria/Rickettsia	0.00 ± 0.01	0.23 ± 0.34	
			Proteobacteria/Asaia	0.00 ± 0.00 0.16±0.33	5.28±8.52 0.00±0.01	
Zheng et al. ⁸⁰ , 2022 (China)	Stool samples	quantitative (mean±SD) for allergic and non- allergic asthma; Sig differences				
			Allergic asthmatic			
			Prevotella	1.27±5.26	4.19±9.41	
			Lactobacillus	0.42±0.42	0.09±0.12	
			Lachnospiraceae ND3007 group	0.53±0.50	0.79±0.28	

			Terrisporobacter	0.42 ± 0.80	1.32 ± 1.90	
			Megamonas	0.15±0.17	0.26±0.19	
			Eubacterium eligens group	0.26±0.30	0.82±0.35	
			CAG.56	0.26±0.35	0.38±0.27	
			Lachnospira	0.30±0.54	0.44±0.17	
			Non-allergic asthmatic group			
			Bacteroides	10.08 ± 6.28	20.35±7.09	
			Agathobacter	1.72 ± 1.64	3.38±2.16	
			CAG.352	1.31±1.00	2.82±1.61	
			Ruminococcus	0.95 ± 0.85	1.82 ± 0.80	
			Intestinibacter	0.81±0.74	1.14 ± 0.33	
			Lachnoclostridium	0.42±0.14	0.68±0.20	
			Lactobacillus	1.86 ± 4.00	0.09 ± 0.12	
			Turicibacter	0.40 ± 0.35	1.03 ± 1.42	
			Lachnospiraceae ND3007 group	0.46 ± 0.55	0.79 ± 0.28	
			Collinsella	0.27 ± 0.30	0.90±0.62	
			Terrisporobacter	0.12 ± 0.10	1.32 ± 1.90	
			Parasutterella	0.23 ± 0.25	0.34 ± 0.24	
			Eubacterium eligens group	0.18 ± 0.14	0.82±0.35	
			Lachnospira	0.11 ± 0.09	0.44 ± 0.17	
Thorsen et al. ⁸² , 2023 (Denmark)	Nasopharyngeal samples	 qualitative (Cox regression of time-to-asthma, HR>1 and p>0.05; and DESeq2 analysis comparing abundance of the species between children who later developed asthma vs those who did not, Log2-fold change >0 and p>0.05); Differential abundance analysis was performed at species level using two methods: Cox regression with log-scaled species 				

package survival and		
DESeq2. All p values		
were derived from two-		
sided tests		
	Cox regression:	
	Haemophilus influenzae	HR>1 and p<0.05
	Moraxella linolnii	HR>1 and p<0.05
	Moraxella catarrhalis	HR>1 and p<0.05
	Streptococcus pneumoniae	HR>1 and p>0.05
	DESeq2:	
	Haemophilus influenzae	Log2-fold change >0 and
		p<0.05
	Moraxella linolnii	Log2-fold change >0 and
		p>0.05
	Moraxella catarrhalis	Log2-fold change >0 and
		p>0.05
	Streptococcus pneumoniae	Log2-fold change >0 and
		p<0.05

*Taxa with significant differences (p<0.05) between cases (individuals with asthma, allergic sensitization or wheezing) and controls (healthy individuals); ^{\perp} no significant differences between cases and controls; ⁺ relative abundance of the main phyla and genera tested for association with asthma.

aHR: adjusted hazard ratio; LDA: linear discriminant analysis; HR: hazard ratio; OR: odds ratio: OTUs: OTUs: operational taxonomic units; SD: standard deviation; 95% CI: 95% confidence interval.

	Outcome					
Evidence	Asthma	Allergic sensitization	Wheezing			
Significant evidence of lower risk	11	6	2			
Suggestive evidence of lower risk	3	5	2			
Contradictory findings	4	2	0			
Significant evidence of higher risk	7	3	2			
Suggestive evidence of higher risk	2	2	0			
No evidence of effect	6	4	1			

Table S4. Summary of the evidence on the association between outer layer biodiversity and respiratory outcomes (based on information included in Table 1 "*Outer layer biodiversity*")

Some studies contributed more than one result. Significant evidence of lower risk (statistically significant, p<0.05); suggestive evidence of lower risk (trending, but p>0.05); contradictory findings; significant evidence of higher risk (statistically significant, p<0.05); suggestive evidence of higher risk (trending, but p>0.05); no evidence of effect (for qualitative results).

Table S5. Summary of the evidence on the association between inner layer biodiversity and respiratory outcomes (based on information included in Table 1 *"Inner layer biodiversity"*)

	Outcome				
Evidence	Asthma	Allergic sensitization	Wheezing		
Significant evidence of lower risk	5	2	0		
Suggestive evidence of lower risk	4	1	1		
Contradictory findings	6	0	0		
Significant evidence of higher risk	8	1	1		
Suggestive evidence of higher risk	4	1	0		
No evidence of effect	14	4	3		

Some studies contributed more than one result. Significant evidence of lower risk (statistically significant, p<0.05); suggestive evidence of lower risk (trending, but p>0.05); contradictory findings; significant evidence of higher risk (statistically significant, p<0.05); suggestive evidence of higher risk (trending, but p>0.05); no evidence of effect (for qualitative results).

References

1. Ege MJ, Mayer M, Normand AC, Genuneit J, Cookson WO, Braun-Fahrländer C, Heederik D, Piarroux R, von Mutius E. 2011. Exposure to environmental microorganisms and childhood asthma. The New England journal of medicine. 364(8):701-709.

Ege MJ, Mayer M, Schwaiger K, Mattes J, Pershagen G, van Hage M, Scheynius A, Bauer J, von Mutius
 E. 2012. Environmental bacteria and childhood asthma. Allergy. 67(12):1565-1571.

3. Hanski I, von Hertzen L, Fyhrquist N, Koskinen K, Torppa K, Laatikainen T, Karisola P, Auvinen P, Paulin L, Mäkelä MJ, Vartiainen E, Kosunen TU, Alenius H, Haahtela T. 2012. Environmental biodiversity, human microbiota, and allergy are interrelated. Proceedings of the National Academy of Sciences of the United States of America. 109(21):8334-8339.

4. Lynch SV, Wood RA, Boushey H, Bacharier LB, Bloomberg GR, Kattan M, O'Connor GT, Sandel MT, Calatroni A, Matsui E, Johnson CC, Lynn H, Visness CM, Jaffee KF, Gergen PJ, Gold DR, Wright RJ, Fujimura K, Rauch M, Busse WW, Gern JE. 2014. Effects of early-life exposure to allergens and bacteria on recurrent wheeze and atopy in urban children. The Journal of allergy and clinical immunology. 134(3):593-601.e512.

5. Ciaccio CE, Barnes C, Kennedy K, Chan M, Portnoy J, Rosenwasser L. 2015. Home dust microbiota is disordered in homes of low-income asthmatic children. The Journal of asthma : official journal of the Association for the Care of Asthma. 52(9):873-880.

6. Ruokolainen L, von Hertzen L, Fyhrquist N, Laatikainen T, Lehtomäki J, Auvinen P, Karvonen AM, Hyvärinen A, Tillmann V, Niemelä O, Knip M, Haahtela T, Pekkanen J, Hanski I. 2015. Green areas around homes reduce atopic sensitization in children. Allergy. 70(2):195-202.

7. Valkonen M, Wouters IM, Täubel M, Rintala H, Lenters V, Vasara R, Genuneit J, Braun-Fahrländer C, Piarroux R, von Mutius E, Heederik D, Hyvärinen A. 2015. Bacterial Exposures and Associations with Atopy and Asthma in Children. PloS one. 10(6):e0131594.

8. Tischer C, Weikl F, Probst AJ, Standl M, Heinrich J, Pritsch K. 2016. Urban Dust Microbiome: Impact on Later Atopy and Wheezing. Environmental health perspectives. 124(12):1919-1923.

9. Birzele LT, Depner M, Ege MJ, Engel M, Kublik S, Bernau C, Loss GJ, Genuneit J, Horak E, Schloter M, Braun-Fahrländer C, Danielewicz H, Heederik D, von Mutius E, Legatzki A. 2017. Environmental and mucosal microbiota and their role in childhood asthma. Allergy. 72(1):109-119.

10. Cavaleiro Rufo J, Madureira J, Paciência I, Aguiar L, Pereira C, Silva D, Padrão P, Moreira P, Delgado L, Annesi-Maesano I, Oliveira Fernandes E, Teixeira JP, Moreira A. 2017. Indoor fungal diversity in primary schools may differently influence allergic sensitization and asthma in children. Pediatric allergy and immunology : official publication of the European Society of Pediatric Allergy and Immunology. 28(4):332-339.

11. Campbell B, Raherison C, Lodge CJ, Lowe AJ, Gislason T, Heinrich J, Sunyer J, Gómez Real F, Norbäck D, Matheson MC, Wjst M, Dratva J, de Marco R, Jarvis D, Schlünssen V, Janson C, Leynaert B, Svanes C,

Dharmage SC. 2017. The effects of growing up on a farm on adult lung function and allergic phenotypes: an international population-based study. Thorax. 72(3):236-244.

12. Dannemiller KC, Gent JF, Leaderer BP, Peccia J. 2016. Indoor microbial communities: Influence on asthma severity in atopic and nonatopic children. The Journal of allergy and clinical immunology. 138(1):76-83.e71.

Karvonen AM, Hyvärinen A, Rintala H, Korppi M, Täubel M, Doekes G, Gehring U, Renz H, Pfefferle PI, Genuneit J, Keski-Nisula L, Remes S, Lampi J, von Mutius E, Pekkanen J. 2014. Quantity and diversity of environmental microbial exposure and development of asthma: a birth cohort study. Allergy. 69(8):1092-1101.
 Donovan GH, Gatziolis D, Longley I, Douwes J. 2018. Vegetation diversity protects against childhood asthma: results from a large New Zealand birth cohort. Nature Plants. 4(6):358-364.

15. Lai PS, Kolde R, Franzosa EA, Gaffin JM, Baxi SN, Sheehan WJ, Gold DR, Gevers D, Xavier RJ, Phipatanakul W. 2018. The classroom microbiome and asthma morbidity in children attending 3 inner-city schools. The Journal of allergy and clinical immunology. 141(6):2311-2313.

16. Loo EXL, Chew LJM, Zulkifli AB, Ta LDH, Kuo IC, Goh A, Teoh OH, Van Bever H, Gluckman PD, Yap F, Tan KH, Chong YS, Lee BW, Shek LP. 2018. Comparison of microbiota and allergen profile in house dust from homes of allergic and non-allergic subjects- results from the GUSTO study. The World Allergy Organization journal. 11(1):37.

17. O'Connor GT, Lynch SV, Bloomberg GR, Kattan M, Wood RA, Gergen PJ, Jaffee KF, Calatroni A, Bacharier LB, Beigelman A, Sandel MT, Johnson CC, Faruqi A, Santee C, Fujimura KE, Fadrosh D, Boushey H, Visness CM, Gern JE. 2018. Early-life home environment and risk of asthma among inner-city children. The Journal of allergy and clinical immunology. 141(4):1468-1475.

18. Pekkanen J, Valkonen M, Täubel M, Tischer C, Leppänen H, Kärkkäinen PM, Rintala H, Zock JP, Casas L, Probst-Hensch N, Forsberg B, Holm M, Janson C, Pin I, Gislason T, Jarvis D, Heinrich J, Hyvärinen A. 2018. Indoor bacteria and asthma in adults: a multicentre case-control study within ECRHS II. The European respiratory journal. 51(2).

19. Valkonen M, Täubel M, Pekkanen J, Tischer C, Rintala H, Zock JP, Casas L, Probst-Hensch N, Forsberg B, Holm M, Janson C, Pin I, Gislason T, Jarvis D, Heinrich J, Hyvärinen A. 2018. Microbial characteristics in homes of asthmatic and non-asthmatic adults in the ECRHS cohort. Indoor air. 28(1):16-27.

20. Karvonen AM, Kirjavainen PV, Täubel M, Jayaprakash B, Adams RI, Sordillo JE, Gold DR, Hyvärinen A, Remes S, von Mutius E, Pekkanen J. 2019. Indoor bacterial microbiota and development of asthma by 10.5 years of age. The Journal of allergy and clinical immunology. 144(5):1402-1410.

21. Kirjavainen PV, Karvonen AM, Adams RI, Täubel M, Roponen M, Tuoresmäki P, Loss G, Jayaprakash B, Depner M, Ege MJ, Renz H, Pfefferle PI, Schaub B, Lauener R, Hyvärinen A, Knight R, Heederik DJJ, von Mutius E, Pekkanen J. 2019. Farm-like indoor microbiota in non-farm homes protects children from asthma development. Nature Medicine. 25(7):1089-1095.

22. Cavaleiro Rufo J, Ribeiro AI, Paciência I, Delgado L, Moreira A. 2020. The influence of species richness in primary school surroundings on children lung function and allergic disease development. Pediatric allergy

and immunology : official publication of the European Society of Pediatric Allergy and Immunology. 31(4):358-363.

23. Fu X, Norbäck D, Yuan Q, Li Y, Zhu X, Hashim JH, Hashim Z, Ali F, Zheng YW, Lai XX, Spangfort MD, Deng Y, Sun Y. 2020. Indoor microbiome, environmental characteristics and asthma among junior high school students in Johor Bahru, Malaysia. Environment international. 138:105664.

24. Gangneux JP, Sassi M, Lemire P, Le Cann P. 2020. Metagenomic Characterization of Indoor Dust Bacterial and Fungal Microbiota in Homes of Asthma and Non-asthma Patients Using Next Generation Sequencing. Frontiers in microbiology. 11:1671.

25. Adams RI, Leppänen H, Karvonen AM, Jacobs J, Borràs-Santos A, Valkonen M, Krop E, Haverinen-Shaughnessy U, Huttunen K, Zock JP, Hyvärinen A, Heederik D, Pekkanen J, Täubel M. 2021. Microbial exposures in moisture-damaged schools and associations with respiratory symptoms in students: A multi-country environmental exposure study. Indoor air. 31(6):1952-1966.

26. Cavaleiro Rufo J, Paciência I, Hoffimann E, Moreira A, Barros H, Ribeiro AI. 2021. The neighbourhood natural environment is associated with asthma in children: A birth cohort study. Allergy. 76(1):348-358.

27. Cox J, Stone T, Ryan P, Burkle J, Jandarov R, Mendell MJ, Niemeier-Walsh C, Reponen T. 2022. Residential bacteria and fungi identified by high-throughput sequencing and childhood respiratory health. Environmental research. 204(Pt D):112377.

28. Donovan GH, Landry SM, Gatziolis D. 2021. The natural environment, plant diversity, and adult asthma: A retrospective observational study using the CDC's 500 Cities Project Data. Health & place. 67:102494.

29. Fu X, Li Y, Meng Y, Yuan Q, Zhang Z, Wen H, Deng Y, Norbäck D, Hu Q, Zhang X, Sun Y. 2021. Derived habitats of indoor microbes are associated with asthma symptoms in Chinese university dormitories. Environmental research. 194:110501.

30. Fu X, Ou Z, Zhang M, Meng Y, Li Y, Wen J, Hu Q, Zhang X, Norbäck D, Deng Y, Zhao Z, Sun Y. 2021. Indoor bacterial, fungal and viral species and functional genes in urban and rural schools in Shanxi Province, China-association with asthma, rhinitis and rhinoconjunctivitis in high school students. Microbiome. 9(1):138.

31. Hyytiäinen H, Kirjavainen PV, Täubel M, Tuoresmäki P, Casas L, Heinrich J, Herberth G, Standl M, Renz H, Piippo-Savolainen E, Hyvärinen A, Pekkanen J, Karvonen AM. 2021. Microbial diversity in homes and the risk of allergic rhinitis and inhalant atopy in two European birth cohorts. Environmental research. 196:110835.

32. Lehtimäki J, Thorsen J, Rasmussen MA, Hjelmsø M, Shah S, Mortensen MS, Trivedi U, Vestergaard G, Bønnelykke K, Chawes BL, Brix S, Sørensen SJ, Bisgaard H, Stokholm J. 2021. Urbanized microbiota in infants, immune constitution, and later risk of atopic diseases. The Journal of allergy and clinical immunology. 148(1):234-243.

33. Winnicki MH, Dunn RR, Winther-Jensen M, Jess T, Allin KH, Bruun HH. 2022. Does childhood exposure to biodiverse greenspace reduce the risk of developing asthma? Science of The Total Environment. 850:157853.

34. Bisgaard H, Hermansen MN, Buchvald F, Loland L, Halkjaer LB, Bønnelykke K, Brasholt M, Heltberg A, Vissing NH, Thorsen SV, Stage M, Pipper CB. 2007. Childhood asthma after bacterial colonization of the airway in neonates. The New England journal of medicine. 357(15):1487-1495.

35. Hilty M, Burke C, Pedro H, Cardenas P, Bush A, Bossley C, Davies J, Ervine A, Poulter L, Pachter L, Moffatt MF, Cookson WO. 2010. Disordered microbial communities in asthmatic airways. PloS one. 5(1):e8578.

36. Bisgaard H, Li N, Bonnelykke K, Chawes BL, Skov T, Paludan-Müller G, Stokholm J, Smith B, Krogfelt KA. 2011. Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. The Journal of allergy and clinical immunology. 128(3):646-652.e641-645.

37. Cardenas PA, Cooper PJ, Cox MJ, Chico M, Arias C, Moffatt MF, Cookson WO. 2012. Upper airways microbiota in antibiotic-naïve wheezing and healthy infants from the tropics of rural Ecuador. PloS one. 7(10):e46803.

38. Marri PR, Stern DA, Wright AL, Billheimer D, Martinez FD. 2013. Asthma-associated differences in microbial composition of induced sputum. The Journal of allergy and clinical immunology. 131(2):346-352.e341-343.

39. Abrahamsson TR, Jakobsson HE, Andersson AF, Björkstén B, Engstrand L, Jenmalm MC. 2014. Low gut microbiota diversity in early infancy precedes asthma at school age. Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology. 44(6):842-850.

40. Park H, Shin JW, Park SG, Kim W. 2014. Microbial communities in the upper respiratory tract of patients with asthma and chronic obstructive pulmonary disease. PloS one. 9(10):e109710.

41. Arrieta M-C, Stiemsma LT, Dimitriu PA, Thorson L, Russell S, Yurist-Doutsch S, Kuzeljevic B, Gold MJ, Britton HM, Lefebvre DL, Subbarao P, Mandhane P, Becker A, McNagny KM, Sears MR, Kollmann T, null n, Mohn WW, Turvey SE, Brett Finlay B. 2015. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine. 7(307):307ra152-307ra152.

42. Denner DR, Sangwan N, Becker JB, Hogarth DK, Oldham J, Castillo J, Sperling AI, Solway J, Naureckas ET, Gilbert JA, White SR. 2016. Corticosteroid therapy and airflow obstruction influence the bronchial microbiome, which is distinct from that of bronchoalveolar lavage in asthmatic airways. The Journal of allergy and clinical immunology. 137(5):1398-1405.e1393.

43. Hevia A, Milani C, López P, Donado CD, Cuervo A, González S, Suárez A, Turroni F, Gueimonde M, Ventura M, Sánchez B, Margolles A. 2016. Allergic Patients with Long-Term Asthma Display Low Levels of Bifidobacterium adolescentis. PloS one. 11(2):e0147809.

44. Hua X, Goedert JJ, Pu A, Yu G, Shi J. 2016. Allergy associations with the adult fecal microbiota: Analysis of the American Gut Project. EBioMedicine. 3:172-179.

45. Stiemsma LT, Arrieta MC, Dimitriu PA, Cheng J, Thorson L, Lefebvre DL, Azad MB, Subbarao P, Mandhane P, Becker A, Sears MR, Kollmann TR, Mohn WW, Finlay BB, Turvey SE. 2016. Shifts in Lachnospira and Clostridium sp. in the 3-month stool microbiome are associated with preschool age asthma. Clinical science (London, England : 1979). 130(23):2199-2207.

46. Zhang Q, Cox M, Liang Z, Brinkmann F, Cardenas PA, Duff R, Bhavsar P, Cookson W, Moffatt M, Chung KF. 2016. Airway Microbiota in Severe Asthma and Relationship to Asthma Severity and Phenotypes. PloS one. 11(4):e0152724.

47. Chiu C-Y, Chan Y-L, Tsai Y-S, Chen S-A, Wang C-J, Chen K-F, Chung IF. 2017. Airway Microbial Diversity is Inversely Associated with Mite-Sensitized Rhinitis and Asthma in Early Childhood. Scientific Reports. 7(1):1820.

48. Depner M, Ege MJ, Cox MJ, Dwyer S, Walker AW, Birzele LT, Genuneit J, Horak E, Braun-Fahrländer C, Danielewicz H, Maier RM, Moffatt MF, Cookson WO, Heederik D, von Mutius E, Legatzki A. 2017. Bacterial microbiota of the upper respiratory tract and childhood asthma. The Journal of allergy and clinical immunology. 139(3):826-834.e813.

49. Li N, Qiu R, Yang Z, Li J, Chung KF, Zhong N, Zhang Q. 2017. Sputum microbiota in severe asthma patients: Relationship to eosinophilic inflammation. Respir Med. 131:192-198.

50. Ruokolainen L, Paalanen L, Karkman A, Laatikainen T, von Hertzen L, Vlasoff T, Markelova O, Masyuk V, Auvinen P, Paulin L, Alenius H, Fyhrquist N, Hanski I, Mäkelä MJ, Zilber E, Jousilahti P, Vartiainen E, Haahtela T. 2017. Significant disparities in allergy prevalence and microbiota between the young people in Finnish and Russian Karelia. Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology. 47(5):665-674.

51. Arrieta MC, Arévalo A, Stiemsma L, Dimitriu P, Chico ME, Loor S, Vaca M, Boutin RCT, Morien E, Jin M, Turvey SE, Walter J, Parfrey LW, Cooper PJ, Finlay B. 2018. Associations between infant fungal and bacterial dysbiosis and childhood atopic wheeze in a nonindustrialized setting. The Journal of allergy and clinical immunology. 142(2):424-434.e410.

52. Durack J, Huang YJ, Nariya S, Christian LS, Ansel KM, Beigelman A, Castro M, Dyer A-M, Israel E, Kraft M, Martin RJ, Mauger DT, Rosenberg SR, King TS, White SR, Denlinger LC, Holguin F, Lazarus SC, Lugogo N, Peters SP, Smith LJ, Wechsler ME, Lynch SV, Boushey HA, for the National Heart L, Blood Institute's A. 2018. Bacterial biogeography of adult airways in atopic asthma. Microbiome. 6(1):104.

53. Fazlollahi M, Lee TD, Andrade J, Oguntuyo K, Chun Y, Grishina G, Grishin A, Bunyavanich S. 2018. The nasal microbiome in asthma. The Journal of allergy and clinical immunology. 142(3):834-843.e832.

54. Kim BS, Lee E, Lee MJ, Kang MJ, Yoon J, Cho HJ, Park J, Won S, Lee SY, Hong SJ. 2018. Different functional genes of upper airway microbiome associated with natural course of childhood asthma. Allergy. 73(3):644-652.

55. Okba AM, Saber SM, Abdel-Rehim AS, Amin MM, Mohamed DA. 2018. Fecal microbiota profile in atopic asthmatic adult patients. European annals of allergy and clinical immunology. 50(3):117-124.

56. Stokholm J, Blaser MJ, Thorsen J, Rasmussen MA, Waage J, Vinding RK, Schoos AM, Kunøe A, Fink NR, Chawes BL, Bønnelykke K, Brejnrod AD, Mortensen MS, Al-Soud WA, Sørensen SJ, Bisgaard H. 2018. Maturation of the gut microbiome and risk of asthma in childhood. Nat Commun. 9(1):141.

57. Wang Q, Li F, Liang B, Liang Y, Chen S, Mo X, Ju Y, Zhao H, Jia H, Spector TD, Xie H, Guo R. 2018. A metagenome-wide association study of gut microbiota in asthma in UK adults. BMC Microbiology. 18(1):114.

58. Bannier M, van Best N, Bervoets L, Savelkoul PHM, Hornef MW, van de Kant KDG, Jöbsis Q, Dompeling E, Penders J. 2020. Gut microbiota in wheezing preschool children and the association with childhood asthma. Allergy. 75(6):1473-1476.

59. Espuela-Ortiz A, Lorenzo-Diaz F, Baez-Ortega A, Eng C, Hernandez-Pacheco N, Oh SS, Lenoir M, Burchard EG, Flores C, Pino-Yanes M. 2019. Bacterial salivary microbiome associates with asthma among african american children and young adults. Pediatric pulmonology. 54(12):1948-1956.

60. Lee JJ, Kim SH, Lee MJ, Kim BK, Song WJ, Park HW, Cho SH, Hong SJ, Chang YS, Kim BS. 2019. Different upper airway microbiome and their functional genes associated with asthma in young adults and elderly individuals. Allergy. 74(4):709-719.

61. Pang Z, Wang G, Gibson P, Guan X, Zhang W, Zheng R, Chen F, Wang Z, Wang F. 2019. Airway Microbiome in Different Inflammatory Phenotypes of Asthma: A Cross-Sectional Study in Northeast China. International journal of medical sciences. 16(3):477-485.

62. Powell EA, Fontanella S, Boakes E, Belgrave D, Shaw AG, Cornwell E, Fernandez-Crespo R, Fink CG, Custovic A, Kroll JS. 2019. Temporal association of the development of oropharyngeal microbiota with early life wheeze in a population-based birth cohort. EBioMedicine. 46:486-498.

63. Samra M, Nam SK, Lim DH, Kim DH, Yang J, Kim YK, Kim JH. 2019. Urine Bacteria-Derived Extracellular Vesicles and Allergic Airway Diseases in Children. International archives of allergy and immunology. 178(2):150-158.

64. Thorsen J, Rasmussen MA, Waage J, Mortensen M, Brejnrod A, Bønnelykke K, Chawes BL, Brix S, Sørensen SJ, Stokholm J, Bisgaard H. 2019. Infant airway microbiota and topical immune perturbations in the origins of childhood asthma. Nature Communications. 10(1):5001.

65. Al Bataineh MT, Hamoudi RA, Dash NR, Ramakrishnan RK, Almasalmeh MA, Sharif HA, Al-Hajjaj MS, Hamid Q. 2020. Altered respiratory microbiota composition and functionality associated with asthma early in life. BMC infectious diseases. 20(1):697.

66. Chiu C-Y, Chan Y-L, Tsai M-H, Wang C-J, Chiang M-H, Chiu C-C, Su S-C. 2020. Cross-talk between airway and gut microbiome links to IgE responses to house dust mites in childhood airway allergies. Scientific Reports. 10(1):13449.

67. Patrick DM, Sbihi H, Dai DLY, Al Mamun A, Rasali D, Rose C, Marra F, Boutin RCT, Petersen C, Stiemsma LT, Winsor GL, Brinkman FSL, Kozyrskyj AL, Azad MB, Becker AB, Mandhane PJ, Moraes TJ, Sears MR, Subbarao P, Finlay BB, Turvey SE. 2020. Decreasing antibiotic use, the gut microbiota, and asthma incidence in children: evidence from population-based and prospective cohort studies. The Lancet Respiratory medicine. 8(11):1094-1105.

Ruokolainen L, Parkkola A, Karkman A, Sinkko H, Peet A, Hämäläinen AM, von Hertzen L, Tillmann V, Koski K, Virtanen SM, Niemelä O, Haahtela T, Knip M. 2020. Contrasting microbiotas between Finnish and Estonian infants: Exposure to Acinetobacter may contribute to the allergy gap. Allergy. 75(9):2342-2351.
 Toivonen L, Karppinen S, Schuez-Havupalo L, Waris M, He Q, Hoffman KL, Petrosino JF, Dumas O, Camargo CA, Jr., Hasegawa K, Peltola V. 2020. Longitudinal Changes in Early Nasal Microbiota and the Risk of Childhood Asthma. Pediatrics. 146(4).

70. Ham J, Kim J, Choi S, Park J, Baek MG, Kim YC, Sohn KH, Cho SH, Yang S, Bae YS, Chung DH, Won S, Yi H, Kang HR, Kim HY. 2021. Interactions between NCR(+)ILC3s and the Microbiome in the Airways Shape Asthma Severity. Immune network. 21(4):e25.

Niemeier-Walsh C, Ryan PH, Meller J, Ollberding NJ, Adhikari A, Reponen T. 2021. Exposure to traffic-related air pollution and bacterial diversity in the lower respiratory tract of children. PloS one. 16(6):e0244341.
 Samra MS, Lim DH, Han MY, Jee HM, Kim YK, Kim JH. 2021. Bacterial Microbiota-derived Extracellular Vesicles in Children With Allergic Airway Diseases: Compositional and Functional Features. Allergy, asthma & immunology research. 13(1):56-74.

73. Schei K, Simpson MR, Øien T, Salamati S, Rudi K, Ødegård RA. 2021. Allergy-related diseases and early gut fungal and bacterial microbiota abundances in children. Clinical and translational allergy. 11(5):e12041.

74. Seppo AE, Bu K, Jumabaeva M, Thakar J, Choudhury RA, Yonemitsu C, Bode L, Martina CA, Allen M, Tamburini S, Piras E, Wallach DS, Looney RJ, Clemente JC, Järvinen KM. 2021. Infant gut microbiome is enriched with Bifidobacterium longum ssp. infantis in Old Order Mennonites with traditional farming lifestyle. Allergy. 76(11):3489-3503.

75. Turek EM, Cox MJ, Hunter M, Hui J, James P, Willis-Owen SAG, Cuthbertson L, James A, Musk AW, Moffatt MF, Cookson W. 2021. Airway microbial communities, smoking and asthma in a general population sample. EBioMedicine. 71:103538.

76. Bar K, Żebrowska P, Łaczmański Ł, Sozańska B. 2022. Airway Bacterial Biodiversity in Exhaled Breath Condensates of Asthmatic Children-Does It Differ from the Healthy Ones? Journal of clinical medicine. 11(22).

77. Lee-Sarwar KA, Chen YC, Chen YY, Kozyrskyj AL, Mandhane PJ, Turvey SE, Subbarao P, Bisgaard H, Stokholm J, Chawes B, Sørensen SJ, Kelly RS, Lasky-Su J, Zeiger RS, O'Connor GT, Sandel MT, Bacharier LB, Beigelman A, Carey VJ, Harshfield BJ, Laranjo N, Gold DR, Weiss ST, Litonjua AA. 2023. The maternal prenatal and offspring early-life gut microbiome of childhood asthma phenotypes. Allergy. 78(2):418-428.

78. Lee-Sarwar K, Dedrick S, Momeni B, Kelly RS, Zeiger RS, O'Connor GT, Sandel MT, Bacharier LB, Beigelman A, Laranjo N, Gold DR, Lasky-Su J, Litonjua AA, Liu YY, Weiss ST. 2022. Association of the gut microbiome and metabolome with wheeze frequency in childhood asthma. The Journal of allergy and clinical immunology. 150(2):325-336.

79. Tsai MH, Shih HJ, Su KW, Liao SL, Hua MC, Yao TC, Lai SH, Yeh KW, Chen LC, Huang JL, Chiu CY. 2022. Nasopharyngeal microbial profiles associated with the risk of airway allergies in early childhood. Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi. 55(4):777-785.

80. Zheng P, Zhang K, Lv X, Liu C, Wang Q, Bai X. 2022. Gut Microbiome and Metabolomics Profiles of Allergic and Non-Allergic Childhood Asthma. Journal of asthma and allergy. 15:419-435.

 Mubanga M, Ploner A, Schuppe-Koistinen I, Magnusson PKE, Boulund F, Debelius JW, Almqvist C.
 2023. The gut microbiome and asthma in a Swedish twin study. Clinical & Experimental Allergy. 53(11):1212-1215.

82. Thorsen J, Li XJ, Peng S, Sunde RB, Shah SA, Bhattacharyya M, Poulsen CS, Poulsen CE, Leal Rodriguez C, Widdowson M, Neumann AU, Trivedi U, Chawes B, Bønnelykke K, Bisgaard H, Sørensen SJ, Stokholm J. 2023. The airway microbiota of neonates colonized with asthma-associated pathogenic bacteria. Nature Communications. 14(1):6668.