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REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author):

Accurately predicting protein fitness is essential for protein engineering. Currently the 

experimental technique can produce data in a large scale but is expensive and slow, and 

computational methods are urgently required. This study employed meta-learning to train the 

models and achieved superior results. The idea is quite direct and reasonable. The writing is clear 

and easy to follow. However, the currently presented form needs large improvements and deep 

investigation of the underlying mechanism is required. 

Major: 

1. The ridge-regression was currently used as baseline but this is the fitting model, not in the 

same level as MAML. Usually, a multi-task technique is used for showing the efficiency. 

2. The manuscript is limited in SPC comparison. Since SPC might be biased, a direct comparison of 

predicted vs actual values is required. 

3. MAML is well known to be sensitive to the hyper-parameters, and the parameter sensitivity 

should be analyzed. 

4. For the specific cases, the authors need to dive into the reasons why the current strategy 

works, and what is the strength and weakness of current models: e.g. any bias on amino acid 

types, secondary structure, etc. Do the prediction depend on homology and what's the 

performance if excluding homologous protein during the meta-training. 

5. As the authors’ group has wet experimental conditions, they are suggested to prove their 

method on one case to improve the affinity. If they could validate their predictions by engineering 

the proteins,their work will be greatly improved. 

6. Literature review: the authors should review related works using meta-learning, e.g. protein 

engineering, drug optimization. 

7. Most figures needs re-designing to avoid the large blank regions. 

Reviewer #2 (Remarks to the Author):

The authors present a new protocol for predicting the fitness landscape of a target protein. 

Towards this, they build on top of pre-trained language models which they finetune via LORA, a 

parameter-efficient finetuning technique. Additionally, they leverage existing experimental 

information from different yet related proteins (meta-transfer learning) and instead of predicting 

the change of a protein’s fitness upon mutation numerically, the authors propose to instead simply 

rank mutants which bypasses the problem of enforcing different protein functions/fitnesses on the 

same scale. The authors evaluate the model using the established protein gym dataset which is a 

cleaned and pre-processed set of 87 deep mutational scanning assays. 

The authors make their method available and perform an ablation study to understand the impact 

on individual components. The paper is well written but the MAML description could be improved to 

bring readers up to speed who are not familiar with the concept. I would still like to better 

understand why training on potentially unrelated proteins with vastly different 

sequence/structure/function helps so much in predicting the mutation effect of a target protein. 

Especially, as this appears to be the major driver for performance improvement on extrapolation 

(Fig. 4a). 

Therefore, I wonder mostly about the relationship between the choice of related proteins and 

performance. When choosing two proteins from protein gym to get additional data, I think it would 

be interesting to better understand the effect of a) how to choose the proteins, i.e., did you 

compare embedding distance to sequence similarity (MMSeqs2) or structure similarity (Foldseek)? 

- Also, irrespective of the method chosen for picking those additional proteins, it would be 

interesting to evaluate the impact of similarity between those proteins and the actual target 

protein. E.g., is there any relationship between the similarity of the related proteins to the target 

protein? (assumption would be: the more similar the related proteins for which you already have 



experimental data, the more informative for the target protein). - This ties in with your Discussion 

statement about “the similarities between the proteins in ProteinGym are low overall”. Would 

suggest quantifying. The same goes for the number of mutations available for the specific choice 

of related proteins, i.e., does the model perform better if more mutations are provided via related 

proteins? 

Fig. 1: make more clear what objective/loss is used in panel B (similar to panel C where you state 

that you use ranking loss). 

Fig. 1: similarly, make clear whether only LORA adapters are finetuned in panel C or the full 

model. 

Introduction: you state ESM-IF as an example for pLMs. However, this model is an inverse folding 

model which has a different objective and requires labelled data (3D structures). There are many 

more publicly available (s.a. ProtGPT2, ProtT5, SeqVec to name a few), open source pLMs. I would 

suggest to rather reference one of those or simply remove the ESM-IF citation. 

You state that accuracy of pLMs remains limited. While this is correct, esp. w.r.t. Mutation effect 

prediction, this sounds a bit too negative to me. Sure there is plenty of room for improvement but 

after all, most high-scoring methods for protein-gym are either pLM based approaches or hybrid 

approaches (see public leaderboard at proteingym.org shows that TranceptEVE, EVE, VESPA are 

among the best methods and those are all hybrid/pLM-based). 

Results: “ProteinGym is used as the database to retrieve due to the diversity”. I am not sure 

whether I would argue about diversity if you are working with a set of 87 proteins. 

There is already existing work that uses GEMME to generate auxiliary labels; maybe reference: 

“Alignment-based protein mutational landscape prediction doing more with less” 

The concept of MAML might not be widely known. Expanding the brief introduction at the 

beginning of Results might help to bring readers up to speed. Maybe also adding an example 

helps. 

Results: “MSE denotes fine-tuning the entire PLM with fitness labels as done by Rives et al.,”. I 

thought that Rives et al. simply took the output probability of the amino acids (or rather the 

difference thereof) for approximating mutation effect, i.e., there was no finetuning involved from 

what I remember. Maybe double check and clarify/rewrite if needed. 

Results: “Meanwhile, LTR + LoRA outperforms the above methods on all training set sizes in terms 

of both Spearman correlation and NDCG”. Make clear that this is a bit circular: you replace MSE by 

ranking-loss, benchmark via metrics that solely care about ranking and you do better. This is fine 

but it should be stated very clearly. 

Fig 2 a and 2b show identical trends. Adding panel B only adds minor information. Would consider 

moving to SOM. 

Discussion: “ For example, when predicting the properties highly correlated to protein structure 

such as binding and thermostability, one can select SaProt”. Any way to back this up with 

numbers/examples? 

Add in main text which ESM version was used. Consider benchmarking other versions of ESM as 

well. It would be interesting to see the effect of model size on your benchmark, i.e., does model 

size really constantly lead to better downstream performance? 

How were structures computed for SAProt? 

Given that LORA injects adapters in each layer, the architecture of the underlying pLMs can have 

an impact on how many trainable parameters each model has at the end. State clearly how many 

trainable parameters each of the compared models has. 

Make absolutely clear that protein gym compares methods that never used any DMS data for 

training while you did. Once you did this, you could also put your method into perspective of fully 

unsupervised methods compared in the public leaderboard (of course, always with the remark of 

the difference between unsupervised vs supervised approach). 

- I appreciate that you visualized all your results but consider adding a table with numbers and 

standard errors to SOM to have exact numbers to compare (might be important for others in the 

future who would like to compare to your method). 

I hope my comments above provide some constructive feedback - I really like the idea and 

generality of your approach - best, 

Michael Heinzinger 



Reviewer #2 (Remarks on code availability):

Did not run the code but the README of the github suggests that reported performances can be 

reproduced. Given the large numbers of parameters available, I suggest to provide a script that 

allows to reproduce the numbers reported in the paper.



Response to the Referees for manuscript NCOMMS- 24-07326 

Response to Reviewer1 

1. The ridge-regression was currently used as baseline but this is the fitting model, not in the 
same level as MAML. Usually, a multi-task technique is used for showing the efficiency.

Response: We thank Reviewer1 for the comments and suggestions. In the ablation study, we have 
compared ridge-regression with the non-MAML version of FSFP, i.e., LTR + LoRA (Fig.R1 below). 
The results show that LTR + LoRA already outperforms ridge-regression while MTL further improves 
the performance of our approach.

However, we find that directly applying multi-task learning may be neither a suitable solution to few-
shot protein fitness prediction nor a proper baseline in such scenario. Conceptually, multi-task learning 
and meta-learning aim to solve different problems despite that they both leverage the correlation be-
tween the training tasks. Multi-task learning aims to learn shared representations to improve the per-
formance on all training tasks simultaneously (Zhang et al., A survey on multi-task learning, IEEE 
Transactions on Knowledge and Data Engineering, 34(12), 2022), while the goal of meta-learning is 
fast adaptation to unseen task (Huisman et al., A survey of deep meta-learning, Artificial Intelligence 
Review, 54, 2021). Due to its problem formulation, multi-task learning does not allow adaptation to 
unseen tasks, i.e., generalize from auxiliary tasks to the target task, at least in a straightforward manner.

To apply multi-task learning to our scenario, a PLM should be simultaneously trained on the target 
task along with the auxiliary tasks we built, and the performance on them is expected to be jointly 
improved. Unfortunately, the training data size of these tasks are extremely unbalanced, e.g., tens of 
training examples for the target task and thousands of those for the auxiliary tasks, and thus the resulted 
model will be biased towards the auxiliary tasks and not suitable for the target protein. On contrary, 
MAML enables the PLM to learn optimal initial parameters from the auxiliary tasks so that it can 
rapidly adapt to the target task. We have tried our best to research the literature but failed to find 
effective implementation of multi-task learning for few-shot protein fitness prediction. If available, we 
welcome Reviewer1 to recommend a proper multi-task learning baseline for our scenario.



2. The manuscript is limited in SPC comparison. Since SPC might be biased, a direct compar-
ison of predicted vs actual values is required.

Response: Thanks for the advice. Generally, the goal of protein engineering is to identify mutants with 
enhanced fitness, so ranking-related metrics assume greater importance. Following the comment, we 
have further added two metrics that take the actual label values into account in ablation study: Pearson 
correlation and MAE (Fig.R2 below and Page 5 in the revised manuscript). FSFP effectively improves 
the performance of ESM-2 in terms of Pearson correlation but cannot optimize for MAE. Meanwhile, 

Fig.R1 Ablation study on ESM-2 (copied from Fig.2 in the manuscript). a) Average performance of each 
strategy across all datasets in ProteinGym with respect to the training data size, evaluated by Spearman correla-
tion. For each dataset, we randomly pick 20, 40, 60, 80, and 100 single-site mutants as training set, with all the 
rest as test set. Each dot in the figure is the average test performance of 5 random data splits, and the error bars 
represent the standard deviation caused by different splits. Two-sided Mann-Whitney U-tests are used for com-
paring the performance of FSFP with all other strategies, getting P < 0.0079 for all training sizes. b) Distribution 
of the performance improvement in Spearman correlation over zero-shot prediction across all datasets in Pro-
teinGym, with the training size of 40. The performance gain of each dataset is averaged among the 5 random 
splits.



the regression-based methods exhibit substantial MAE as well (Fig.R2d), rendering their absolute out-
put values also impractical for real-world applications. In the context of few-shot learning, predicting 
exact label values becomes challenging due to significant differences in their range between training 
and testing data. Therefore, we recommend using LTR to train PLMs, which aligns with the objective 
of improving mutant fitness rather than predicting precise numerical values.

Fig.R2 Ablation study on ESM-2 (copied from Fig.S1 in the SI). a) Effect of changing the model size, with 
the training set size of 40. The performance is averaged across all datasets in ProteinGym, and error bars represent 
the standard deviation caused by random splits. The 650M model is chosen for other experiments. Average per-
formance of different strategies is evaluated by b) NDCG, c) Pearson correlation, and d) MAE. When calculating 
MAE, the labels in the test set are standardized by removing the mean and scaling to unit variance.



3. MAML is well known to be sensitive to the hyper-parameters, and the parameter sensitivity 
should be analyzed.

Response: Thanks for this insightful comment. The gradient step size α and number g for each inner 
loop of MAML are important hyperparameters. Taking ESM-2 (650M) as the backbone, we have tried 
different combinations of α and g on our benchmark and find that FSFP is overall not sensitive to g
but prefers a smaller α (Table R1 below and Page 14 in the revised manuscript). As shown in Fig.R2a, 
we have also analyzed the impact of model size on FSFP, and find that FSFP keeps achieving better 
performance on larger model (Page 5 in the revised manuscript).

4. For the specific cases, the authors need to dive into the reasons why the current strategy 
works, and what is the strength and weakness of current models: e.g. any bias on amino acid 
types, secondary structure, etc. Do the prediction depend on homology and what's the per-
formance if excluding homologous protein during the meta-training.

Response: Thank Reviewer1 for these suggestions. We have added an experiment where we deliber-
ately limit the number of mutants in the auxiliary tasks and take the labeled data from dissimilar pro-
teins, i.e., with the lowest similarities to the target protein (Fig.R3 below and Page 12 in the revised 
manuscript). Reasonably, we find that meta-training PLMs on the proteins that contain more mutants 
and have higher similarity to the target protein leads to better performance of transfer learning 
(Fig.R3a). Compared with finetuning PLM without MTL (LTR + LoRA), meta-learning is helpful 
when the dataset size of the auxiliary tasks is larger than 500 even if the retrieved proteins have low 
similarities. Since our third auxiliary task is solely built from MSA of the target protein, the negative 
impact of the dissimilar proteins can be mitigated. Notably, in the worst case (the leftmost bar in 
Fig.R3a), the performance of FSFP is comparable to LTR + LoRA and still exceeds zero-shot predic-
tion by a large margin. The underlying reason is that we use the target training data to early stop meta-
training (Methods), and thus prevent the model from overfitting on the low-quality auxiliary tasks. In 
general, the more informative the auxiliary task for the target protein, the more significant the effect 
of meta-learning.

The quality of the pseudo labels generated by GEMME can also affect the performance of FSFP. If the 
number of homologous sequences after alignment is quite limited, the model will fail to learn useful 
information from the third auxiliary task. In Fig.R1, we have shown that the model performance drops 
if we exclude MSA information during meta-learning (FSFP v.s. LTR + LoRA + MTL (no MSA)), but 

Table R1. Performance of ESM-2 (FSFP) under different MAML settings (copied from Table S2 in the SI).

MAML setting Spearman correlation

α = 0.005

g = 2 0.503 ± 0.004

g = 3 0.503 ± 0.001

g = 4 0.500 ± 0.003

g = 5 0.503 ± 0.006

g = 6 0.500 ± 0.006

g = 5

α = 0.1 0.487 ± 0.008

α = 0.05 0.490 ± 0.007

α = 0.01 0.496 ± 0.004

α = 0.005 0.503 ± 0.006

α = 0.001 0.503 ± 0.004

Average performance across all datasets in the benchmark are reported, along with the standard deviation caused 
by random splits. The training set size is 40. α and g is the gradient step size and number during the inner loop of 
MAML.



Fig.R3 Comparison of different auxiliary task selection strategies (copied from Fig.S7 in the SI). a) Perfor-
mance of FSFP when limiting the number of mutants in the auxiliary tasks and (or) taking the labeled data from 
dissimilar proteins (i.e., with the lowest similarities to the target protein). The base model is ESM-2 and the target 
training set size is 40. Error bars represent the standard deviation caused by random splits. b) Similarity of the 
most relevant protein retrieved for building auxiliary tasks, using MMseqs2 and FoldSeek respectively. c) Break-
down performance by the function to predict, using different methods to search similar proteins. The target train-
ing set size is 40. d) Similar to Fig.R3c, but performance is by the taxon of the target protein.



still better than the zero-shot inference.

We have also explored the effect of using MMseqs2 (considering the sequence identity) and FoldSeek 
(considering the structure similarity) to search for related proteins, and reported the performance of 
different approaches by the taxon and function of the target protein (Fig.R3b,c,d and Page 12 in the 
revised manuscript). Overall, there is no huge difference in utilizing these search methods, indicating 
that they are all reliable for identifying relevant training datasets (Fig.R3c,d). In addition, we can find 
that the zero-shot performance of a PLM varies on different types of datasets, e.g., ESM-2 performs 
best on predicting activity while SaProt performs best on predicting expression (Fig.R3c). Such per-
formance trend across the datasets remains after FSFP training, which suggests that FSFP may keep 
the advantage or bias of the trained PLM over data when boosting its accuracy.

Overall, the strength of FSFP is that in most cases, e.g., utilizing different protein search methods, it 
can significantly boost the performance of PLMs using few labeled mutants of the target proteins. Its 
weakness is that the improvements brought by FSFP can be affected by the quality of the built auxiliary 
tasks as well as the inductive bias of the trained PLMs. The above discussion has been summarized in 
the revised manuscript.

5. As the authors’ group has wet experimental conditions, they are suggested to prove their 
method on one case to improve the affinity. If they could validate their predictions by engi-
neering the proteins, their work will be greatly improved.

Response: We have demonstrated the practical efficacy of FSFP by engineering the Phi29 DNA pol-
ymerase using wet-lab experiments (Page 10, 11 in the revised manuscript). Phi29 DNA polymerase 
has a pivotal role in biotechnological applications, and has been rigorously validated as an efficient 
isothermal DNA amplification enzyme. Improving the thermostability in Phi29 is important for its 
application during efficient isothermal DNA amplification and thus has currently attracted great re-
search interest (Ordóñez et al., International Journal of Molecular Sciences 24, 9331 (2023); Povilaitis 
et al., Protein Engineering, Design Selection 29, 617-628 (2016)). Herein, we focused on enhancing 
its thermostability by starting from acquiring enough positive single-site mutants, so that potentially 

Fig.R4 Engineering Phi29 using FSFP (copied from Fig.5 in the manuscript). a) The workflow of using FSFP 
to engineer the Phi29 DNA polymerase. b) Wet-lab experimental Tm values of the top 20 single-site mutants 
predicted by ESM-1v before and after training by FSFP.



better multi-site mutants can be originated from them afterwards. We applied FSFP to train ESM-1v 
based on a limited set of wet-lab experimental data and then used it to find new single-site mutants for 
wet-lab experiments (Fig.R4a and Methods).

Initially, in the absence of prior wet-lab data, ESM-1v was employed to identify the top 20 single-site 
mutants of Phi29 based on its zero-shot predictions for the first round of wet-lab experiments. These 
mutants were constructed, purified, and subsequently assayed to ascertain their thermal stability. The 
resultant melting temperatures (Tm) were measured and compared against the wild-type baseline. We 
then trained ESM-1v via FSFP on all 20 mutants with these Tm values as labels. The enhanced model 
was then used to predict a new set of top 20 single-site mutants for further wet-lab experimental eval-
uation.

When comparing the top 20 predictions from ESM-1v before and after FSFP training, it can be found 
that the average Tm value is improved by more than 1℃ and the positive rate is improved by 25% 
(Fig.R4b and Table R2). Among the positive mutants predicted by ESM-1v (FSFP), 9 of them do not 
appear in the training data, suggesting that FSFP can enable PLMs to identify more protein variants 
with higher fitness. These results affirm the potential of FSFP in accelerating the iterative cycle of 
design and testing in protein engineering, thereby being helpful to the development of proteins with 
enhanced functional profiles. We have made the checkpoint for the trained ESM-1v available on the 
public GitHub repository.

Table R2. Wet-lab experimental Tm for the single-site mutants of Phi29 (copied from Table S1 in the SI).

From ESM-1v (Zero-Shot) Tm(℃) From ESM-1v (FSFP) Tm(℃) 

T441L 54.38 T441L 54.38

S10I 53.75 Q55D 53.94

G245V 53.46 S551L 53.90

Q257I 53.37 V19P 53.86

V130L 53.09 L567E 53.61

P129S 52.82 G245V 53.46

V54N 52.67 V566E 53.38

Wild-type 52.64 V130L 53.09

C290K 52.58 S551M 53.04

Q257V 51.97 H3K 52.92

Q257A 51.97 F526L 52.84

W367R 51.74 T140P 52.76

Q257L 51.27 Wild-type 52.64

Y449G 51.11 C290K 52.58

V54E 51.04 P558W 52.56

M30Y 51.03 V566K 52.50

Y369E 50.51 V568K 52.40

W327D 49.90 Y224D 52.23

C530K 49.30 P404E 52.20

H35G 48.97 M506T 51.76

W327K 48.51 T542Y 51.21

The mutants are the top 20 predictions from ESM-1v before and after trained by FSFP respectively.



6. Literature review: the authors should review related works using meta-learning, e.g. protein 
engineering, drug optimization.

Response: Thanks for reminding. Two references have been added to Page 14 in the revised manu-
script:

Wang et al., ZeroBind: a protein-specific zero-shot predictor with subgraph matching for drug-target 
interactions, Nature Communications, 14, 2023

Gao et al., Pan-Peptide Meta Learning for T-cell receptor–antigen binding recognition, Nature Ma-
chine Intelligence, 5, 2023

7. Most figures need re-designing to avoid the large blank regions.

Response: We have removed the blank regions in the figures. Thanks for pointing this out

Response to Reviewer2 

1. When choosing two proteins from protein gym to get additional data, I think it would be 
interesting to better understand the effect of a) how to choose the proteins, i.e., did you com-
pare embedding distance to sequence similarity (MMSeqs2) or structure similarity (Fold-
seek)?

Response: We thank Reviewer2 for the comments and suggestions. We have explored the effect of 
using MMseqs2 and FoldSeek to search for related proteins, and report the performance of different 
approaches by the taxon and function of the target protein (Fig.R3b,c,d in the first reviewer’s comment). 
Overall, there is no huge difference in utilizing these searching methods, indicating that they are all 
reliable for identifying relevant training datasets (Fig.R3c,d). In addition, we can find that the zero-
shot performance of a PLM varies on different types of datasets, e.g., ESM-2 performs best on pre-
dicting activity while SaProt performs best on predicting expression (Fig.R3c). Such performance 
trend across the datasets remains after FSFP training, which suggests that FSFP may keep the ad-
vantage or bias of the trained PLM over data when boosting its accuracy.

2. Also, irrespective of the method chosen for picking those additional proteins, it would be 
interesting to evaluate the impact of similarity between those proteins and the actual target 
protein. E.g., is there any relationship between the similarity of the related proteins to the 
target protein? This ties in with your Discussion statement about “the similarities between 
the proteins in ProteinGym are low overall”. Would suggest quantifying. The same goes for 
the number of mutations available for the specific choice of related proteins, i.e., does the 
model perform better if more mutations are provided via related proteins?

Response: We thank Reviewer for the questions. We have added an experiment where we deliberately 
limit the number of mutants in the auxiliary tasks and take the labeled data from dissimilar proteins, 
i.e., with the lowest similarities to the target protein (Page 12 in the revised manuscript and Fig.R3a in 
the first reviewer’s comment). Reasonably, we find that meta-training PLMs on the proteins that con-
tain more mutants and have higher similarity to the target protein leads to better performance of transfer 
learning (Fig.R3a). Compared with finetuning PLM without MTL (LTR + LoRA), meta-learning is 
helpful when the dataset size of the auxiliary tasks is larger than 500 even if the retrieved proteins have 
low similarities. Since our third auxiliary task is solely built from MSA of the target protein, the neg-
ative impact of the dissimilar proteins can be mitigated. Notably, in the worst case (the leftmost bar in 
Fig.R3a), the performance of FSFP is comparable to LTR + LoRA and still exceeds zero-shot predic-
tion by a large margin. The underlying reason is that we use the target training data to early stop meta-
training (Methods), and thus prevent the model from overfitting on the low-quality auxiliary tasks. In 



general, the more informative the auxiliary task for the target protein, the more significant the effect 
of meta-learning.

We have removed the statement about “the similarities between the proteins in ProteinGym are low 
overall” and instead provided the similarity distribution of the most relevant protein retrieved for build-
ing auxiliary tasks (Fig.R3b).

3. Fig. 1: make more clear what objective/loss is used in panel B (similar to panel C where you 
state that you use ranking loss).

Response: We thank Reviewer for pointing this out. During MAML training, ranking loss is used. We 
have updated Fig.1b in the revised manuscript as below.

4. Fig. 1: similarly, make clear whether only LORA adapters are finetuned in panel C or the 
full model.

Response: When transferring PLMs to the target task, only LoRA parameters are updated. We have 
updated Fig.1c as below.

5. Introduction: you state ESM-IF as an example for pLMs. However, this model is an inverse 
folding model which has a different objective and requires labelled data (3D structures). 
There are many more publicly available (s.a. ProtGPT2, ProtT5, SeqVec to name a few), 
open source pLMs. I would suggest to rather reference one of those or simply remove the 
ESM-IF citation.

Response: We thank Reviewer2 for pointing us to the more suitable references. We have replaced the 
ESM-IF citation with ProtT5 (Page 2 in the revised manuscript):

Elnaggar et al., ProtTrans: Toward understanding the language of life through self-supervised learning, 
IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(10), 2022



6. Results: “ProteinGym is used as the database to retrieve due to the diversity”. I am not sure 
whether I would argue about diversity if you are working with a set of 87 proteins.

Response: We have rewritten this statement to “ProteinGym is used as the database to retrieve because 
it was the largest public collection of DMS datasets at the time of writing.”

7. There is already existing work that uses GEMME to generate auxiliary labels; maybe refer-
ence: “Alignment-based protein mutational landscape prediction doing more with less”

Response: We thank Reviewer2 for pointing us to this paper. We have added this reference to Page 4, 
8 and 14 in the revised manuscript.

8. The concept of MAML might not be widely known. Expanding the brief introduction at the 
beginning of Results might help to bring readers up to speed. Maybe also adding an example 
helps.

Response: We have slightly improved the description of MAML on Page 4 in the revised manuscript: 
We apply model-agnostic meta-learning (MAML), a popular gradient-based meta-learning method, to 
meta-train PLMs on the built tasks (Fig.1b and Methods). In effect, MAML learns to find the optimal 
initial model parameters such that small changes in them will produce large improvements on the target 
task.

We have also added two references that utilize MAML to recognize drug-target interactions and anti-
gen binding (Page 14 in the revised manuscript):

Wang et al., ZeroBind: a protein-specific zero-shot predictor with subgraph matching for drug-target 
interactions, Nature Communications, 14, 2023

Gao et al., Pan-Peptide Meta Learning for T-cell receptor–antigen binding recognition, Nature Ma-
chine Intelligence, 5, 2023

9. Results: “MSE denotes fine-tuning the entire PLM with fitness labels as done by Rives et 
al.,”. I thought that Rives et al. simply took the output probability of the amino acids (or 
rather the difference thereof) for approximating mutation effect, i.e., there was no finetuning 
involved from what I remember. Maybe double check and clarify/rewrite if needed.

Response: The work of Rives et al. has a supervised learning task for predicting mutational effect. 
When finetuning ESM-1b, they regress the (scaled) mutational effect with the likelihood ratio com-
puted by ESM-1b (Page 8 in their Supplementary Information).

10. Results: “Meanwhile, LTR + LoRA outperforms the above methods on all training set sizes 
in terms of both Spearman correlation and NDCG”. Make clear that this is a bit circular: 
you replace MSE by ranking-loss, benchmark via metrics that solely care about ranking and 
you do better. This is fine but it should be stated very clearly.

Response: We have added two metrics that take the actual label values into account: Pearson correla-
tion and MAE (Page 5 in the revised manuscript and Fig.R2c,d in the first reviewer’s comment). FSFP 
effectively improves the performance of ESM-2 in terms of Pearson correlation but cannot optimize 
for MAE. Generally, the goal of protein engineering is to identify mutants with enhanced fitness, so 
ranking-related metrics assume greater importance. On the other hand, in the context of few-shot learn-
ing, accurately predicting exact label values becomes challenging due to significant differences in their 
range between training and testing data. In fact, the regression-based methods exhibit substantial MAE 
as well (Fig.R2d), rendering their absolute output values also impractical for real-world applications. 
Since the order matters more, the ranking-related metrics are favored for fitness prediction and thus 
LTR is more suitable.



11. Fig 2a and 2b show identical trends. Adding panel B only adds minor information. Would 
consider moving to SOM.

Response: We thank Reviewer2 for this suggestion. Fig.2b has been replaced with the distribution of 
the performance improvement over zero-shot prediction (see Fig.R1 in the first reviewer’s comment). 
Original Fig.2b has been moved to SI.

12. Discussion: “For example, when predicting the properties highly correlated to protein struc-
ture such as binding and thermostability, one can select SaProt”. Any way to back this up 
with numbers/examples?

Response: The discussion section has been rewritten and this statement has been removed (Page 12 in 
the revised manuscript). We have reported the performance of different approaches by the taxon and 
function of the target protein in Fig.R3c,d in the first reviewer’s comment.

13. Add in main text which ESM version was used. Consider benchmarking other versions of 
ESM as well. It would be interesting to see the effect of model size on your benchmark, i.e., 
does model size really constantly lead to better downstream performance?

Response: Thanks for the comment. We have made clear that the 650M version of ESM-2 was used 
(Page 5 and 8 in the revised manuscript). We have also analyzed the impact of changing the model size 
(35M, 150M, 650M and 3B) of ESM2 on FSFP, and find that FSFP keeps achieving better performance 
on larger model (Page 5 in the revised manuscript and Fig.R2a in the first reviewer’s comment).

14. How were structures computed for SAProt?

Response: To build the inputs for SaProt, we obtained the structures of the proteins via AlphaFold2 or 
download from AlphaFoldDB if available, and this has been described on Page 15 in the manuscript.

15. Given that LORA injects adapters in each layer, the architecture of the underlying pLMs 
can have an impact on how many trainable parameters each model has at the end. State 
clearly how many trainable parameters each of the compared models has.

Response: For each of the compared PLMs, the 650M version is chosen for evaluation, where the 
trainable LoRA parameters account for 1.84% (the difference between the actual numbers are small) 
of the entire model. This statement has been added to Page 8 in the revised manuscript.

16. Make absolutely clear that protein gym compares methods that never used any DMS data 
for training while you did. Once you did this, you could also put your method into perspec-
tive of fully unsupervised methods compared in the public leaderboard (of course, always 
with the remark of the difference between unsupervised vs supervised approach).

Response: Thanks for the comment. On page 5 in the revised manuscript, we have stated that “Pro-
teinGym is originally used for evaluating the zero-shot performance of PLMs, and we turn it into a 
few-shot learning benchmark as follows.”

17. I appreciate that you visualized all your results but consider adding a table with numbers 
and standard errors to SOM to have exact numbers to compare (might be important for 
others in the future who would like to compare to your method).

Response: We thank Reviewer2 for this suggestion. The detailed performance of different approaches 
on each dataset has now been uploaded to the public GitHub repository (Page 17 in the revised manu-
script).

18. Did not run the code but the README of the github suggests that reported performances 
can be reproduced. Given the large numbers of parameters available, I suggest to provide a 



script that allows to reproduce the numbers reported in the paper.

Response: We have updated the default hyperparameters of the code and provided a bash script that 
automatically runs the pipeline of our benchmark. Directly run it according to the guidance should 
reproduce the results.



REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author):

I have no further comments. 

Reviewer #2 (Remarks to the Author):

Thanks a lot for your thorough revision. All my concerns were addressed. 

Only some minor things that came up during the changes introduced via the revision: 

- it is very interesting to see that your approach yields the exact same mutant as the one 

proposed by the zero-shot approach (T441L, Table R2). I think this is worth noting this 

prominently, especially, as you keep arguing throughout the manuscript that the ranking of 

candidates is more important than their precise values (which I agree but after all if your 

complicated method reaches at the end of the day the exact same highest-scoring mutant, i.e., 

the one that's ranked best, then I think this should be stated somewhere. I understand that you 

increase the total number of mutants that are better than WT but I think equally important is the 

highest scoring variant that can be found via a method (so good that you already highlight that 

your method increases the number of good mutants but maybe also mention in the same or next 

sentence that this did not lead to a mutant that improved overall scoring). 

- In the revision you mention that "The underlying reason is that we use the target training data to 

early stop meta". I think this is an important piece of information. In Figure R3 you then write that 

" The base model is ESM-2 and the target training set size is 40. ". Does that mean that you 

computed early stopping just on those 40 proteins? - After all, in general, none of the samples 

used to determine early stopping should be used for any sort of benchmarking. Given that I have 

to admit that your method becomes a bit circular and I keep losing overview on what fraction of 

data you used at what point, I would just ask you to make absolutely sure that all benchmarks 

adhere to: a) none of the proteins used for early stopping were used for benchmarking within a 

given cross-validation split and b) if you limit the number of samples of the target protein used to 

optimize the model, make sure to factor in the number of early stopping samples into this number. 

After all, this is what would happen in a real-life scenario: you have e.g. 20 measurements and 

with those 20 you need to do everything, from training to early stopping etc. Reason why I bring 

this up: I find it really irritating how much your method benefits from training on a completely 

unrelated proteins with very different functions than what you are trying to optimize (at least, this 

is my take away from Fig. R3a. - also in Fig. R3a: from what I understood, you chose the protein 

with lowest sequence similarity as aux task here. Maybe then rather write in the legend sth like 

"low seq. sim" instead of "low task sim" (after all the two might be related but one you can 

quantify and the other is rather vague). 



Response to Reviewer2 

1. it is very interesting to see that your approach yields the exact same mutant as the one pro-
posed by the zero-shot approach (T441L, Table R2). I think this is worth noting this promi-
nently, especially, as you keep arguing throughout the manuscript that the ranking of can-
didates is more important than their precise values (which I agree but after all if your com-
plicated method reaches at the end of the day the exact same highest-scoring mutant, i.e., the 
one that's ranked best, then I think this should be stated somewhere. I understand that you 
increase the total number of mutants that are better than WT but I think equally important 
is the highest scoring variant that can be found via a method (so good that you already high-
light that your method increases the number of good mutants but maybe also mention in the 
same or next sentence that this did not lead to a mutant that improved overall scoring).

Response: Thanks for the advice. We have stated this clearly on Page 10 in the revised manuscript as 
below. Specifically, the best mutant (i.e., the one with the highest Tm value) found by ESM-1v (FSFP) 
is also recommended by ESM-1v (Zero-shot). However, among the positive mutants predicted by 
ESM-1v (FSFP), 9 of them do not appear in the training data, suggesting that FSFP can enable PLMs 
to identify more protein variants that are better than wild type.

2. In the revision you mention that "The underlying reason is that we use the target training 
data to early stop meta". I think this is an important piece of information. In Figure R3 you 
then write that " The base model is ESM-2 and the target training set size is 40. ". Does that 
mean that you computed early stopping just on those 40 proteins?

Response: Yes. The meta-training process (training on the data from the auxiliary tasks) is stopped 
according to the validation performance on the 40 training examples from the target protein. These 40 
training examples are then used to keep fine-tuning the meta-learned model. The fine-tuning process 
is also stopped based on these 40 examples. Please see the reply below for details.

3. After all, in general, none of the samples used to determine early stopping should be used 
for any sort of benchmarking. Given that I have to admit that your method becomes a bit 
circular and I keep losing overview on what fraction of data you used at what point, I would 
just ask you to make absolutely sure that all benchmarks adhere to: a) none of the proteins 
used for early stopping were used for benchmarking within a given cross-validation split and 
b) if you limit the number of samples of the target protein used to optimize the model, make 
sure to factor in the number of early stopping samples into this number.

Response: a) During the transfer learning process (training on the data from the target protein), the 
examples used for early stopping are split from the target training data but not from the testing data 
(where we compute the performance metrics), and there is no data leakage in our benchmark. b) We 
achieve early stopping by using the training set itself and do not require an extra validation set. Given 
a training set, we first adopt a cross-validation scheme on this dataset to estimate the number of training 
iterations, and then train that number of iterations on the whole data of it. This procedure has been 
detailed in the Method section (Page 16 in the manuscript), and also copied below.

When sufficient labeled data are available, early stopping is generally based on a separate validation 
set. However, a held-out validation set may result in insufficient training data in a low-resource sce-
nario. On the other hand, if the validation data size is assigned too small, the validation scores such as 
Spearman correlation may not be representative enough for early stopping. Based on these considera-
tions, we propose to estimate the number of training iterations for transfer learning by Monte Carlo 
cross-validation. Specifically, we create 5 random splits of the training set into training and validating 
data. The proportion of training and validating data is 0.5:0.5 when the training data size is less than 



50 otherwise 0.75:0.25. For each split, the model is trained on the sub-sampled training data for up to 
500 steps, and we record the Spearman correlation calculated on the validating data every 5 steps. 
After 5 rounds of training and validating, we choose the training step number with the highest average 
validation score across different splits, and finally train the model for that number of steps on the whole 
training data.

The training data from the target protein is also used to early stop the meta-training procedure. Simi-
larly, 5 random splits of it are generated first. For every 5 steps of the outer optimization during meta-
training, we train the current meta-learned model 𝑓𝜔,𝜃 on the sub-sampled target training sets for 5 
gradient steps (same to the inner optimization) and compute the validation Spearman scores. We stop 
meta-training if the average validation score of different splits does not improve within 20 consecutive 
records and pick the best meta-learner according to this score.

4. also in Fig. R3a: from what I understood, you chose the protein with lowest sequence simi-
larity as aux task here. Maybe then rather write in the legend sth like "low seq. sim" instead 
of "low task sim" (after all the two might be related but one you can quantify and the other 
is rather vague).

Response: Thanks for the suggestion. The legend of Fig.S7a have been changed to “FSFP (low protein 
similarity)”. Since the embeddings computed by PLMs can also have structural information, we as-
sume that “protein similarity” would be better than “sequence similarity”.



REVIEWERS' COMMENTS

Reviewer #2 (Remarks to the Author):

Thanks for the swift reply; all my comments were addressed.


	NCOMMS-24-07326C 0
	NCOMMS-24-07326C 1
	NCOMMS-24-07326C 2
	Response to the Referees for manuscript NCOMMS- 24-07326
	Response to Reviewer1
	Response to Reviewer2

	NCOMMS-24-07326C 3
	NCOMMS-24-07326C 4
	Response to Reviewer2

	NCOMMS-24-07326C 5

