Supporting Information

Design and radiosynthesis of a class-IIa HDAC inhibitor with high molar activity via repositioning the ¹⁸F-radiolabel.

Sulan Xu^{1,2}, Chun-Han Huang^{1,2,3}, Christopher Eyermann^{1,4}, Georgios V. Georgakis^{1,4}, Nashaat Turkman^{*1,2}

¹Stony Brook Cancer Center, Stony Brook, Long Island, 11794, NY, USA

²Department of Radiology, School of Medicine, Stony Brook University, Long Island, 11794, NY, USA

³Department of Biomedical Engineering, Stony Brook University, Long Island, 11794, NY, USA

⁴Department of Surgery, School of Medicine, Stony Brook University, Long Island, 11794, NY, USA

Table of Contents	Page
1 H NMR (CDCl ₃ , 400 MHz), B) 13 C NMR and C) 19 F NMR (CDCl ₃ , 376.5 MHz) spectrums for NT376	2
High resolution spectroscopy for NT376	4
Analytical radio-HPLC chromatograms of [¹⁸ F]8 and [¹⁸ F]9	5
Semi-preparative high performance liquid chromatography (HPLC) purifiction of [¹⁸ F]NT376	5
Analytical radio-HPLC chromatograms of purified [¹⁸ F]NT376 co-injected with authentic NT376	6
Resferences	6

Figure 1. A) ¹H NMR (CDCl₃, 400 MHz) and B) ¹⁹F NMR (CDCl₃, 376.5 MHz) spectroscopic characterization for NT376 was performed using 400 MHz Bruker instrument.

Figure 2. A) ¹³C NMR, full spectrum for NT376 (CDCl₃, 400 MHz) and B-D: expanded spectrum of chemical shifts from up to down field (provided for clarity).

Figure 3. High resolution mass spectroscopy (HRMS) for NT376 was performed using Agilent 1260HPLC/G6224A-TOF MS.

Figure 4. Analytical radio-HPLC chromatograms of [¹⁸F]NT8 co-injected with authentic 8. Samples were eluted with 70% acetonitrile/30% ammonium acetate buffer (20.0 mM) at a flow rate of 1.0 mL/min.

Figure 5. Analytical radio-HPLC chromatograms of [¹⁸F]9 which demonstrate complete conversion of [¹⁸F]8 to [¹⁸F]9. Samples were eluted with 70% acetonitrile/30% ammonium acetate buffer (20.0 mM) at a flow rate of 1.0 mL/min.

Figure 6. Semi-preparative high performance liquid chromatography (HPLC) purification of [18F]NT376 (a) radioactive peak of [¹⁸F]NT376 in crude mixture detected with radioactivity detector, (b) [¹⁸F]NT376 associated non-radioactive mass in the crude reaction mixture were detected with ultraviolet detector. Dashed lines shows start and stop of [¹⁸F]NT376 collection which demonstrate significant improvement in molar activity compared to our previous reports.¹⁻³

Figure 7. Analytical radio-HPLC chromatograms of purified [¹⁸F]NT376: A) radioactive trace and B) ultraviolet mass trace for NT376 (note the Y-scale). Samples were eluted with 70% acetonitrile/30% ammonium acetate buffer (20.0 mM) at a flow rate of 1.0 mL/min.

Figure 8. Analytical radio-HPLC chromatograms of quality control for [¹⁸F]NT376: A) radioactive trace and B) co-injection with authentic NT376. Samples were eluted with 70% acetonitrile/30% ammonium acetate buffer (20.0 mM) at a flow rate of 1.0 mL/min.

Figure 9. Standard curve obtained for NT376 and was used to determine the molar activity.

(1) Turkman, N.; Xu, S.; Huang, C. H.; Eyermann, C.; Salino, J.; Khan, P. High-Contrast PET Imaging with [(18)F]NT160, a Class-IIa Histone Deacetylase Probe for In Vivo Imaging of Epigenetic Machinery in the Central Nervous System. *J Med Chem* **2023**, *66* (8), 5611-5621. DOI: 10.1021/acs.jmedchem.2c02064.

(2) Turkman, N.; Liu, D.; Pirola, I. Design, synthesis, biochemical evaluation, radiolabeling and in vivo imaging with high affinity class-IIa histone deacetylase inhibitor for molecular imaging and targeted therapy. *Eur J Med Chem* **2022**, *228*, 114011. DOI: 10.1016/j.ejmech.2021.114011.

(3) Turkman, N.; Liu, D.; Pirola, I. Novel late-stage radiosynthesis of 5-[18F]-trifluoromethyl-1,2,4-oxadiazole (TFMO) containing molecules for PET imaging. *Sci Rep* **2021**, *11* (1), 10668. DOI: 10.1038/s41598-021-90069-x.