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1 EYT glass calibration measurement

Supplementary Figure 1. A calibration curve of fluorescence ratio R measured with confocal setup and temperature T
measured with the cryostat thermocouple for a range of set temperatures. Each set temperature was conducted over 50 seconds,
where the line of best fit is used to determine the sensitivity of the EYT glass.

2 Mathematical model for evaporation of a sessile water droplet on newly developed
tellurite glass thermometer

We demonstrate a mathematical model to study the evaporation of the axis-symmetric sessile water droplet (with respect
to the beam axis), and relate this to the estimates of temperature acquired using the technique presented in this paper. The
droplet with constant density ρw = 9.98× 10−4 g/mm3, specific heat cw

p = 4.18× 109 mm2/s2 ·K and thermal conductivity
kw = 6.04× 105 g ·mm/s3 ·K1 sitting on a horizontal substrate of constant density ρs = 5.2× 10−2 g/mm3, specific heat
cs

p = 2.91 × 108 mm2/s2 · K and thermal conductivity ks = 1.15 × 106 g · mm/s3 · K2. As shown in Fig. 2, a cylindrical
coordinate system (r,φ , z) is employed with an origin located at the centre of the droplet on the substrate with its z-axis pointing
opposite to the beam direction. As such, the upper surface of the substrate is then at z = 0, the lower side is at z =−hs with
hs = 3 mm thickness of the substrate, and its radial size is Rs = 17.5 mm. Also, the shape of the free surface of the droplet at
time t is described as z = hs(r, t), and the constant atmospheric temperature of the surrounding atmosphere is T a = 294.1 K.

The water droplet is taken as an incompressible Newtonian fluid, and the inertial and thermal convection effects are
negligible3. Also, we assume that the surface-tension dominates the gravitational effects, so that the profile of the free surface
of the droplet can be well approximated by a spherical cap as:
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Supplementary Figure 2. Sketch of evaporation of a sessile water droplet on a horizontal tellurite glass substrate. The
tellurite glass substrate is in the shape of a circular disk which radius is Rs and height is hs. The free surface of the droplet is
approximated by a spherical cap with contact angle θ and contact line radius Rw. The evaporation process is illustrated by the
diffusion of water mass flux J from the droplet free surface to the surrounding atmosphere. A cylindrical coordinate system
(r,φ , z) is set with an origin located at the centre of the droplet on the substrate with its z-axis pointing opposite to the beam
direction and φ representing the symmetry with regard to the right-hand rule.

where θ ≡ θ(t) is the contact angle, and Rw is the drop radius on the substrate. Since the glass substrate used in our experiments
is hydrophobic, and the evaporation rate of the droplet is much slow relative to its lifetime, we can assume that Rw is constant,
and the diffusion of the vapour concentration from the droplet to the surrounding is quasi-steady. As a result, the atmosphere
vapour concentration ca ≡ c(z,r, t) satisfies the Laplace equation:

∇
2ca = 0. (2)

We assume that the vapour concentration is saturated in the layer of the atmosphere just above the free surface of the droplet,
which leads to ca = ca

sat(T
a) = 1.88×10−8 g/mm3 on z = h(r, t) and r < Rw4. Also, on the unwetted surfaces of the substrate,

there is no mass flux as ∇ca · n = 0 where n is the unit normal vector pointing into the substrate. Far from the droplet and
substrate, the concentration of vapour goes to the ambient value of the room as ca = Haca

sat(T
a) in which Ha = 0 is the room

relative humidity. Eq. (2) can be efficiently solved by the non-singular boundary element method5, 6. Once ca is obtained, the
local mass flux J(r, t) from the droplet to the surrounding atmosphere can evaluated by:

J(r, t) = Da
∇ca ·n. (3)

in which Da = 24.4 mm2/s3 is the vapour diffusion coefficient in air.
To balance this mass flux, local energy is needed from the droplet:

LhJ(r, t) = kw
∇T w ·n (4)

on the free surface z = h(r, t) and r < Rw where Lh ≡ Lh(T a) = 2.45×1012 mm2/s21 is the latent heat, and ∇T w ·n is normal
gradient of the drop temperature on the free surface. In our experiments, since the effect of thermal convection is much smaller
relative to the thermal diffusion, the droplet and substrate temperatures satisfy:

∂T w

∂ t
− kw

ρwcw
p

∇
2T w = 0, (5a)

∂T s

∂ t
− ks

ρscs
p

∇
2T s = 0, (5b)

where T w ≡ T w(r,z, t) and T s ≡ T s(r,z, t) are the droplet and substrate temperatures, respectively. On the wetted surface of the
substrate (the interface between the droplet and substrate) where z = 0 and r < Rw, both the temperature and heat flux should
be continuous,

T w = T s, (6a)

−kw ∂T w

∂ z
=−ks ∂T s

∂ z
. (6b)
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For the rest surfaces of the substrate, we let T s = T a. Eq (5a) can be solved by using the Crank–Nicolson method7.
The evaporation of a droplet is a dynamic procedure that can be tracked by its volume change:

dV
dt

=
2π

ρw

∫ Rw

0
J
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)2

r dr (7)

where V is the droplet volume as

V =
πhm[3(Rw)2 +h2

m]

6
(8)

with

hm = Rw tan
(

θ

2

)
. (9)

In our experiment, at the initial stage t = 0, a droplet with volume V = 0.5 µL is injected on the substrate which radius
Rw = 1.5 mm. From Eqs. (8) and (9), the contact angle θ is obtained, and then the free surface shape of the droplet is evaluated
by using Eq. (9). By solving Eq. (2), we can calculate the local mass flux J in Eq. (3) which is introduced to Eq. (4) as the
boundary condition for Eq. (5a) to compute the temperature profiles. From the local mass flux J, we can also compute the
volume change of the droplet by using Eq. (7), and then calculate the new volume of the droplet by using the Euler time
advancing scheme. The calculations are iterated to compute the temperature measured at multiple time points as the droplet
evaporates.
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