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Supplementary text 

Proposition 1. Assuming linear neural activity space representation, with fixed weights, 

modulatory signals must act on subspaces. 

Proof. To formalize the problem, suppose X is a vectorspace that represents the space of 

possible neural population activity. The coordinates for x ∈ X, x1,x2,...,xN are instantaneous 

firing rates of each of N neurons. Task related variables can be represented in subspaces of 

X. The results below are equally applicable to more than one dimensional stimulus 

representations, including two dimensional dependent one-hot encoded otherwise one 

dimensional stimuli, as well as to multiple modulations: In the equations below only the bases 

need to be expanded, connection matrices changed to block matrices, standard basis vectors 

changed to the sum of multiple standard basis vectors. For simplicity of notation, here we 

restrict the proof to two stimulus subspaces, and minimal encodings in one-dimensional linear 

subspaces. In addition, as per the premise above, we are dealing with agents that already 

learned the task, so we will not explore dynamically changing weights. Stimulus encoding 

subspaces can be found by linear decoders projecting with coefficients eV, eA ∈ X to V and 

A, the subspaces of X where the visual and auditory stimulus related activity resides. We use 

the format, eS., as basis for one dimensional subspaces S ⊆ X expressed in the native 

coordinate system of X. Note, that V and A are subspaces, as long as linear independence 

holds, i.e. while the absolute value of the correlation between visual and auditory related 

activity < 1, but this is not enough for non-interfering modulations. We focus our assessment 

on orthogonal subspaces (where correlation is 0, and eV ∙ eA = 0), and expand on linearly 

independent non-orthogonal subspaces in Corollary 2 (iii). We will also assume stimulus input 

to the neurons in X are constant, v and a, so any further manipulation to stimulus must happen 

within X. In this setup the total stimulus related activity, s, (Fig. 5a) is: 

s = v + a = v eV + a eA  ∈  V + A  ⊆  X.       (1) 

The task requires that X has an abstract one dimensional subspace, D ⊆ X, which has activity 

d = d eD ∈ D that represents the final output, i.e. the 'decision' of these neurons. The map to 

this decision subspace can be performed by a linear operator F ∈ ℒ(X). With the synaptic 

weights as components of the map, and initial activity x ∈ X, the transformation is 

d eD = F(x),           (2) 

or in neural coordinates: 

d = f x =  ∑ 𝑓𝑛𝑥𝑛𝑛 .          (3) 

At this point we introduce a modulation u, that changes d. Both the map F, or the activity, x 

can depend on the modulation, but the weights 𝑓𝑛 are constants by the conditions of the 

proposition. This leaves us to implement modulation dependent computation within x. We 

define stimulus-unrelated activity, z ∈ Z, in the complement of V + A, so that (V + A) ⊕ Z = 
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X; z can also have modulation-dependent terms, hence z(u). Thus, we need to solve the 

following problem for a linear modulation map, m(u) ∈ X, that maps the modulation, u, to X: 

d eD = F( v eV + a eA + m(u) + z(u) ).        (4) 

First, it is clear that the dot product m∙(eV+eA) ≠ 0, otherwise m does not influence stimulus 

related activity. Second, by definition we have incorporated into z any stimulus-unrelated terms 

from the basis decomposition of m(u), including modulation-dependent stimulus-unrelated 

terms, denoted as z(u). These two items can only occur simultanously, if m(u) maps only to 

the subspace spanned by the linear combination of eV and eA., i.e. to V + A. 

Thus, a modulating signal that aims to influence the decision which in turn depends on 

stimulus related activity must map onto the stimulus subspace. ∎ 

 

Definition. Context is defined as the set of stimulus the decisions need to be based on. Thus 

in each context one set is relevant and the others are irrelevant. More specifically in our 

paradigm the contexts are defined by the relevant stimulus modality. 

Corollary 1. Context modulation gates activity on the stimulus subspaces by self-

enhancement and mutual inhibition. 

Proof. Let us formalise context modulation. Let the modulation map, m from Proposition 1, 

with range V + A depend on a vector-valued context modulation term, u = c. In X coordinates: 

m(c)  = c1 eV + c2 eA,           (5) 

where c = (
 𝑐1

 𝑐2
) is the one-hot encoded context vector that takes values (

1
0

) or (
0
1

) for visual 

or auditory context, respectively. It is clear that for self-enhancement, the coordinates of c are 

in the appropriate order, while for inhibition the equation has the form of m(c) = - c2 eV - c1 eA. 

This notation has some complicated case by case description requirements, so we improve 

on the notation. 

We would like to express m(c) in matrix notation; the benefits of why it is a useful notation will 

be expanded below. We start with the case for inhibition. Observe that m(c) must contain a 

multiplicator, M = (
   0 −1
−1    0

  ), that is anti-diagonal, signifying that the irrelevant subspace is 

the opposite of the context-relevant subspace corresponding to the changed order and 

negative sign above, and with negative components so that its effect is inhibition: 

m(c)  =  M c [ eV eA ],          (6) 

Where [ . ] is a matrix from column vectors for the basis vectors of V + A. Applying this context 

dependent modulation as inhibition to the stimulus related input yields the correct order and 

sign as above in the simple notation: 

d eD = F ( (𝜈 - c2) eV + (a - c1) eA ) + F(z).       (7) 

Although the decision can be further influenced by F(z), it cannot have stimulus-related 

projection, as Z and V + A are disjoint by definition. Thus, m(c) contains all that is both allowed 

and needed for context specific inhibition of irrelevant stimuli. 
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Inhibition would reduce the activity in the irrelevant subspace, possibly down to 0. This can be 

achieved with M = (
   0 −𝜐
−𝛼    0

), where the fixed matrix weights, 𝜐 and 𝛼 represent the learned 

optimal suppression of the context-irrelevant visual and audio subspace activity required for 

successful task execution.  

Using this optimal suppression, the above matrix multiplication in m(c) gives an intuitive 

implementation in neural circuits: Context, one-hot encoded in vector c as defined above, acts 

as an input to the stimulus subspace, V + A, through fixed input connections M, resulting in 

context-gated inhibition of the irrelevant subspace. As a concrete example, the effect of this 

gated inhibition with F = (  1  1  ), the simplest additive projection mapping to D, while 

disregarding z for simplicity, expressed in V + A coordinates, in the visual context, is: 

d(c) = F(s + Mc) =  (  1  1  )  ((
𝜈
𝛼

) + (
   0 −𝜈
−𝛼    0

) (
1
0

))= 

                           =  (  1  1  ) (   (
𝜈
𝛼

) + (
   0
−𝛼

)    ) = (  1  1  )  (
𝜈

𝛼 − 𝛼
) = 

                           = 𝑣,          (8) 

with the last equation holding, when the suppression α removes the auditory activity from the 

auditory subspace, i.e. a-𝛼 << 𝜈, thus only the visual activity is projected onto the decision 

subspace. 

Note, that we did not assume the exact place in the brain hierarchy where the inhibition should 

take place, in other words X can be arbitrarily large. It is just necessary that it happens before 

mapping to the final decision space, D, by F. The concrete implementation of inhibition has 

many biological mechanisms, but ultimately all can be transformed into the format in the proof: 

Reducing outgoing activity of specific neurons that form the coordinates of the basis for that 

stimulus encoding subspace. 

An enhancement of the relevant stimulus instead of, or beside the suppression of the irrelevant 

stimulus is also plausible. If the modulator input connections M is changed to a diagonal matrix 

with any positive components 𝜈 and 𝛼: (
𝜈 0
0 𝛼

), it will act as context gated positive feedback. 

Again, 𝜈 and 𝛼 are learned optimal enhancement multipliers in a fixed input map. With these 

connection weights the proof holds for selection with an additional condition. The downstream 

readout threshold (below which input is discarded) must be set between the enhanced and 

normal stimulus activity levels; this condition is often true as thresholds are typical parts of 

neural circuitry. 

One can combine self-enhancement and mutual inhibition of subspaces with the qualitative 

form M = Me + Mi = ( 
   1 −1
−1    1

   ). 

So far context was regarded as an input from outside V + A, potentially from outside X. Let us 

assume now a mixed representation of stimuli and a locally computed context from e.g. with 

a context-invariant reward signal as the only input using the current stimuli and the response 

choice. Here the role of M although remains the same, its domain will equal its range: V + A. 
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While there are multiple exact mappings possible, the most efficient encoding of context 

appears to be when c equals v ∈ V, or a ∈ A in the two contexts respectively. 

In summary we proved that in linear subspace representations, a simple context driven switch 

is capable of selecting the relevant modality with inhibition or enhancement, and with fixed 

weights this computation has to act on the stimulus subspaces. ∎ 

Corollary 2. The proof of Corollary 1 can be generalized with regard to F. The F function on 

X can typically have five additional characteristics in neural circuits: i) it can expand out of the 

stimulus subspace, ii) connections can allow mixed selectivity, iii) can modulate in non-

orthogonal stimulus subspaces, iv) the mapping is composed with nonlinear transfer functions, 

v) brain circuits and RNNs often compute in recurrent sequential activation. 

Proof. We address these four problems separately. 

i) We can simply disregard any component of F that escapes its interesting part of its range, 

D, as it will not influence downstream decision making. 

ii) Although many cells typically operate with mixed selectivity, a number of variables can still 

be encoded simultaneously within a set of neurons without interference: The basis vectors of 

such mixed encoding subspaces are rotated from the natural neural coordinate system, 

preserving orthogonal relations between correlated activity directions, i.e. subspaces. The 

above proof works in these rotated subspaces as well, F feedback connections and D decision 

projection can be transformed so that they operate either or both on rotated domain or range 

spaces. With the additional use of simple change of basis operators, the form of the proof 

remains the same. 

iii) when v and a are not orthogonal, the modulation m will have components that also 

modulate the relevant subspace to the extent of the angle between the two subspaces. Still, 

non-orthogonal stimulus subspaces are modulated in a way that the largest modulation is in 

the intended direction, while to some extent it spills over to the unintended direction. Therefore, 

fully orthogonal subspaces are of special interest, because they have zero projection onto 

each other, therefore the modulation is non-interfering with relevant subspaces. 

iv) There can be arbitrary nonlinear computations if a σ nonlinearity is applied: σ ∘ F. However, 

if σ is smooth and monotonic, which is true for most biological neurons, the shape of the 

nonlinearity will not affect the local subspace geometry, nor will it affect the additive inhibition 

or enhancement. A notable exception is negative sign change by 𝜎, but that can be addressed 

by flipped connection weights in elements of F if the operating range of σ requires it, as both 

F and 𝜎 are fixed. Thus, all statements on subspaces are also applicable in submanifolds with 

smooth differential structure. 

v) Sequential F can be thought of as a composition F ∘ F ∘ F ∘ … or Ft after time t before 

opening the gates for output. At the required time point, however, the abstraction must confine 

the meaningful decision related output activity onto D. Should F map stimulus related activity 

outside D + V + A, an extension to ii), the original V + A subspace will just need to be unified 

with the subspace of the range of F where V + A got mapped, and the above proof works with 

this larger V* + A* ⊆ X, and V ⊆ V*, A ⊆ A*. A simple consequence of repeated application of 

F is that F can take over the role of the connections of the input map, M for maintained activity, 
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for example, when the input c is for a single time point, that gets mapped onto V + A, and then 

can be maintained by F with self-enhancement and mutual feedback similar to M for the 

subsequent time points within V + A. This essentially allows for maintaining the short input 

signal even in absence of a clear task, or stimulus, but within the stimulus subspace V + A. 

However, without the initial context input, even with M-like F, the bistable system on its own 

will not decide on the projection and will stay on its unstable point, eventually randomly landing 

on one of the fixed states. Note however, that in absence of direct context input, i.e. with locally 

computed context, sequential processing with F similarly assumes mixed representation of a 

locally computed context and stimuli within the same subspace. In this case M maps from 

within V + A into V + A, and thus M equals the asymptotic F raised to the number of time steps 

until the decision typically needs to be made. This incorporates context computation, mapping 

onto the entirety of stimulus subspaces for modulation and long-term context maintenance 

into the single recurrent F operator. 

Thus, the proof for Corollary 1 also holds on more realistic nonlinear, larger dimensional, 

sequentially operating neural manifolds. ∎ 
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Supplementary figures 

 
Supplementary Figure 1. Behaviour and probability of performance at chance level. Rows: n=4 

mice with ACC electrode implant. A-D, Behaviour of animals for different trial types (subpanels). 

Success and failure in all four trial types are indicated by black filled circles and crosses, respectively. 

Lines show 21 trial equal-weight moving averages. Trials were defined as ‘task-consistent’ (bottom 

panel, purple) if the moving average performance of all four trial types were greater than chance, 

while other parts of the session were termed ‘exploratory’. E-H, probabilities of the number of 

consistent trials counted in 106 simulated sessions, where congruent trials were always successful, 

incongruent trials sampled from the Bernoulli distribution at p equalling the empirical lick rate in 

incongruent trials of the mouse in that context (blue line), and the number of consistent trials observed 

in mice (blue dots). Left and right panels show visual and auditory contexts respectively. 



8 

 



9 

Supplementary Figure 2. Stimulus decoding for individual ACC implanted mice in various task 

and behavioural conditions, (n=4 mouse  in double rows). A, Smoothed (10 ms resolution, ma=51 

points, longer than the mean on Fig. 1, for clarity of view) time course along the trial of decoding 

accuracy from neurons of visual (top, blue) and auditory (bottom, green) stimuli when they are 

relevant in their respective context (light color), or irrelevant in the opposite context (dark color). Mean 

(lines) and s.e.m. (bands) of cross-validation folds. B, similar to a A, but activity from go and nogo 

trials projected onto the DV of stimulus decoder from A, then absolute difference between average 

activity (lines) and the sum of s.e.m.-s (bands) of 'go' and 'no go' trials plotted. Note that standard 

deviation rather than s.e.m. determines discriminability of individual trials. C, Similar to A, but trials in 

the relevant context were stratified into consistent (purple) and exploratory (orange) groups according 

to the behavioural criteria detailed in Fig. 1C, while stimulus differentiating colors are omitted. D, as C, 

but in the irrelevant context. 

 

 

 

  



10 

 

 

Supplementary Figure 3. Context decoding is robustly invariant to session position. A-D, 

Context decoder accuracies at each time point along the trial (smoothed for display 

purposes, ma=51) with three different cross-validation schemes, per mouse (panels). We 

trained context decoders in trials either in the middle of the entire session (end of the first 

context block and beginning of the second context block respectively) leaving out 10-10 trials 

per context at the edges (beginning and end respectively) for testing at 2 CV folds (pink, line 

and band for mean and s.e.m. over CVs) or trained at the edges and tested in the middle 10-

10 trials (purple). Control decoder accuracies from Fig. 3A with the 10-fold CV (black). Block 

averaged paired t-test statistics over 0.6 s block width show all p>0.1 between edge test and 

middle test in all mice. 
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Supplementary Figure 4. Controlling for licking patterns. Columns: n=4 mice with ACC electrode 

implant. A-D, Effect of constraining stimulus decoders to lick-only trials. Visual (top) and auditory 

(bottom) stimulus decoder accuracies (mean and s.e.m. over CVs) in the irrelevant context in 

exploratory trials in licking-only (black lines) and all trials (orange lines, same as Supplementary Fig. 

2F orange lines) in the relevant (saturated color) irrelevant (faint color) context. Lick-only consistent 

trials are also displayed as comparison (purple lines). If the number of either 'go' or 'no go' trials was  

below 10, the decoder was excluded from the analysis. Note that this analysis relied on error trials, as 

false alarms contributed to constructing the decoders. Paired t-statistics (left to right, on each panel 
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where applicable) are comparisons between  exploratory relevant lick only vs. all, exploratory 

irrelevant lick only vs. all, and exploratory lick only relevant vs. irrelevant conditions respectively, using 

block-averaging between 0.6-3 s of 0.6 s blockwidth (n=4). Decoder accuracy time courses were 

smoothed (ma=31) for display purposes only. E-H, Projection of activity onto the stimulus-only 

subspace. Visual (top, blue) and auditory (bottom, green) mean (lines) and s.e.m. (bands) of absolute 

activity difference between successful go and nogo trials, projected onto the stimulus subspaces. 

Stimulus subspaces were calculated from stimulus decoder DVs between 0.25-0.75 second (dark 

grey shading) of stimulus presentation (light grey shading), where neither suppression, nor choice-

related activity was present. When in a relevant context, colors are lighter. I-L, Explained variance of 

predicting the firing rates of individual neurons from either stimuli, choice or both in both contexts at 

each timepoint in consistent trials. Best successfully predicted neurons (neurons with R2 > 0, mean 

over cross-validation folds) at each timepoint (lines). Visual context (top) and auditory context 

(bottom). The p values correspond to the difference between choice + relevant stimulus predictor 

(purple in visual context, olive in auditory context) from choice + irrelevant stimulus predictor (olive in 

visual context, purple in auditory context) over time blocks (n=4, block-averaging 0.6s windows 

between 0.6-3s) where the mean contained at least one predictable neuron in both predictions 

throughout stimulus presentation (one-sampled one-tailed t-test, mean differences were positive in all 

blocks). Timepoints throughout lines where none of the neurons were predictable were linearly 

interpolated for display purposes, but not taken into account for statistics. Mice and context blocks 

where no neurons were predictable for at least one block were omitted from the statistics in panels (3 

predictable out of 8). 

 


