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REVIEWER COMMENTS
Reviewer #1 (Remarks to the Author):

The manuscript from Hajnal et al investigates the effects of attention on population activity in the
anterior cingulate cortex (ACC) of mice performing an un-cued, attention set-shifting task.
Specifically, the central goal of this work is to test whether ACC neurons enhance features that are
relevant for the performance of a task and suppress those that are irrelevant. The authors rely on
electrophysiological recordings in ACC of behaving mice, computational approaches to analyze the
data and machine-learning/RNN to model the data.

The authors find that in segments of sessions in which mice perform correctly, activity from ACC
neurons encodes best for relevant features compared to irrelevant ones. Furthermore they find
that ACC neurons encode task variables. A RNN model was used to reproduce the experimentally
observed behavioral performance and neural activity. The model revealed a dependence between
context and stimuli representations, which was verified experimentally in ACC. Recordings in V1
showed very different patterns of activity.

This is potentially an interesting manuscript, showing significant results on how ACC (but not V1)
functions in a set-shifting task where relevant and irrelevant stimuli are used to differentially
instruct behavior in distinct contexts. The use of RNNs is elegant and provides a context for testing
the relationship between context-dependence and stimulus responses.

Despite these strengths, the manuscript present major weaknesses that should be addressed.

1) The experimental procedures are not sufficiently described. The authors refer to a previous
publication (Hajnal et al 2021) for more details, however all the details necessary for interpreting
the results should be provided in the manuscript. For instance, it is not clear how many blocks are
performed in each session (two?), how many training and testing sessions are performed for each
animal (one?). How long does the training last and how does the performance change across days?
How many units are recorded in total for V1 and ACC and for each animal? Does each animal
contribute to V1 and ACC recordings? If different animals contribute to V1 and ACC recordings,
how does their overall performance differ? Where in ACC did the authors record? Can they provide
histological reconstruction of electrode tracks? Are the V1 data from the published V1 dataset?
Without answers to these questions (and these are just some examples of the kind of experimental
details that should be addressed) it is challenging to rigorously assess the experimental data.

2) The behavioral analysis is quite unclear and does not demonstrate that mice consistently learn
the task. As far as this reviewer can understand, mice are probed in sessions consisting of two (?)
blocks of 50-150 trials, each preceded by 30 priming trials (for a total of 300-450 trials). Within
each session the authors select sub-blocks in which performance exceeds 50%. They call the
successful sub-blocks “consistent trials blocks”. According to Figure 1D top, the total number of
consistent trials in the “consistent trials blocks” is quite small, up to only ~30 trials per session.
What is the percentage of consistent trials within the entire session? Also, the authors provide
“fraction correct” data only for the trials in the “consistent trials blocks” (Figure 1D second from
top). The value is obviously high (as the famous Anchorman quote goes “Sixty percent of the time,
it works every time”), but the “fraction correct” value would be more appropriately calculated on
the total number of trials in a session. The authors should perform more rigorous analyses of their
behavior and exclude animals in which only a fraction of trials shows the correct desired behavior.

3) ACC, neural activity differentiates between relevant vs irrelevant features and consistent vs
exploratory blocks. To what extent this difference (as well as the encoding of task variables) can
be ascribed to different movements in the distinct trials? The authors should address this issue by
including an analysis of licking behavior.

4) The writing is very technical and rich in jargon - particularly for the introduction and discussion.
The authors are encouraged to simplify and clarify the text.

5) Minor: the reference Seo and Li has the wrong year (2017 in the text vs 2007 in the ref).



Reviewer #2 (Remarks to the Author):

The autors present an empirical dataset from electrophysiologically recorded mice undergoing an
auditory/visual attentional set-shifting task with within-session set-shifting. The obtained data
suggests that the anterior cingulate cortex (ACC) orthogonally encodes the local relevance of a
sensory stimulus to predict reward and the global relevance of the modality (auditory vs visual)
that currently contains reward-related information (context) (Fig. 2, 3). This differs from
representations of the same visual cues in visual cortex that are not modulated by stimulus
relevance (Fig. 2). Using extensive modeling with a recurrent neural network, the authors claim
that ACC performs a suppression of locally task-irrelevant (non-informative) stimuli (or an
equivalent enhancement of informative stimuli) and thereby gate or control selective attention
(focus on the predictive cue), converting stimulus presentation from a sensory to a relevance-
based mode (Fig. 4, 5): "Cells that respond more selectively to a stimulus modality tend to be
more active in the context where that modality is relevant. This essentially means that the
representation of the attention cue, context, and the selection target, modality, is largely
overlapping in the same neural population.”

Both, the experimental data and its decoding analysis as well as its extended model-based analysis
are timely and very important, and appear in principle suitable for publication in Nature
Communications.

However, as an experimental neuroscientists (who is not sufficiently adapt to judge the modelling
presented in the Appendix and Figure 5), my main concern is with the necessity of the stated
implications of the results. Why are the recordings from ACC consistent with the presented model
and not with alternative models? To what extent can the role of relevance-based stimulus
suppression really be localized to ACC (i.e. what excludes the possibility, that ACC is simply
representing that relevance information inherited from elsewhere)? To what extent are results
from the modelling not tautological? - E.g. the conclusion "Therefore neurons in ACC that are
selectively engaged in one of the stimulus modalities tend to display strong modulation with task
context." and "We found that for a hidden cell, the stronger the weight mapping to the output
cells, the more it behaves as a modality-invariant abstract cell. Thus, it responds to the context-
relevant stimulus input with enhanced response, and to the irrelevant stimulus input by a negative
response (Fig. 4E)." read like tautologies to me, given the modelling goal. A lot of the argument
that the model corresponds to the ACC's reality relies on Fig. 4E (related to the description above)
and 5F-G, but the data presented therein is already quite remote from the actual recording and
"filtered" through the model. Would it be possible classify cells according to their Context- vs.
stimulus-encoding and show decoding accuracies (as in Fig. 2) for these different populations of
neurons? Or any other way to demonstrate that more fine-grained aspects of the ACC responses
correspond specifically to that model? Also, to what extent are these representation modalities of
individual neurons stable over time?

Minor comments:

Figure 1: the authors rely heavily on a previous publication of theirs to describe the task and basic
findings like performance and learning parameters of the mice - it is also quite a big jump to go
from panel C to D. Possibly such missing information, illustrating the actual behavioural
performance of the mice, could be added here, so that the study can be evaluated as an
independent piece of work.

The same applies to response properties of the recorded neurons - jumping straigth to decoding
accuracies, does not really do justice to an appropriate description of activity changes (e.g. time-
locked to stimulus-presentation and choice) of the measured neurons.

In Figure 3, - ("minus") seems to be displayed as "?"
Figure 4F is not explained or cited in the main text, 4C is difficult to understand
Figure 5A is missing in the Figures attached at the end



Response to Reviewers

We thank the reviewers for their thoughtful comments and their constructive
suggestions. Based on the comments we have updated the manuscript. Our responses
can be found to individual comments below. For easier tracking of the updates, in the
manuscript we have highlighted changes with blue.

Reviewer #1

The manuscript from Hajnal et al investigates the effects of attention on population activity in the
anterior cingulate cortex (ACC) of mice performing an un-cued, attention set-shifting task.
Specifically, the central goal of this work is to test whether ACC neurons enhance features that
are relevant for the performance of a task and suppress those that are irrelevant. The authors
rely on electrophysiological recordings in ACC of behaving mice, computational approaches to
analyze the data and machine-learning/RNN to model the data.

The authors find that in segments of sessions in which mice perform correctly, activity from ACC
neurons encodes best for relevant features compared to irrelevant ones. Furthermore they find
that ACC neurons encode task variables. A RNN model was used to reproduce the
experimentally observed behavioral performance and neural activity. The model revealed a
dependence between context and stimuli representations, which was verified experimentally in
ACC. Recordings in V1 showed very different patterns of activity.

This is potentially an interesting manuscript, showing significant results on how ACC (but not
V1) functions in a set-shifting task where relevant and irrelevant stimuli are used to differentially
instruct behavior in distinct contexts. The use of RNNSs is elegant and provides a context for
testing the relationship between context-dependence and stimulus responses.

We thank the reviewer for theirkind words
Despite these strengths, the manuscript present major weaknesses that should be addressed.

1) The experimental procedures are not sufficiently described. The authors refer to a previous
publication (Hajnal et al 2021) for more details, however all the details necessary for interpreting
the results should be provided in the manuscript. For instance, it is not clear how many blocks
are performed in each session (two?), how many training and testing sessions are performed for
each animal (one?). How long does the training last and how does the performance change
across days? How many units are recorded in total for V1 and ACC and for each animal? Does
each animal contribute to V1 and ACC recordings? If different animals contribute to V1 and
ACC recordings, how does their overall performance differ? Where in ACC did the authors
record? Can they provide histological reconstruction of electrode tracks? Are the V1 data from
the published V1 dataset? Without answers to these questions (and these are just some



examples of the kind of experimental details that should be addressed) it is challenging to
rigorously assess the experimental data.

We now clarify that two blocks were performed in each session. We also now indicate
that training typically took several weeks and the details of training have been outlined in
our previous paper on V1 neural dynamics (Hajnal et al., 2023, Nature Communications).
The number of units are now clearly outlined in the paper. We now indicate that different
animals contributed to V1 and ACC recordings. The V1 data are from the published V1
dataset. This is now clearly outlined in the paper. Due to technical issues we could not
recover the electrode locations from these ACC recordings, but stereotactic coordinates
correspond to cg1 domain of ACC.

2) The behavioral analysis is quite unclear and does not demonstrate that mice consistently
learn the task. As far as this reviewer can understand, mice are probed in sessions consisting of
two (?) blocks of 50-150 trials, each preceded by 30 priming trials (for a total of 300-450 trials).

We have updated the text to clarify the schedule of a recording session. Importantly, the
typical length of a block of trials is shorter than those quoted by the Reviewer. The range
of dual-modality block lengths spanned 40-80 trials, therefore the lengths of sessions
ranged 160-200 trials. Note that the methods section quoted 300-450 trials per session
during training, but the session length was short for recording sessions. We now include
a figure that clearly provides this information (Suppl. Fig. 1A-D) and have clarified this in
the Methods section too (pg. 5, lines 159-168; pg. 28, lines 1119-1120).

Within each session the authors select sub-blocks in which performance exceeds 50%. They
call the successful sub-blocks “consistent trials blocks”. According to Figure 1D top, the total
number of consistent trials in the “consistent trials blocks” is quite small, up to only ~30 trials per
session. What is the percentage of consistent trials within the entire session?

We have added this percentages to the manuscript (pg. 5, lines 173-176), and the detailed
performance of individual animals are now plotted in Supplementary Fig. 1.

Also, the authors provide “fraction correct” data only for the trials in the “consistent trials blocks”
(Figure 1D second from top). The value is obviously high (as the famous Anchorman quote
goes “Sixty percent of the time, it works every time”), but the “fraction correct” value would be
more appropriately calculated on the total number of trials in a session.

Since the strategy of the animals is shifting during an experimental block, the fraction
correct value over the whole block alone is not providing full insight into the behavior of
an animal during the experiment. We observe the animals exploring strategies, including
collecting information in uncertain situations, and then arriving at correct response
strategies visible in consistent trials. However, we agree that a more rigorous analysis of
behavior is important to prove that good performance in clustered consistent trials are
not due to chance; it is this analysis that wewe describe below.



The authors should perform more rigorous analyses of their behavior and exclude animals in
which only a fraction of trials shows the correct desired behavior.

We thank the reviewer for highlighting this point. We have extended the behavioral
analysis with a statistical analysis of the individual animals’ performance. The statistical
analysis assesses the performance of the animals in individual blocks against the
alternative hypothesis that the consistent blocks occurred by chance through a
behavioral strategy that is ignorant to the task context. The analysis demonstrated that
consistent blocks are highly significant in five out of eight blocks, and in the remaining
three blocks the chance of the observed consistent block is still below 0.05.

These analyses are now included on Figure 1 for each animal and a more extended
version of the analysis is included as a supplementary figure (Suppl. Fig. 1E-H). The main
text and the methods have been extended accordingly (pg. 5, lines 173-190; pg. 28, lines
1134-1137).

Please note that the analysis of neural activity during suboptimal task performance is an
important element of our study, which reveals key properties of neural computations.
Therefore elimination of animals from the cohort would significantly limit the scope and
impact of the paper.

3) ACC, neural activity differentiates between relevant vs irrelevant features and consistent vs
exploratory blocks. To what extent this difference (as well as the encoding of task variables) can
be ascribed to different movements in the distinct trials? The authors should address this issue
by including an analysis of licking behavior.

We thank the reviewer for recommending decision and movement controls. We
performed three additional analyses to address these questions.

First, to control for the potential effect of licking differences between consistent and
exploratory behaviors, we tested irrelevant stimulus suppression on lick-only trials. Note
that focusing exclusively on no-lick trials was not possible because of the low number of
these trials (due to a tendency of the animals to lick, a strategy for gathering rewards
even under uncertainty). We compared the time course of stimulus decoder accuracies of
these lick-only trials with decoder accuracies established for all trials. We found similar
time courses in the two conditions. Note, that the best performing animals are not
available for such an analysis due to a lack of a sufficient number of exploratory trials
(see illustration of this point in Fig. R1). We included this analysis in Supplementary
Figure 3A-D, and added relevant text to the Results (pg. 8, lines 292-303).

Second, we projected stimulus evoked activity from successful 'go’ and 'no go' trials to
the stimulus representation subspace identified by the early activity (0.25-0.75s) stimulus
decoder DVs. This choice prevented direct effects from choice and licking behaviours



from contaminating the analysis. We used the early activity decoder subspace to
investigate population trajectories occurring later during the trial. Population activity was
projected on the DV subspace and was averaged across trials with the same stimulus.
Difference of population trajectories in the two stimulus conditions was calculated and
compared in relevant and irrelevant conditions. We found that the difference of
population trajectories was significantly more pronounced in 7 out of all 8 blocks, while 1
modality discriminability was reversed during mid trial (Supplementary Figure 3E-H). This
analysis highlights that in a subspace that is dominated by stimulus the effect of
suppression can be consistently identified. We argue that these analyses illustrate that
choice has likely no influence on the suppression of the irrelevant activity late in the trial.
Beyond including this analysis in Supplementary Figure 3, we also extended the main
text (pg. 8-9, lines 305-321).

Third, we introduced a single-cell analysis to identify contributions of stimulus
presentation to neural activity that is separate from the contributions of choice. This
single-cell analysis with binary constant variables is naturally more noisy than
population analyses, still we found evidence of separate contribution from choice and
the visual stimulus (Supplementary Figure 3I-L). We also extended the manuscript (pg. 9,
lines 323-335)
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Figure R1. Visual (top) and auditory (bottom) stimulus decoder accuracies in the irrelevant
context in exploratory trials in licking only (black lines) and no-lick only (red lines) - thus both
successful and error - trials. In comparison: the same, but in all trials regardless of licking
response (orange lines, same as Supplementary Fig. 2F orange lines). If the overall, either 'go’
or 'no go' number of trials were low (< 10), that particular decoding was omitted from the figures.



Note that a good performing context for an animal yields few number of trials in exploratory
trials, while subpar performance allows for using more trials to test potential licking effects in this
analysis.

4) The writing is very technical and rich in jargon — particularly for the introduction and
discussion. The authors are encouraged to simplify and clarify the text.

We thank the reviewer for this remark. We have rewritten the introduction and eliminated
overly technical and jargon.

5) Minor: the reference Seo and Li has the wrong year (2017 in the text vs 2007 in the ref).

We thank the reviewer for pointing this out. We have now corrected the year of
publication, 2007.

Reviewer #2

The autors present an empirical dataset from electrophysiologically recorded mice undergoing
an auditory/visual attentional set-shifting task with within-session set-shifting. The obtained data
suggests that the anterior cingulate cortex (ACC) orthogonally encodes the local relevance of a
sensory stimulus to predict reward and the global relevance of the modality (auditory vs visual)
that currently contains reward-related information (context) (Fig. 2, 3). This differs from
representations of the same visual cues in visual cortex that are not modulated by stimulus
relevance (Fig. 2). Using extensive modeling with a recurrent neural network, the authors claim
that ACC performs a suppression of locally task-irrelevant (non-informative) stimuli (or an
equivalent enhancement of informative stimuli) and thereby gate or control selective attention
(focus on the predictive cue), converting stimulus presentation from a sensory to a
relevance-based mode (Fig. 4, 5): "Cells that respond more selectively to a stimulus modality
tend to be more active in the context where that modality is relevant. This essentially means that
the representation of the attention cue, context, and the selection target, modality, is largely
overlapping in the same neural population.”

Both, the experimental data and its decoding analysis as well as its extended model-based
analysis are timely and very important, and appear in principle suitable for publication in Nature
Communications.

We thank the Reviewer for their encouraging words.

However, as an experimental neuroscientists (who is not sufficiently adapt to judge the
modelling presented in the Appendix and Figure 5), my main concern is with the necessity of the
stated implications of the results. Why are the recordings from ACC consistent with the
presented model and not with alternative models?



We thank the Reviewer for raising this issue. The central contribution of the paper is to
link the way neuronal populations represent task variables and the computations
necessary for performing a challenging task, the set-shifting paradigm. We showed that
independent features are represented in orthogonal subspaces and presented a
mathematical argument that under the constraint of a fixed-weight circuitry this
representation there is only one possible way to modulate activity so that the
computations for the appropriate action selection can be performed. Specifically, we
have shown that representations that rely on orthogonal linear subspaces to
accommodate task-relevant variables invoke vector addition and subtraction to identify
features relevant for decisions. This link between representations and computations is
then tested in simulations and neural recordings, observed as suppression of irrelevant
stimulus. As the link between representations and computations was established by the
task being performed, we sought to establish if the relationship we identified was
specific to ACC and therefore a critical comparison concerned the properties of ACC and
that of V1. While the representation of stimuli and that of context in ACC were
interdependent, as signified by the correlation between the representation of stimulus
modalities and that of context, the context representation in V1 was shown to be
qualitatively different, residing in an independent subspace.

We clarified these points in the Discussion (pg. 20 lines 789-795).

To what extent can the role of relevance-based stimulus suppression really be localized to ACC
(i.e. what excludes the possibility, that ACC is simply representing that relevance information
inherited from elsewhere)?

As our recordings were constrained to ACC and V1, we could not exclude the possibility
that he predicted properties were inherited from other brain regions we did not record.
However, the specificity of our predictions to ACC provides support for the link between
representation and computations being present in ACC. Our results imply that ACC and
its efferent targets are modulated by this relevance-based suppression (no matter the
exact source), and affect local and downstream computations. We now clarify this point
both in the Introduction (pg. 3, lines 102-103) in the Discussion (pg. 21, lines 821-824).

To what extent are results from the modelling not tautological? - E.g. the conclusion "Therefore
neurons in ACC that are selectively engaged in one of the stimulus modalities tend to display
strong modulation with task context." and "We found that for a hidden cell, the stronger the
weight mapping to the output cells, the more it behaves as a modality-invariant abstract cell.
Thus, it responds to the context-relevant stimulus input with enhanced response, and to the
irrelevant stimulus input by a negative response (Fig. 4E)." read like tautologies to me, given the
modelling goal.

We thank the Reviewer for raising this issue. Our analytical treatment revealed that
context-dependent suppression is required for efficient task performance. This indicates



that a context-dependent signal can be identified in stimulus modulated neurons, and the
theory also provides an intuition that, as the suppression is stronger for neurons more
engaged in stimulus representation, the level of contextual modulation depends on the
level of strength of the modulation caused by a particular modality. Our RNN simulations
served to provide a confirmation to the above theoretical requirement. In our analysis our
goal was to demonstrate that the context representation we identify in animals reflects
this property. In the original submission we established the strength of the modulation by
a particular stimulus modality through the analysis of trials in which only a single
stimulus modality was present. This ensured that the effect of stimulus was established
in a condition where the context signal was not required for making a decision. However,
as the reviewer pointed out, in the original submission the strength of context
modulation was solely assessed in the time window where suppression was already
present. Inspired by the question of the Reviewer, we extended the analysis of the
context signal such that we can prove that the context representation suggested by the
theoretical argument can be identified not only during the period when suppression
occurs, but also at stimulus onset and in the intertrial interval. This extended analysis
highlights that the relationship between stimulus representation and context
representation is maintained throughout the trial, thus fulfilling the need to maintain the
contextual modulation across trials.

In practice, we repeated the original analysis such that the context index was calculated
for the -1.0 s to -0.25 s before stimulus time window (constraining to the intertrial
interval) and in the time window immediately after the time when the sensory stimulus
reaches ACC (0 s to 0.75 s).

We clarified and updated the text according to the new analyses (pg. 17-18, lines 668-680,
687-696, and 740-757) and also updated Figure 5 accordingly. We have also clarified the
quoted text about the properties of the RNN model (pg. 14, lines 507-524; pg. 19, lines
741-744)

A lot of the argument that the model corresponds to the ACC's reality relies on Fig. 4E (related
to the description above) and 5F-G, but the data presented therein is already quite remote from
the actual recording and "filtered" through the model. Would it be possible classify cells
according to their Context- vs. stimulus-encoding and show decoding accuracies (as in Fig. 2)
for these different populations of neurons? Or any other way to demonstrate that more
fine-grained aspects of the ACC responses correspond specifically to that model?

We thank the reviewer for highlighting this point. We have made modifications to the
analyses and text to substantially increase the alignment between the model and the
experiment, as well as we have clarified the role of analyses in the RNN that go beyond
the analysis we did with the experimental data. Importantly, we introduced three new
panels (Fig. 4E-G), which have direct experimental counterparts. Below we summarize
the rationale behind the updated Figure 4.



Fig. 4B does not have a direct experimental counterpart. This panel describes network
performance and network properties during training. As the experimental analysis is
available for a single session, such potential correspondence between ACC properties
and behavior are not possible to obtain. However, the panel provides some important
insights: 1, similar to the experiments, there is an asymmetry in the learning to perform
well in congruent and incongruent trials; 2, the plot highlights that successful learning of
incongruent trials is contingent on acquiring a context variable.

Fig. 4C delivers an insight about the RNN that exploits our ability to analyze network
behavior on a trial-by-trial basis upon inferring a new context . As there is a single
context change in the experimental data, noisy population responses prevent a
trial-by-trial analysis of neuronal data, thus the panels delivers a modeling insight
instead of a testable population phenomenon.

Fig. 4D has a direct experimental counterpart.

Fig. 4E,F have been newly introduced to analyze the relationships of stimulus, decision,
and context.

Fig. 4G has been newly introduced to directly compare the time course of the population
activity during trials, and it is a direct analog of the analysis we introduced for the
analysis of the experiments.

Fig. 4H provides an insight about the dynamics of a neuron that is detached from direct
sensory effects but is close to network output. This type of analysis is not accessible in
experiments, instead it shows through the model how ‘abstraction’ emerges as a result
of network dynamics.

In summary, existing analyses along with newly introduced analyses highlight that
several key aspects of the neural code identified in ACC can also be identified in
analogous analyses in the RNN. These include the asymmetry in task performance,
presence of a context representation, the representational geometry of the neuron
population, the maintenance of past outcomes in the network, and suppression of
stimulus representation when the modality of the stimulus is not relevant for the
outcome of the trial.

We have updated the description of the figure in the main text to more efficiently convey
the parallels (pg. 13-14, lines 488-492, 496-503, and 507-524).

Also, to what extent are these representation modalities of individual neurons stable over time?
Stability of representations within subspaces across trials were observed, with stable

mean and variance, which translates into stable individual neurons comprising the
weighted components of representation directions.



Although there is representation drift over time within trials on a finer time-scale, the
semantic meaning of the representations is constant, e.g. angle between variable
representations are preserved, discriminability between stimuli instructions (difference
of responses between 'go’' and 'no go' trials) are preserved, even when projected onto
subspaces established through the analysis of shorter periods (Suppl. Fig. 2B, Suppl.
Fig. 3E-H). Some representations remain relatively fixed, for example context changes
minimally between qualitatively different time periods, off- early- and suppressed
stimulus time periods, as evidenced by correlating with context index calculated from
multiple time periods (Fig. 5E-G).

Minor comments:

Figure 1: the authors rely heavily on a previous publication of theirs to describe the task and
basic findings like performance and learning parameters of the mice - it is also quite a big jump
to go from panel C to D. Possibly such missing information, illustrating the actual behavioural
performance of the mice, could be added here, so that the study can be evaluated as an
independent piece of work.

The same applies to response properties of the recorded neurons - jumping straigth to decoding
accuracies, does not really do justice to an appropriate description of activity changes (e.g.
time-locked to stimulus-presentation and choice) of the measured neurons.

We have extended the description of the behavioral training (pg. 5, lines 159-168). Also,
we have added a new panel to Figure 1 and additional detail is provided through
Supplementary Figure 1, which includes separate analyses for individual animals. We
have also added additional behavioral measures to the main text (pg. 5, lines 173-190).

We added a raster plot of neural spikes of several trials to Figure 2, and also included
example neurons that behave in a way that their activity is different between relevant and
irrelevant conditions when in response to stimuli. These examples illustrate a potential
relevance-modulatory effect. We improved the discussion of specific and mixed
selectivity representations (pg. 20, lines 789-795).

In Figure 3, - ("minus”) seems to be displayed as "?"

We thank the Reviewer for pointing this out. This was an error in the pdf renderer, we
have recertified this issue.

Figure 4F is not explained or cited in the main text, 4C is difficult to understand

Thank you for highlighting this point, we added the statement and citation to the text for
4F.

Figure 5A is missing in the Figures attached at the end



This was also an error in the pdf pipeline, we now corrected this issue.

Reviewer #3

This manuscript presents data from an interesting behavioural task in which mice have to attend
to one of two simultaneously presented auditory and visual cues, performing go-nogo decision
making on the attended modality while ignoring the other modality. The correct modality
changes within session allowing the authors to examine stimulus related neural related activity
in attended and ignored conditions, as well as activity related to the current context and
decision. The manuscript presents data from ephys recordings in ACC and V1, with ACC data
the primary focus as the V1 data is discussed in a separate paper, along with computational
modelling of the attentional selection process. The main experimental claims of the paper are:
- Attended stimuli are more strongly represented in ACC than unattended stimuli, but this is not
the case for V1.

- The current context (which modality is relevant) is coded in ACC throughout the trial.

- Representations of the two different modality stimuli are in orthogonal subspaces of ACC
activity, which are also orthogonal to the subspace encoding the current context.

These findings are perhaps not massive surprising, but nonetheless a useful contribution to the
literature. | do have a couple of technical concerns about the data and analyses that led to
them however.

First, my understanding is that the entire ACC recording dataset in this study consists of one
session each from 4 mice. This is both a small number of subjects and a small amount of data
per subject, so it is important to make clear to the reader both how consistent effects are across
the 4 subjects, and how much data there is per subject. Specifically, please ensure that for all
analyses you either show individual points for each subject, or plot the analysis separately for
each subject in supplementary material. Also, for each subject please show the behaviour from
the recording session, and report the number of neurons, and number of trials of each type for
that session.

We have extended the manuscript with a supplemental figure to include behavioral
performance of all animals (Suppl. Fig. 1). We performed additional behavioral analysis
on identifying ‘consistent blocks’, which provides a quantitative insight into the
consistency of behavior across experimental blocks and across animals (Fig. 1D). Details
on trial numbers and neuron population sizes have also been added to the text (pg. 5,
line 173-190; pg. 6, lines 209-226). Along this line, neural activity for individual
ACC-recorded animals is now presented as a supplementary figure (Suppl. Fig. 2).

Second, regarding the claim that attended stimuli are more strongly represented in ACC than
unattended stimuli (Figure 2), it would be important to verify that this apparent effect is not due



to representation of the go-nogo decision rather than the stimulus itself. Representation of the
decision could contribute to the effect because relevant stimuli will be highly correlated with the
go-nogo decision but irrelevant stimuli will not, so representation of the decision will yield
decodability of the relevant stimulus. One way to address this would be an encoding analysis
predicting neural activity using a linear regression (running separate regressions for each
neuron, and timepoint in trial), using the auditory stimulus, visual stimulus, decision, and context
as predictors. You would train the regression on all trial types and then evaluate the coefficient
of partial determination on held out data split by relevant/irrelevant for each modality, to quantify
how much variance is uniquely explained by each stimulus that cannot be explained by the
decision. Another complementary analysis would be to show the angle between the decision
vector for the stimulus decoders and decision decoder as a function of time from stimulus onset
(as in figures 3E,F).

We thank the reviewer for pointing this out. We performed two additional control
analyses to address this.

To control for the possibility that movement related activity contributes to the observed
suppression we repeated the decoding analysis for different modality stimuli such that
trials were restricted to lick-only trials. This condition severely limited the number of
trials available for training a decoder, and therefore only a limited number of blocks could
be taken into account for this analysis. Our analysis confirmed that suppression can be
identified in lick-only trials as well. Moreover, while exploratory trials had less
suppression than consistent trials, a result identical to when not lick-controlled
(Supplementary Fig. 2).

Next, we tested the potential account that early responses are identical in attended and
unattended conditions and late responses only differ because of different
decisions/outcomes. For this we assessed activity in the one-dimensional subspace that
is identified at the earliest appearance of stimulus-related activity. By investigating this
subspace throughout the trial we argued that if the difference between
attended/unattended condition is a result of decision-related activity, the suppression we
identified would be in a subspace different from the subspace where early stimulus
induced activity. To test this scenario, we projected population trajectories onto the
decision vector of the stimulus decoder established for the 250-750 ms window and
assessed the difference between responses to 'go’ and 'no go’ stimuli in the population
activity projected onto this subspace. We found that suppression was consistently
present in this subspace across animals for irrelevant stimuli, while not present for
relevant stimuli. We added this analysis as a supplemental figure (Supplementary Fig.
3E-H) and updated the text accordingly (page 8-9, lines 305-321).

Finally, we performed the analysis suggested by the Reviewer: we introduced a
single-cell analysis to identify contributions of choice to neural activity that is separate
from the contributions of stimulus presentation. This single-cell analysis is naturally
more noisy than population analyses, still we found evidence of separate contribution



from choice and the visual stimulus (Supplementary Figure 3I-L). We also extended the
manuscript (pg. 9, lines 323-335).

The second half of the paper describes two pieces of computational work modelling the
experimental data. The first is an RNN trained on a simulated version of the task, while the
second are mathematical arguments about how attention should affect stimulus representations.
I did not find the RNN simulations very illuminating because the authors did not apply the same
analysis approach to the RNN activity as to the neurons, making it difficult to assess whether
the RNN solves the task using similar mechanisms to the mice. Specifically, the authors do not
attempt to apply the analysis in figure 2 characterising the strength of stimulus representation in
attended and unattended conditions, nor the analyses in figure 3D-F characterising the
geometry of the representations. | assume this is because, as they state in the text, ‘Stimulus
decoders cannot directly be applied to all the hidden units in our shallow RNN because they
would selectively pick activity from cells with strong stimulus input’. But this limitation suggests
that this modelling approach is not ideal for understanding this experimental data.

We thank the reviewer for highlighting this point. We have made modifications to the
analyses and text to substantially increase the alignment between the model and the
experiment, as well as we have clarified the role of analyses in the RNN that go beyond
the analysis we did with the experimental data. Importantly, we introduced three new
panels (Fig. 4E-G),which have direct experimental counterparts. Below we summarize the
rationale behind the updated Figure 4.

Fig. 4B does not have a direct experimental counterpart. This panel describes network
performance and network properties during training. As the experimental analysis is
available for a single session, such potential correspondence between ACC properties
and behavior are not possible to obtain. However, the panel provides some important
insights: 1, similar to the experiments, there is an asymmetry in the learning to perform
well in congruent and incongruent trials; 2, the plot highlights that successful learning of
incongruent trials is contingent on acquiring a context variable.

Fig. 4C delivers an insight about the RNN that exploits our ability to analyze network
behavior on a trial-by-trial basis upon inferring a new context . As there is a single
context change in the experimental data, noisy population responses prevent a
trial-by-trial analysis of neuronal data, thus the panels delivers a modeling insight
instead of a testable population phenomenon.

Fig. 4D has a direct experimental counterpart.

Fig. 4E,F have been newly introduced to analyze the relationships of stimulus, decision,
and context.



Fig. 4G has been newly introduced to directly compare the time course of the population
activity during trials, and it is a direct analog of the analysis we introduced for the
analysis of the experiments.

Fig. 4H provides an insight about the dynamics of a neuron that is detached from direct
sensory effects but is close to network output. This type of analysis is not accessible in
experiments, instead it shows through the model how ‘abstraction’ emerges as a result
of network dynamics.

In summary, existing analyses along with newly introduced analyses highlight that
several key aspects of the neural code identified in ACC can also be identified in
analogous analyses in the RNN. These include the asymmetry in task performance,
presence of a context representation, the representational geometry of the neuron
population, the maintenance of past outcomes in the network, and suppression of
stimulus representation when the modality of the stimulus is not relevant for the
outcome of the trial.

We have updated the description of the figure in the main text to more efficiently convey
the parallels (pg. 13-14, lines 488-492, 496-503, 507-524).

The final section of the paper makes mathematical arguments about how a contextual stimulus
should modify stimulus representations to implement selective attention. | found the setup here
rather strange, as the process of selectively attending to one of two stimuli based on a context
signal inherently requires a non-linear interaction between the context and stimuli, but the
authors framing of the problem is linear. The authors finesse this by making the matrix M
mapping the context input to the stimulus subspaces depend on the stimuli themselves, but this
is inconsistent with their description of M as ‘fixed input connections’ from the context input to
the stimulus subspaces. Further, they define M differently at different places in the manuscript,
sometimes giving it fixed values independent of the stimulus as M=[[0,-1],[-1,0]] (e.g. in the main
text at the bottom of page 11), and in other places making it dependent on the stimulus as
M=[[0,-v],[-a,0]] (e.g. at the bottom of page 19). The interpretation of M also appears to shift
between sections, as in some places it is characterised as mapping a context input into stimulus
subspaces, whereas in other places it interpreted as mutual inhibition between populations
encoding the different stimuli, i.e. a mapping from the stimulus-subspaces back onto these
same stimulus-subspaces. Given these issues | did not find the arguments in this section clear
enough to yield insight into the attention mechanisms explored in the experiment.

We thank the reviewer for pointing out an unclear and somewhat mixed definition of M,
the linear mapping from a context signal onto the stimulus subspace, and F the output
mapping to the decision space, which in the recurrent extension also contains the lateral
mapping within the stimulus subspace. We have clarified this point in the manuscript
(pg- 15, lines 572-595; pg. 17, lines 649-652) but also provide here an itemized
explanation.



First we repeat here, as the reviewer assessed, that the proof works for
time-scales in which synaptic weights are not changing, e.g. a single session.
We argue that the function m(c), which depends on the one-hot encoded context
vector (which can be identified with [1,0] for visual context, and [0,1] for audio
context in a coordinate system that represents c along a single dimension
corresponding to a context subspace, C, as described in Corollary 1), indeed can
be a linear map onto the stimulus subspace. This linear map can be written in
matrix form in the subspace coordinates for C and A + B respectively on the
domain and range: M, hence m(c) = Mc. The simplest form of this M matrix is
10
1

either the self-enhancing identity matrix ( o ) or the mutual inhibition matrix

( _(i _(1) ): these mappings enhance the activity of the contextually correct space
or decrease the contextually irrelevant space, respectively.

The amount of enhancement or inhibition can be encoded in fixed elements of the
M matrix, thus M does not need to depend on the activities in the stimulus
subspace: if the network learned the statistics of the stimuli the mean
suppression necessary for repeated task performance can be encoded in fixed
synaptic weights. Nevertheless, the reviewer is correct that one of the example
forms of matrix M in the manuscript depended on the actual stimulus activity
values. With this example we intended to illustrate the necessary amount of
inhibition to perfectly neutralize the irrelevant subspace activity. We clarified the
aim of this example in the manuscript and changed the proof to rely mainly on the
argument that the values of M can be thought of as the mean suppression
multipliers. This should separate more clearly that learning establishes optimal
mapping weights that creates cross-inhibition, and such optimized fixed weights
allow sufficient suppression for optimal task execution.

Here we clarify the role of M and F matrices. We clarified the description of input
map M to better reflect that it is not mutual (recurrent/lateral) inhibition from and
to the same subspace, but rather just cross-inhibition from a context
representation subspace to stimulus subspace. We added an illustration for this
to Fig. 5B (also shown here below as Fig. R2), which now has a cross-inhibiting
input mapping on the left, and a mutual inhibition on the right (red lines). Both
have enhancement as well (green lines), self-propagation for the input mapping
(left), and self-enhancement for the lateral mapping (right). We have restructured
the text to better reflect this logic. We elaborated on the theoretical requirements
for a closed recurrent system where a locally computed context and the stimuli
are both present within the total stimulus subspace, thus M will equal F (the
domain and range of M is the same V+A subspace, but also notice that F also has
to map to D, thus this is a specialized version of the general case in the
proposition and the two corollaries) by adding a relevant sentence to Corollary 2,
point (v).
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Figure R2. Schematics of amplification and cross lateral-inhibition as a map from the context
subspace (grey circles) into the total stimulus subspace (black circles) represented by the
connection structure of two axis aligned two dimensional systems: two input neurons acting on
two output neurons (left). Schematics of mutual feedback in the total stimulus subspace
represented by an axis aligned two dimensional system: two neurons with mutual inhibition and
positive self-enhacement (right).

Minor issues:

- When reporting statistical tests please indicate the experimental unit and give more complete
reporting of the test stats (e.g. for t-tests it is standard to report the t value and degrees of
freedom in addition to the P value).

We have updated the text manuscript accordingly.

- Figure 1C: Missing a Y axis label. What do the solid vs dash lines indicate? Does this show a
whole session or part of a session? The methods text indicates sessions are ~400 trials long but
this plot shows < 100 trials.

We thank the Reviewer for pointing these out. Recording sessions consisted of
approximately 60-120 multimodal trials per context block. The figures have been
amended, session and blocks lengths added and visualized for each mouse in
Supplementary Fig. 1, and text in methods has been clarified.

- Figure 2 legend: What does ‘s.e.m. also containing across animal mean of CV s.e.m.” mean?

The confidence band of these across-animal decoders consist of the mean accuracy
s.e.m. over mice plus the mean over mice of the s.e.m. of decoder accuracies over CVs
for each mice. We added clarification to the figure caption.

- Figure 4C: Why is the fraction correct ~0.9 on the third stimulus presentation when the model
should have no information about the correct context as the first two trials were congruent?

We thank the Reviewer for pointing out this discrepancy. When decision fraction correct
curve is calculated over all sequences, there is an increasing probability of encountering
incongruent trials until a given trial within the sequence, which we wanted to illustrate on
the figure, but accidentally mislabeled it as a subtype of all sequences in the caption;
now we changed this to a gray line, and removed the erroneous solid and dashed styles



corresponding to congruency. Note that congruent trials give 0.75 fraction correct alone.
We added the decision fraction correct line for the correct sequence type with orange
color, so that it corresponds to the magenta context line now. We inserted clarifications
in the figure caption.

- Figure 4E: s this all trials or incongruent trials only?

All trials.

- Top of page 11: What is the justification for saying ‘our RNN model reproduces the ...
geometry of the representations of the stimuli and the context” when you did not run the
analyses used to assess the geometry of representations in the mice on the RNN data?
Thank you for noticing limited evidence presentation. We now added to Fig 4. the same
analysis for RNN evidencing that the representation geometry is indeed the same as for
mouse brains.

- | commend the authors for making their data and code publically available, well done.

Thank you.



REVIEWER COMMENTS
Reviewer #1 (Remarks to the Author):

The authors have extensively revised the manuscript and addressed the majority of my concerns.

Reviewer #2 (Remarks to the Author):

The authors have addressed all my concerns with considerable care and effort, and have greatly
improved their manuscript. I have no further concerns or comments and look forward to see the
manuscript being published at Nature Communications.

Reviewer #3 (Remarks to the Author):

The authors have provided some useful additional information in the revised manuscript but I
remain concerned that there are serious issues with some key claims of the paper.

i) A key experimental claim is that representation of sensory stimuli in ACC is supressed when the
stimuli are task irrelevant, with the primary evidence for this coming from analyses showing more
accurate decoding of the stimuli when relevant compared to irrelevant. I expressed concern in my
original review that this might reflect decoding of the animal’s decision, rather than the stimuli
itself, as the decision would be highly correlated with the stimulus when relevant but not when
irrelevant. The authors have done some additional analyses to address this concern but in my view
none of them are convincing:

Figure S3A-D does a decoding analysis considering only trials when the subject licked (so the
decision variable is always the same), but does not compare accuracy when the stimulus is
relevant vs irrelevant, so does not speak directly to the question of whether decoding accuracy is
higher when the stimulus is relevant after controlling for the animals decision.

Figure S3E-H is an analysis in which the difference in activity between go and no-go stimuli across
the trial is projected onto the decision vector for a decoder trained to discriminate between these
stimuli at a timepoint 0.25-0.75 seconds after stimulus onset. The idea is that activity in this
timepoint is a pure stimulus-driven response ‘where neither suppression, nor choice-related
activity was present’, such that any difference in this projection between relevant an irrelevant
conditions later in the trial cannot be due to the decision, but rather due to suppression of the
stimulus representation itself. However, it is entirely possible that decision related activity is
already present in this 0.25-0.75 post-stimulus-onset time window, and indeed the projection is
already substantially larger at this timepoint in the relevant than irrelevant condition in all subjects
and both stimulus modalities -consistent with activity at this timepoint already reflecting the
subject’s decision and inconsistent with it being purely stimulus driven.

Figure S3I-L uses an encoding analysis (linear regression) to argue that the stimulus explains
variance in the neural activity in addition to that explained by the decision. This is a step in the
right direction but does not address the key question of whether the variance that is uniquely
explained by the stimulus (after controlling for variance explained by the decision) is larger when
the stimulus is relevant than when irrelevant.

Regarding the experimental claims in the paper, the additional information provided about the
behaviour and the stats raise some new issues:

ii) I had not realised in the original review that in the recording sessions there is only a single
block of each context (visual vs auditory relevant), such that one context occurs at the start of the



session and one at the end. This introduces an major confound in the claim that context is
encoded by the ACC neurons (figure 3A) because if the ACC neurons represent any variable that
changes systematically from start to end of session (e.g. the animals changing motivational state
due to satiety) then this will make it possible to decode session start vs end, and hence make
‘context’ decodable. The same issue would arise if the spike sorting process causes any neurons to
drop out or appear part way through the session due to drift in their waveforms, which is
eminently possible. The best protection against this is through experiment designs in which
variables of interest changes multiple times across the session to decorrelate them from possible
slow changes in activity or drift. Given the limitations of the existing data the only way to make a
convincing argument that the neurons genuinely encode context would be to show that the
decoded context changes abruptly following the block transition rather than smoothly across the
session. A convincing demonstration of this would further need to ensure that the data used to
train the decoder came only from trials well away from the block transition.

iii) The additional information provided about the stats indicates that for many analyses,
timepoints were used as the experimental unit, e.g. in figure 2K the N is respectively 600 and
1200 for the ACC and V1 data, comprising 150 timepoints for each subject. This is not acceptable
statistical practice as timepoints are far from statistically independent, due to the strong
autocorrelations in neural data, not to mention any smoothing applied during analysis.

The arguments in the theory section ‘Context-gated attention in activity subspaces’ still do not
make sense to me. In the original review I raised the concern that the matrix M mapping the
context input onto the stimulus activity subspace itself depended on the stimulus, which given this
matrix was being interpreted as synaptic weights did not make sense. This remains an issue in the
revised manuscript. To see this consider the equation on line 947 of the revised manuscript, which
starts d(c) = F (s + Mc) where d is the decision, s is the stimulus, c is the context, and M the
matrix mapping the context onto the stimulus subspace. In this equation both the vector s and the
matrix m are defined in terms of scalar elements a and v. However, the stimulus s clearly has to
change from trial-to-trial, as different stimuli can be presented, whereas M is a matrix of fixed
synaptic weights (see e.g. line 938) which do not change from trial-to-trial, raising a clear
contradiction as the common elements a and v cannot both change from trial-to-trial and
represent fixed synaptic weights. The clarity of this section would benefit from notation which
clearly differentiated those variables that take different values from trial-to-trial from those which
are fixed.



Response to reviewers

We thank the reviewer for their constructive follow-up comments. We have addressed
these comments in an updated manuscript. Responses to the comments are provided in
this ‘response to reviewer’ document, with clear indications to the updates in the revised
manuscript.

Reviewer #3 (Remarks to the Author):

The authors have provided some useful additional information in the revised manuscript but |
remain concerned that there are serious issues with some key claims of the paper.

i) A key experimental claim is that representation of sensory stimuli in ACC is supressed when
the stimuli are task irrelevant, with the primary evidence for this coming from analyses showing
more accurate decoding of the stimuli when relevant compared to irrelevant. | expressed
concern in my original review that this might reflect decoding of the animal’s decision, rather
than the stimuli itself, as the decision would be highly correlated with the stimulus when relevant
but not when irrelevant. The authors have done some additional analyses to address this
concern but in my view none of them are convincing:

Figure S3A-D does a decoding analysis considering only trials when the subject licked (so the
decision variable is always the same), but does not compare accuracy when the stimulus is
relevant vs irrelevant, so does not speak directly to the question of whether decoding accuracy
is higher when the stimulus is relevant after controlling for the animals decision.

We performed the above mentioned analysis to test the hypothesis that responses late in
the trial merely reflect decisions/movements instead of stimulus-related activity. Note
that this analysis precisely addresses the reviewer’s concern, which we explain here in
detail. An alternative explanation was proposed, which stated that the apparent
suppression in the irrelevant condition was not a consequence of suppression of the
irrelevant stimulus modality, instead reflected the correlation of the stimulus identity
with decision/movement. This is a highly relevant alternative interpretation since when
the stimulus modality is relevant, the stimulus identity predicts the decision, thus a
decision related activity would turn up in the decoding analysis as a component that
identifies stimulus identity. To address this potential confound, we performed an analysis
in which the decision/movement was the same when the two stimuli were presented. We
argued that if the stimulus decodability resulted merely from decision/movement-related
activity, then fixing the decision/movement would reduce stimulus decodability. The fact
that a stimulus decoder is not distinguishable when the analysis is performed on all trials
and when the analysis is constrained to trials in which lick always occurs highlights that



this interpretation does not hold, therefore different movement patterns are unlikely to
account for the lower discriminability of stimuli in the irrelevant condition.

The Reviewer seems to propose an analysis in which the behavior is controlled AND the
relevance of stimulus is changing. Unfortunately, these sets of conditions can only be
fulfilled in exploratory trials, as the movement controlled analysis requires a sufficiently
large number of error trials for reliable cross-validated decoding. These conditions can
be fulfilled in two animals. Our earlier results indicated that exploratory trials are
characterized by lower levels of suppression. Accordingly, we expected less pronounced
suppression in this decision-controlled analysis. Our analysis has demonstrated that the
irrelevant condition remained suppressed, in 3 out of 4 available context blocks in the
two animals of the decision-controlled analysis. We updated Fig. S4A-D (formerly Fig.
S3A-D), and applied corrected block averaged statistics (see below). These control
analyses provide strong support for movement/decision related activity not being
sufficient to account for suppression in the irrelevant condition. We expand on the
original argument in the main text of the paper (pg. 8, lines 297-303)

Figure S3E-H is an analysis in which the difference in activity between go and no-go stimuli
across the trial is projected onto the decision vector for a decoder trained to discriminate
between these stimuli at a timepoint 0.25-0.75 seconds after stimulus onset. The idea is that
activity in this timepoint is a pure stimulus-driven response ‘where neither suppression, nor
choice-related activity was present’, such that any difference in this projection between relevant
an irrelevant conditions later in the trial cannot be due to the decision, but rather due to
suppression of the stimulus representation itself. However, it is entirely possible that decision
related activity is already present in this 0.25-0.75 post-stimulus-onset time window, and indeed
the projection is already substantially larger at this timepoint in the relevant than irrelevant
condition in all subjects and both stimulus modalities -consistent with activity at this timepoint
already reflecting the subject’s decision and inconsistent with it being purely stimulus driven.

We agree with the reviewer that decision-related activity can appear early in the trial.
However, we believe that this analysis provides useful insights as it provides evidence
that neuronal response related movement (i.e. licking centered around the water
availability time point at 2 sec with very rarely occurring early licking before 1 s into
stimulus) not having a confounding effect on suppression. The original text element
referred to this control as "We hypothesized that if the source of activity during suppression
was different, e.g. movement induced activity...". We have updated this section in the main
text for clarity (pg. 9, line 331).

Figure S3I-L uses an encoding analysis (linear regression) to argue that the stimulus explains
variance in the neural activity in addition to that explained by the decision. This is a step in the
right direction but does not address the key question of whether the variance that is uniquely
explained by the stimulus (after controlling for variance explained by the decision) is larger when
the stimulus is relevant than when irrelevant.



In the previous round of reviews we had demonstrated that stimulus-related variance
exists in ACC neurons beyond the activity related to choice (current Fig. S4l-L, formerly
S3I-L). As above, this analysis itself is insightful as it refutes the hypothesis that in the
period when suppression is identified only choice-related activity is present. We have
now updated this analysis to further address the t the concerns of the reviewer. We
added an analysis that shows R? for the irrelevant stimulus modality. When neural
activity was predicted from the irrelevant stimulus only, after suppression it had smaller
R? than for relevant stimuli. This replicates the analysis in Fig. 2 by decoders. We added
this single predictor to show general consistency between methods. The important
addition answering the reviewer's question, though, is, when comparing R? from
predictors of relevant stimulus + choice vs. irrelevant stimulus + choice. We only used
trials from the consistent periods, as we evidenced on Fig. 2, that mice did not suppress
irrelevant stimulus-related activity in exploratory trials. We changed the mean of R? over
predictable neurons to best predictable neuron, as we found that it is better suited for
demonstrating the existence of task related activity whilst also numerically correct for
estimating R Since predicting a continuous variable from a binary task variable is
generally much more difficult than using population decoders, the activity of many
neurons was not predictable with cross-validation. In addition, the number of trials was
small in multiple cases, similar to Fig. S4A-D, thus certain mice did not have even a
single neuron whose activity was predictable from task variables in the consistent
periods throughout the entire time course of trials. Unpredictable mice and contexts were
left as blank. Those mice and contexts, however, where neuronal activity was predictable
from task variables, showed the expected result: co-predictors of relevant stimulus +
choice had significantly larger explained variance than irrelevant stimulus + choice. We
applied the statistics correction based on the autocorrelation lag here as well, using 4
block-averaged time points for each mouse and context. Changes are reflected in
Supplementary Fig. S4I-L and in the text (pg. 9-10, lines 348-362).

Regarding the experimental claims in the paper, the additional information provided about the
behaviour and the stats raise some new issues:

ii) I had not realised in the original review that in the recording sessions there is only a single
block of each context (visual vs auditory relevant), such that one context occurs at the start of
the session and one at the end. This introduces an major confound in the claim that context is
encoded by the ACC neurons (figure 3A) because if the ACC neurons represent any variable
that changes systematically from start to end of session (e.g. the animals changing motivational
state due to satiety) then this will make it possible to decode session start vs end, and hence
make ‘context’ decodable. The same issue would arise if the spike sorting process causes any
neurons to drop out or appear part way through the session due to drift in their waveforms,
which is eminently possible. The best protection against this is through experiment designs in
which variables of interest changes multiple times across the session to decorrelate them from
possible slow changes in activity or drift. Given the limitations of the existing data the only way
to make a convincing argument that the neurons genuinely encode context would be to show
that the decoded context changes abruptly following the block transition rather than smoothly



across the session. A convincing demonstration of this would further need to ensure that the
data used to train the decoder came only from trials well away from the block transition.

We thank the reviewer for highlighting their concerns. We have now added two
extensions to the manuscript to address these issues.

First, although the Methods contained a brief description of drift control, we have now
added a new paragraph (pg. 31, lines 1221-1230) that describes in more detail the
systematic manual curation we originally used during spike sorting. These were
designed rigorously and tested extensively to eliminate contributions from dropping out
and appearing neurons.

Second, we have now implemented the suggested cross-validation scheme for context. It
is fair to assume that it is difficult to distinguish the effect of transition between contexts
in terms of model predictions: Both training and cross-testing in the transition trials can
cause either worse or better predictions in the end. Therefore we assumed that
comparing both training for context at the edges of the session and testing in the middile,
and vice versa, training in the middle of the session and testing at the edges should yield
similar context-accuracy time-courses, if drift is not present. We found that in all mice,
this was indeed the case. This also corroborates the finding that differences in activity
patterns between the two contexts are indeed equivalent within a context block and
abruptly changes between the blocks. This control analysis is now added as a new
Supplementary Fig. 3 on panels A-D for each mouse and corresponding text was added
to the main text of the paper (pg. 10, lines 377-384).

iii) The additional information provided about the stats indicates that for many analyses,
timepoints were used as the experimental unit, e.g. in figure 2K the N is respectively 600 and
1200 for the ACC and V1 data, comprising 150 timepoints for each subject. This is not
acceptable statistical practice as timepoints are far from statistically independent, due to the
strong autocorrelations in neural data, not to mention any smoothing applied during analysis.

We thank the reviewer for adding this point. To address this issue, we estimated the
autocorrelation function of predictive decoder accuracy time courses. We found that the
autocorrelation safely reached 0 in about 600 ms, with largely indistinguishable function
profiles between conditions and animals. We used this window length to establish 4 time
points during stimulus suppression between 0.6-3s, and used these as individual
observation points for each mouse. The statistics of comparison between consistent and
exploratory conditions in each brain area holds. We added the autocorrelation functions
to Fig. 2 as panel K, and renamed the distribution comparison panel to L.

The arguments in the theory section ‘Context-gated attention in activity subspaces’ still do not
make sense to me. In the original review | raised the concern that the matrix M mapping the
context input onto the stimulus activity subspace itself depended on the stimulus, which given
this matrix was being interpreted as synaptic weights did not make sense. This remains an issue



in the revised manuscript. To see this consider the equation on line 947 of the revised
manuscript, which starts d(c) = F (s + Mc) where d is the decision, s is the stimulus, c is the
context, and M the matrix mapping the context onto the stimulus subspace. In this equation both
the vector s and the matrix m are defined in terms of scalar elements a and v. However, the
stimulus s clearly has to change from trial-to-trial, as different stimuli can be presented, whereas
M is a matrix of fixed synaptic weights (see e.g. line 938) which do not change from trial-to-trial,
raising a clear contradiction as the common elements a and v cannot both change from
trial-to-trial and represent fixed synaptic weights. The clarity of this section would benefit from
notation which clearly differentiated those variables that take different values from trial-to-trial
from those which are fixed.

We thank the reviewer for taking the effort to double check on the consistency of
notations. We agree that some confusing elements of the notation were still present.

The main message is that v and «a, elements of the input matrix, M, are defined as learned
optimal suppression/enhancement levels that are fixed over the course of trials, and
does not directly depend on the stimuli in the current trial. For further clarification to
resolve the intelligibility issue of this section, we now amended the manuscript with a
change of notation everywhere, where we missed it. We have now removed the explicit
values of -a, v and -v, a, where they still remained. In the main text we now also refer to m
being an element of a given stimulus subspace, with opposite direction as to the activity
in that subspace for inhibition and same direction for enhancement (pg. 16, lines
597-599). This should clear up any confusion caused by notation. The actual elements of
the mapping are later clarified as previously: learned mean suppression/enhancement
levels. We made similar changes in the Appendix with concrete values (pg. 25, lines
975-976, 986-989). We changed the elements of M from -a and -v to -v and -« everywhere,
clearly signifying that they are not the same per trial stimulus related activity vectors, but
average suppression levels suitable to be fixed connection weights in the matrix.

We hope that these clarification and notation improvements are now satisfactory for
intelligibility, and once again thank the reviewer for the diligent observations regarding
notation.



REVIEWERS' COMMENTS
Reviewer #1 (Remarks to the Author):

The authors revised the previous version of the manuscript to directly address the concerns raised.
They address the concerns adequately and I think the manuscript has been strengthened.
However the authors cannot entirely rule out some of the confounding factors highlighted by the
reviewer. I suggest that the authors directly address some of the remaining and unresolved (and
unsolvable given the current experimental design) weaknesses (eg i. lack of a substantial control
in which the behavior/movement is controlled AND the relevance of stimulus is changing; ii. lack of
an experimental control for a state change during the session) in the discussion.

Reviewer #2 (Remarks to the Author):

The authors have addressed all remaining concerns in a very thoughtful, thorough and convincing
manner.



Response to reviewers

We thank the reviewer for their supporting comments.
Reviewer #1 (Remarks to the Author):

The authors revised the previous version of the manuscript to directly address the concerns
raised. They address the concerns adequately and | think the manuscript has been
strengthened. However the authors cannot entirely rule out some of the confounding factors
highlighted by the reviewer. | suggest that the authors directly address some of the remaining
and unresolved (and unsolvable given the current experimental design) weaknesses (eg i. lack
of a substantial control in which the behavior/movement is controlled AND the relevance of
stimulus is changing; ii. lack of an experimental control for a state change during the session) in
the discussion.

We have now added two points to the discussion that address these issues. The added
text is at the 8th and 9th paragraph of the discussion.
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