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Supplementary Figure 1. Validation of the AG, DT, and VT reporters.
a, IF analysis of GFP, tdTomato, DAZL, and DDX4 expression in M1-AGDT hPGCLC-derived cells at c89.  (top) Scatter-plot representations of the expression levels
[log(fluorescence intensity)] of GFP (AG) and tdTomato (DT) in the c89 cells stained with anti-GFP, anti-tdTomato, and anti-DAZL (left) or anti-DDX4 (right) antibodies.
Red-dotted boxed areas were determined as GFP+ (AG+).  GFP− and tdTomato− cells include m220 feeders.  
(bottom) Scatter-plot representations of the expression levels [log(fluorescence intensity)] of DAZL (left) or DDX4 (right) and tdTomato (DT) in the GFP+ (AG+) cells.  
Red vertical and horizontal bars indicate a threshold for the DAZL (left) or DDX4 (right) and tdTomato (DT) positivity, respectively.  The color coding is as indicated.
b, IF analysis of GFP, tdTomato, DAZL, and DDX4 expression in M1-AGVT hPGCLC-derived cells at c89.  Scatter-plot representations are as in (a).
c, IF analysis of GFP, tdTomato, DAZL, and DDX4 expression in F1-AGVT hPGCLC-derived cells at c91.  Scatter-plot representations are as in (a).
d, IF analysis of GFP, tdTomato, and TFAP2C expression in F1-AGVT hPGCLC-derived cells at c108.  (left) Representative images for GFP, tdTomato, and TFAP2C expression
and their merges as indicated.  All AG−VT+ (GFP−tdTomato+) cells (18 cells) were TFAP2C− (arrowheads).  Bar, 50 μm.  (right) Scatter-plot representations are as in (a).  
Among VT+ cells, GFP (AG) and TFAP2C expression levels were highly correlated (r = 0.61).  The color coding is as indicated.
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Supplementary Figure 2. FACS gating used in this study.
a, Identification of the cell population used for surface antigen expression analysis in hPGCLC expansion/differentiation culture
experiments using 585B1-BTAG (M1-BTAG) or 1383D6 (M2) lines.
b, Identification of BTAG cells in hPGCLC expansion/differentiation culture experiments using 585B1-BTAG (M1-BTAG) or
TET1 KO lines.
c, Identification of the cell population used for the reporter expression analysis in hPGCLC expansion/differentiation culture
experiments using 585B1-AGDT/AGVT (M1-AGDT/AGVT), NCLCN-AGVT (F1-AGVT), and 1390G3-AGVT (F2-AGVT) lines.
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Supplementary Figure 3. Murase et al.

Supplementary Figure 3. Uncroped data for Extended Data Figure. 5i.
Uncropped images of the Western blot analysis shown in Extended Data Fig. 5i of the levels of phosphorylated or total ERK1 and 2 in M1-AGDT
hPGCLC-derived cells at c33 cultured with or without BMP2. Three independent cultures were analyzed for two biological replicates (Experiment 1
and 2). The light dotted boxes indicate the regions of interest. αTUBLIN was used for the loading control. pERK: phosphorylated ERK. 
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Supplementary Discussion 1 
We performed an orthogonal validation of the DT and VT reporters.  First, we conducted 
an IF analysis of DAZL and DDX4 expression in M1-AGDT hPGCLC-derived cells at 
c89.  This revealed that 1) essentially all DT+ cells were DAZL+, with the expression 
levels of DT and DAZL showing an excellent correlation (r = ~0.65); 2) on the other hand, 
~one-third of DT− cells exhibited low/middle-level DAZL positivity; and 3) essentially 
all DAZL− cells were DT− (Supplementary Figure 1a).  In accord with these findings, 4) 
essentially all DT+ cells were DDX4+, with the expression levels of DT and DDX4 
showing a strong correlation (r = ~0.61); 5) a fraction (~15%) of DT− cells exhibited 
low/middle-level DDX4 positivity; and 6) the vast majority of all DDX4− cells were DT− 

(Supplementary Figure 1a).  These findings demonstrate that the DT positivity is a 
powerful quantitative indicator for DAZL (and DDX4) expression, while on the other 
hand, the DT− cells (at a late stage) include a fraction of DAZL- (and DDX4-) expressing 
cells at low/middle levels, which may be due to a sporadic selective transcriptional/post-
transcriptional silencing of the DT allele during BMP-driven hPGCLC differentiation. 
 
Next, we performed IF analysis of DAZL and DDX4 expression in M1-AGVT hPGCLC-
derived cells at c89.  This revealed that 1) the expression levels of VT and DDX4 were 
highly correlated in all expression-level ranges (r = ~0.73) and 2) DAZL was broadly 
expressed from VT−/low to VThigh cells, with the expression levels of VT and DAZL 
showing a mild correlation (r = ~0.58) (Supplementary Figure 1b).  These findings 
demonstrate that VT is a faithful reporter for DDX4 expression, and are consistent with 
the notion that DAZL begins to be expressed earlier than VT.  The IF analysis for F1-
AGVT hPGCLC-derived cells at c91 gave essentially the same results (Supplementary 
Figure 1c). 
 
Furthermore, we performed IF analysis of TFAP2C and DDX4 expression in F1-AGVT 
hPGCLC-derived cells at c109.  This revealed that 1) essentially all AG+ cells were 
TFAP2C+ and 2) all AG−VT+ cells we detected were TFAP2C− and DDX4+ 
(Supplementary Figure 1d), demonstrating that AG is also a faithful reporter for TFAP2C 
expression. 
 
Collectively, these findings demonstrate that both DT and VT positivity monitor DAZL 
and DDX4 expression in a highly quantitative manner, while care should be taken for 
DT− cells, which include a fraction of DAZL+ (and DDX4+) cells, although the majority 
are indeed DAZL− (and DDX4−).  Accordingly, we assume that the detection of a 
relatively high level of DDX4 in one, but not the other, replicate for the c82 AG+DT− cells 
(Extended Data Fig. 4q) was due to a relatively large proportion of DDX4-expressing 
cells in the former, and that the detection of DDX4 at a low level in AG+VT− cells at c44, 
c65, and c86 and of TFAP2C at a low level in the AG−VT+ cells at c107 (Fig. 2a) was due 
to an inclusion of VTlow and AGlow cells, respectively, upon FACS of the AG+VT− and 



AG−VT+ cell population (Fig. 1c) [note also that the “yield” mode for FACS inevitably 
sorts in a fraction of non-gated cells]. 
 
 
 
 
 
  



Supplementary Discussion 2 
Mouse germ cells reduce their 5mCs from ~75% to ~5% over a week with an expansion 
of ~29-fold (from ~40 to ~25,000 cells) 97-99, diminishing their 5mCs by ~8% per cell 
cycle on average.  In contrast, human germ cells reduce their 5mCs from ~80% to ~5% 
over ~5 weeks with an expansion of ~210-fold (from ~40 to ~40,000 cells) 3,100-102, 
decreasing their 5mCs by ~7.5% per cell cycle on average.  Thus, mouse and human 
germ cells reduce 5mCs at a similar rate per cell cycle, and accordingly, the difference in 
time scale for genome-wide DNA demethylation between mice and humans might simply 
reflect the difference in the doubling time between mouse (~0.8 days on average) and 
human germ cells (~3.5 days on average).  This would further support the notion of a 
replication-dependent, passive mechanism, which is non-species specific, as the primary 
mechanism underlying genome-wide DNA demethylation.  Unlike mPGCLCs, which 
reduce their 5mCs by ~10% per cell cycle on average 103, hPGCLC-derived cells from 3 
out of 4 hiPSC lines reduce their 5mCs at a lower rate (~3−5%) per cell cycle (Extended 
Data Fig. 9l), indicating that the hPGCLC differentiation condition would necessitate 
additional optimization, including the provision of additional factors.  Indeed, UHRF1 
remained at a slightly higher level during BMP-driven hPGCLC differentiation than 
during in vivo hPGC differentiation (Fig. 2a), and the former requires substantial 
propagation for genome-wide demethylation.  Given that BMP-driven hPGCLC 
differentiation displays an attenuation of the MAPK/ERK signalling (Extended Data Fig. 
5g−j), a fine tuning of the balance between BMP and MAPK/ERK signalling could be a 
key for such optimization.  On the other hand, hPGCLC-derived cells from F2-AGVT 
reduce their 5mCs by ~7.6% per cell cycle, but with a prolonged doubling time (~8.8 
days) (Extended Data Fig. 9l), which might be due to a variance of signalling efficiency 
associated with this line. 
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