Supplementary information

Global variability in atmospheric new particle formation mechanisms

In the format provided by the authors and unedited

"Global variability in atmospheric new particle formation mechanisms" This PDF file includes: Supplementary Figs 1–12 Supplementary Table 1–3 Supplementary references A SO₂ concentration over Pacific **B** SO₂ concentration over Atlantic ppt ppt 200 100 50 30 20 10 5 3 2 200 100 50 30 20 10 5 3 2 1 Pressure (hPa) Pressure (hPa) Height (km) Height (km) 1000 -60 -30 -60 -30 Latitude Latitude C DMS contribution to SO₂ over Pacific **D** DMS contribution to SO₂ over Atlantic Fraction Fraction 0.9 0.9 Pressure (hPa) Pressure (hPa) 0.8 0.7 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 Height (km) Height 300 0.3 0.2

Supplementary Information for

-60 -30 Latitude Latitude Supplementary Fig. 1 Zonal mean SO₂ concentrations and contribution of DMS emissions over the Pacific and Atlantic oceans in 2016. The range used for the Pacific Ocean is 170°E-150°W and the range used for the Atlantic Ocean is 20°-40°W. Contribution of DMS emissions is quantified using the difference between a simulation with zero DMS emission and the best-case simulation. In the tropical upper troposphere, oceanic DMS emissions account for >80% of the SO₂ and hence H₂SO₄ concentration over the Pacific and approximately 50% over the Atlantic, while continental anthropogenic SO₂ emissions control H₂SO₄ formation in the mid-latitude upper troposphere.

-60 -30

Supplementary Fig. 2 Concentrations of precursors directly involved in nucleation as a
function of height AGL over rainforest regions under the best-case and sensitivity
scenarios. The concentrations are averaged in 2016 over the regions specified in Extended Data
Fig. 1B. Definitions of the sensitivity experiments are presented in Methods and Supplementary
Table 1. To make the figures concise, we show only the concentrations of a precursor in the best-case simulation and in the sensitivity simulations where its concentrations show significant
differences from the best case.

Supplementary Fig. 3 Same as Supplementary Fig. 2 but for anthropogenically polluted regions.

nucleation over the Pacific Ocean (170°E–150°W) under the best-case and sensitivity scenarios in 2016. Definitions of the sensitivity experiments are presented in Methods and Supplementary Table 1. To make the figures concise, we show only the concentrations of a

precursor in the best-case simulation and in the sensitivity simulations where its concentrations show significant differences from the best case.

Supplementary Fig. 5 Same as Supplementary Fig. 4 but for the Atlantic Ocean (20°–40°W).

Supplementary Fig. 7 Same as Supplementary Fig. 6 but for anthropogenically polluted regions.

- 2 Supplementary Fig. 10 Comparison of simulated 2016 mean HNO₃ concentrations in the
- 3 upper troposphere (150 hPa, approximately 13 km) over the Asian monsoon region with
- 4 observations from the Microwave Limb Sounder (MLS) aboard the Aura satellite.

Supplementary Fig. 11 Fractions of CCN at 0.5% supersaturation (CCN0.5%) caused by NPF at different vertical levels in 2016 under different sensitivity simulations. (A–D) 13 km AGL, (E–H) 1 km AGL (approximately at the low-cloud level), and (I–L) surface level. The sensitivity experiments are defined in the section of "Configuration of the updated E3SM" in Methods.

Supplementary Fig. 12 Zonal mean particle number and CCN concentrations and the fractions caused by NPF worldwide in 2016. (A, B) Zonal mean concentrations of (A) particle number of all sizes and (B) CCN0.5% from the best-case simulation. (C, D) Fractions of zonal mean concentrations of (C) particle number and (D) CCN0.5% caused by NPF. Particle number concentrations cover the entire size range (cf. field observations are mostly made for particles larger than a certain cutoff size). All concentrations are normalized to STP. 7

Scenario Description A simulation that includes all 11 NPF mechanisms and uses the R2D-VBS Best-case to simulate the nucleating organics. This is our comprehensive best-case scenario and used in most analyses in this study. No NPF A simulation that does not consider any NPF. NPF Mech4 A simulation that considers only four traditional inorganic nucleation mechanisms, i.e., the neutral and ion-induced H₂SO₄-H₂O mechanisms and H₂SO₄-NH₃-H₂O mechanisms, which resembles the NPF treatment in commonly used climate models. NPF Mech11 constYield A simulation that includes all 11 NPF mechanisms but assumes that pureorganic and organic-H₂SO₄ nucleation is driven by a fixed fraction of the monoterpene oxidation products, following the treatment of a number of previous modeling studies¹⁻⁴. The specific "fixed fractions" used here followed Gordon et al.⁵. Specifically, organic-H₂SO₄ nucleation was linked to all oxidation products of monoterpenes; in other words, the "fixed fraction" of monoterpene oxidation products used to drive organic-H₂SO₄ nucleation was 1.0. Pure-organic nucleation was assumed driven by highly oxygenated organic molecules (HOMs), the molar yields (fixed fraction) of which were assumed to be 1.4% for the reaction of monoterpenes with O₃ and 0.6% for the reaction of monoterpenes with OH. 0.67*SO2 0.5*DMS The same as "Best-case" except that the SO₂ and DMS emissions are reduced by a factor of 1.5 and 2, respectively. 1.5*SO₂ 2*DMS The same as "Best-case" except that the SO₂ and DMS emissions are increased by a factor of 1.5 and 2, respectively. 0.33*H₂SO₄ The same as "Best-case" except that the simulated H₂SO₄ concentrations are reduced by a factor of 3. $3*H_2SO_4$ The same as "Best-case" except that the simulated H₂SO₄ concentrations are increased by a factor of 3. 0.33*MT The same as "Best-case" except that the monoterpene emissions are reduced by a factor of 3. The same as "Best-case" except that a weaker temperature dependence of org-weak-T-dependence pure-organic and organic-H₂SO₄ nucleation rates is used.

Supplementary Table 1 Summary of model scenarios developed in this study.

organic-	The same as "Best-case" except that the organic-H ₂ SO ₄ nucleation		
H_2SO_4 _Riccobono	parameterization is replaced with the one reported in Riccobono et al. ⁶ .		
0.4*DMA	The same as "Best-case" except that the simulated DMA concentrations are		
	set to 0.4 times the original simulation results.		
amine-H ₂ SO ₄ _Almeida	The same as "Best-case" except that the amine+H ₂ SO ₄ nucleation rate		
	parameterization directly derived from CLOUD chamber experiments		
	reported by Almeida et al. ⁷ is used.		
0.33*NH ₃	The same as "Best-case" except that the NH ₃ concentrations are reduced by		
	a factor of 3.		
nonuniform-NH ₃	The same as "Best-case" except that the NH ₃ concentration is 1 ppb		
	(consistent with observations in the convective outflow hotspots by		
	Höpfner et al. ⁸) in [average NH_3]/1 ppb of the area of each model grid and		
	zero in the remaining area of the model grid in the upper troposphere. For		
	the areas with the presence of NH_3 , we assume that H_2SO_4 is exhausted by		
	nucleation.		
0.5*HIO ₃	The same as "Best-case" except that the simulated HIO ₃ concentrations are		
	reduced by a factor of 2.		
5*HIO ₃	The same as "Best-case" except that the simulated HIO ₃ concentrations are		
	increased by a factor of 5.		
upper_tau	The time scale for the consumption rate of convective available potential		
	energy (denoted by "tau") is set to the upper bound (14,400 s) of the		
	possible range specified by Qian et al. ⁹ , as compared to the value of 3,600 s		
	in the best-case simulation.		
lower_tau	The time scale for the consumption rate of convective available potential		
	energy (denoted by "tau") is set to the lower bound (1,800 s) of the		
	possible range specified by Qian et al.9, as compared to the value of 3,600 s		
	in the best-case simulation.		
upper_dmpdz	The fractional mass entrainment rate (denoted by "dmpdz") is set to the		
	upper bound $(2.0 \times 10^{-3} \text{ m}^{-1})$ of the possible range specified by Qian et		
	al. ⁹ , as compared to $0.7 \times 10^{-3} \text{ m}^{-1}$ in the best-case simulation.		
lower_dmpdz	The fractional mass entrainment rate (denoted by "dmpdz") is set to the		
	lower bound $(0.1 \times 10^{-3} \text{ m}^{-1})$ of the possible range specified by Qian et		
	al. ⁹ , as compared to $0.7 \times 10^{-3} \text{ m}^{-1}$ in the best-case simulation.		

NPF_Mech4_scaled	In this scenario, we applied a fixed scaling factor to the NPF rates in	
	NPF_Mech4 (which only includes four traditional nucleation mechanisms	
	involving H_2SO_4 , NH_3 , and H_2O) such that its globally averaged NPF rate	
	matched that of the best-case simulation. Here, the globally averaged NPF	
	rate is defined as the average of the NPF rates across all model grid boxes	
	(both horizontally and vertically), weighted by the volumes of those grid	
	boxes.	

Gas-p	bhase reactions
Reaction	$k \text{ (molec}^{-1} \text{ cm}^3 \text{ s}^{-1}\text{)}$
$I_2 + O \rightarrow IO + I$	$1.30 \cdot 10^{-10}$ a
$\mathrm{I} + \mathrm{O}_3 \longrightarrow \mathrm{IO} + \mathrm{O}_2$	$2.00 \cdot 10^{-11} \cdot \exp(-830 \text{ K/T})$
$IO + O \rightarrow I + O_2$	$1.40 \cdot 10^{-10}$ a
$IO + O_3 \rightarrow OIO + O_2$	$3.60 \cdot 10^{-16}$
$\rm IO + IO \rightarrow OIO + I$	$2.13 \cdot 10^{-11} \cdot \exp(180 \text{ K/T})$
	(1+exp(-p/19142 Pa)) ^b
$IO + IO \rightarrow IOIO$	$3.27 \cdot 10^{-11} \cdot \exp(180 \text{ K/T})$
	(1-0.65·exp(-p/19142 Pa)) ^b
$IO + OIO \rightarrow I_2O_3$	$1.55 \cdot 10^{-10}$
$OIO + OIO \rightarrow I_2O_4$	$9.35 \cdot 10^{-11}$
$I_2 + OH \longrightarrow HOI + I$	$1.80 \cdot 10^{-10}$
$\rm HOI + OH \rightarrow \rm IO + \rm H_2O$	$2.00 \cdot 10^{-13}$
$\rm IO + OH \rightarrow HO_2 + I$	$1.00 \cdot 10^{-10}$
$IO + HO_2 \rightarrow HOI$	$1.30 \cdot 10^{-11} \cdot \exp(570 \text{ K/T})$
$\mathrm{I} + \mathrm{HO}_2 \longrightarrow \mathrm{HI} + \mathrm{O}_2$	$1.50 \cdot 10^{-11} \cdot \exp(-1090 \text{ K/T})$
$\rm HI + OH \rightarrow \rm I + \rm H_2O$	$3.00 \cdot 10^{-11}$
$I_2 + O_3 \rightarrow IO + OIO$	$2.00 \cdot 10^{-15} \cdot \exp(-2050 \text{ K/T})$
$I_2 + O_3 \longrightarrow IO + I + O_2$	$2.00 \cdot 10^{-15} \cdot \exp(-2050 \text{ K/T})$
$\rm IOIO + O_3 \rightarrow \rm IOIO_4$	$8.20 \cdot 10^{-15} \cdot \exp(763 \text{ K/}T)$
$IOIO_4 + H_2O \rightarrow HIO_3 + O_2 + HOI$	$2.50 \cdot 10^{-12} \cdot \exp(-2481 \text{ K/T})$
$OIO + OH \rightarrow HIO_3$	$2.20 \cdot 10^{-10} \cdot \exp(243 \text{ K/T})$
$\rm I + \rm NO_3 \rightarrow \rm IO + \rm NO_2$	$4.50 \cdot 10^{-10}$
$I_2 + NO_3 \longrightarrow I + IONO_2$	$1.50 \cdot 10^{-12}$
$IONO_2 + I \longrightarrow I_2 + NO_3$	$1.00 \cdot 10^{-10}$
$I + NO \rightarrow INO$	$k_f^{ m cd}$
$I + NO_2 \rightarrow INO_2$	k_f^{ce}
$IO + NO \rightarrow I + NO_2$	$8.60 \cdot 10^{-12} \cdot \exp(230 \text{ K/T})$
$IO + NO_2 \rightarrow IONO_2$	$k_f^{ m cf}$
$INO + INO \rightarrow I_2 + NO + NO$	$8.40 \cdot 10^{-11} \cdot \exp(-2620 \text{ K/T})$
$INO_2 + INO_2 \rightarrow I_2 + NO_2 + NO_2$	$2.90 \cdot 10^{-11} \cdot \exp(-2600 \text{ K/T})$

Supplementary Table 2 Iodine chemical reactions implemented in the model.

Thermal decomposition

Reaction	$k (s^{-1})$
$IOIO \rightarrow OIO + I$	$8.40 \cdot 10^{13} \cdot \exp(-12026 \text{ K/T})$
$IOIO \rightarrow IO + IO$	bg
$I_2O_3 \rightarrow OIO + IO$	h
$I_2O_4 \rightarrow OIO + OIO$	bi
$IONO_2 \rightarrow IO + NO_2$	$1.10 \cdot 10^{15} \cdot \exp(-12060 \text{ K/T})$
	Photolysis reactions
Reaction	j ⁱ
$I_2 \rightarrow I + I$	$1.33 \cdot 10^1 \cdot j(NO_2)$
$IO \rightarrow I + O(^{3}P)$	$1.94 \cdot 10^1 \cdot j(NO_2)$
$OIO \rightarrow I + O_2$	$4.59 \cdot 10^1 \cdot j(\text{NO}_2)$
$IOIO \rightarrow IO + IO$	$6.22 \cdot j(\mathrm{NO}_2)$
$I_2O_3 \rightarrow OIO + IO$	$2.14 \cdot j(NO_2)$
$I_2O_4 \rightarrow OIO + OIO$	$7.45 \cdot j(NO_2)$
$\mathrm{HOI} \rightarrow \mathrm{I} + \mathrm{OH}$	$9.18 \cdot 10^{-1} \cdot j(\text{NO}_2)$
$HI(+O_2) \rightarrow HO_2 + I$	$1.12 \cdot 10^{-3} \cdot j(NO_2)$
$INO \rightarrow I + NO$	$3.27 \cdot j(\mathrm{NO}_2)$
$INO_2 \rightarrow I + NO_2$	$3.06 \cdot 10^{-1} \cdot j(NO_2)$
$IONO_2 \rightarrow I + NO_3$	$4.90 \cdot j(NO_2)$
The reaction is predicted to be negligi	ble at the altitudes of interest
p p in the equation is fixed at 101,325 P	a because of its minor effect
k_f is effective second-order rate constant	nt defined at http://jpldataeval.jpl.nasa.gov
^d $k_0 = 1.8 \cdot 10^{-32}, n = 1.0, k_{\infty} = 1.7 \cdot 10^{-11},$	m = 0, [M] = [air]
$k_0 = 3.0 \cdot 10^{-31}, n = 1.0, k_{\infty} = 6.6 \cdot 10^{-11},$	m = 0, [M] = [air]
$k_0 = 7.7 \cdot 10^{-31}, n = 3.5, k_\infty = 7.7 \cdot 10^{-12},$	m = 1.5, [M] = [air]
$k = (2.55335 \cdot 10^{11} - 4.41888 \cdot 10^7 \cdot 0.75)$	p/Pa + 8561.86 · (0.75 · p/Pa) ² +
$1.421881 \cdot 10^{-2} \cdot (0.75 p/Pa)^3) \cdot \exp((-1146)^3)$	56.82304 + 597.01334 · exp(-0.75 · p/Pa/138262.325) -
167.3391·exp(-0.75· <i>p</i> /Pa/4375.089)) K	Σ/T)
¹ I ₂ O ₃ is predicted to be thermally stable	e
$k = (-1.92626 \cdot 10^{14} + 4.67414 \cdot 10^{11} \cdot 0.$	$75p/Pa-36865.1 \cdot (0.75 \cdot p/Pa)^2 - 3.09109 \cdot (0.75p/Pa)^3) \cdot exp((-12302.15294))$
152.78367·exp(-0.75 <i>p</i> /Pa/4612.733) +	437.62868·exp(-0.75· <i>p</i> /Pa/42844.13)) K/ <i>T</i>)
$i(NO_2)$ is the photolysis rate of NO ₂ (N	$NO_2 \rightarrow NO + O(^{3}P)$

Supplementary Table 3 Henry's law constants and aerosol uptake coefficients for iodine

2 species implemented in the model.

Species	Henry's law	d(ln <i>H</i>)/	Reference	Aerosol	Reference
	constant (H) at	d(1/ <i>T</i>)		uptake	
	298K (mol m ⁻³	(K)		coefficient	
	atm ⁻¹)				
I ₂	2.80×10^{3}	3900	The values are	_	_
HOI	4.10×10 ⁵	0	obtained from	0.23	Li et al. ¹¹ , geometric mean
			Karagodin-		of largest and smallest
			Doyennel et		values used in the
			al. ¹⁰ , except that		simulations ([0.06, 0.9]).
HI	7.30×10 ¹⁶	3190	the values for	0.1	Sherwen et al. ¹²
Ι	7.90×10^{1}	0	IOIO ₄ and HIO ₃	_	_
ΙΟ	∞	0	are assumed to	_	_
OIO	∞	0	be the same as	_	_
IOIO	∞	0	those of I_2O_4	0.02	Badia et al. ¹³
I_2O_3	∞	0	and HOI due to	0.02	Badia et al. ¹³
I_2O_4	∞	0	the lack of	0.02	Badia et al. ¹³
IOIO ₄	∞	0	experimental	0.02	Assumed to the same as
			data.		I_2O_4
HIO ₃	4.10×10 ⁵	0		0.2	Estimated based on
					Finkenzeller et al. ¹⁴
INO	3.00×10^{2}	0		_	_
INO ₂	3.00×10^{2}	0		0.02	Badia et al. ¹³
IONO ₂	∞	0		0.01	Badia et al. ¹³

Supplementary References:

1 Gordon, H. *et al.* Causes and importance of new particle formation in the present-day and preindustrial atmospheres. *J. Geophys. Res-Atmos.* **122**, 8739-8760, doi:10.1002/2017jd026844 (2017).

2 Scott, C. E. *et al.* The direct and indirect radiative effects of biogenic secondary organic aerosol. *Atmos. Chem. Phys.* **14**, 447-470, doi:10.5194/acp-14-447-2014 (2014).

3 Yu, F., Luo, G., Nadykto, A. B. & Herb, J. Impact of temperature dependence on the possible contribution of organics to new particle formation in the atmosphere. *Atmos. Chem. Phys.* **17**, 4997-5005, doi:10.5194/acp-17-4997-2017 (2017).

1	4	Reddington, C. L. et al. Primary versus secondary contributions to particle number
2		concentrations in the European boundary layer. Atmos. Chem. Phys. 11, 12007-12036,
3		doi:10.5194/acp-11-12007-2011 (2011).
4	5	<i>Beijing Air Quality Bulletin</i> , < <u>http://www.bjee.org.cn/cn/index.php</u> >(
5	6	Riccobono, F. et al. Oxidation Products of Biogenic Emissions Contribute to Nucleation
6		of Atmospheric Particles. Science 344, 717-721, doi:10.1126/science.1243527 (2014).
7	7	Almeida, J. et al. Molecular understanding of sulphuric acid-amine particle nucleation in
8		the atmosphere. Nature 502, 359-363, doi:10.1038/nature12663 (2013).
9	8	Hoepfner, M. et al. Ammonium nitrate particles formed in upper troposphere from
10		ground ammonia sources during Asian monsoons. Nat. Geosci. 12, 608-612,
11		doi:10.1038/s41561-019-0385-8 (2019).
12	9	Qian, Y. et al. Parametric Sensitivity and Uncertainty Quantification in the Version 1 of
13		E3SM Atmosphere Model Based on Short Perturbed Parameter Ensemble Simulations. J.
14		Geophys. Res-Atmos. 123, 13046-13073, doi:10.1029/2018jd028927 (2018).
15	10	Karagodin-Doyennel, A. et al. Iodine chemistry in the chemistry-climate model SOCOL-
16		AERv2-I. Geosci. Model. Dev. 14, 6623-6645, doi:10.5194/gmd-14-6623-2021 (2021).
17	11	Li, Q. et al. Role of Iodine Recycling on Sea-Salt Aerosols in the Global Marine
18		Boundary Layer. Geophys. Res. Lett. 49, e2021GL097567, doi:10.1029/2021gl097567
19		(2022).
20	12	Sherwen, T. et al. Iodine's impact on tropospheric oxidants: a global model study in
21		GEOS-Chem. Atmos. Chem. Phys. 16, 1161-1186, doi:10.5194/acp-16-1161-2016
22		(2016).
23	13	Badia, A. et al. Importance of reactive halogens in the tropical marine atmosphere: a
24		regional modelling study using WRF-Chem. Atmos. Chem. Phys. 19, 3161-3189,
25		doi:10.5194/acp-19-3161-2019 (2019).
26	14	Finkenzeller, H. et al. The gas-phase formation mechanism of iodic acid as an
27		atmospheric aerosol source. Nat. Chem. 15, 129-135, doi:10.1038/s41557-022-01067-z
28		(2022).
29		