Supplementary information

Global variability in atmospheric new particle formation mechanisms

In the format provided by the authors and unedited

1 Supplementary Information for

9

3

8

10 **Supplementary Fig. 1 Zonal mean SO2 concentrations and contribution of DMS emissions** 11 **over the Pacific and Atlantic oceans in 2016.** The range used for the Pacific Ocean is 170°E– 12 150°W and the range used for the Atlantic Ocean is 20°–40°W. Contribution of DMS emissions 13 is quantified using the difference between a simulation with zero DMS emission and the best-14 case simulation. In the tropical upper troposphere, oceanic DMS emissions account for >80% of 15 the SO₂ and hence H₂SO₄ concentration over the Pacific and approximately 50% over the 16 Atlantic, while continental anthropogenic SO_2 emissions control H_2SO_4 formation in the mid-17 latitude upper troposphere.

1

Supplementary Fig. 3 Same as Supplementary Fig. 2 but for anthropogenically polluted regions.

Supplementary Fig. 4 Zonal mean concentrations of precursors directly involved in nucleation over the Pacific Ocean (170°E–150°W) under the best-case and sensitivity scenarios in 2016. Definitions of the sensitivity experiments are presented in Methods and 5 Supplementary Table 1. To make the figures concise, we show only the concentrations of a

6 precursor in the best-case simulation and in the sensitivity simulations where its concentrations 7 show significant differences from the best case.

Supplementary Fig. 5 Same as Supplementary Fig. 4 but for the Atlantic Ocean (20°– 3 40° W).

 $\frac{1}{2}$

 $\frac{1}{2}$

regions.

 $\frac{1}{2}$

- **Supplementary Fig. 10 Comparison of simulated 2016 mean HNO3 concentrations in the**
- **upper troposphere (150 hPa, approximately 13 km) over the Asian monsoon region with**
- **observations from the Microwave Limb Sounder (MLS) aboard the Aura satellite.**

Supplementary Fig. 11 Fractions of CCN at 0.5% supersaturation (CCN0.5%) caused by NPF at different vertical levels in 2016 under different sensitivity simulations. (A–D) 13 km AGL, (E–H) 1 km AGL (approximately at the low-cloud level), and (I–L) surface level. The sensitivity experiments are defined in the section of "Configuration of the updated E3SM" in Methods.

2 **Supplementary Fig. 12 Zonal mean particle number and CCN concentrations and the** 3 **fractions caused by NPF worldwide in 2016. (A, B)** Zonal mean concentrations of **(A)** particle 4 number of all sizes and **(B)** CCN0.5% from the best-case simulation. **(C, D)** Fractions of zonal 5 mean concentrations of **(C)** particle number and **(D)** CCN0.5% caused by NPF. Particle number 6 concentrations cover the entire size range (cf. field observations are mostly made for particles 7 larger than a certain cutoff size). All concentrations are normalized to STP.

Scenario	Description	
Best-case	A simulation that includes all 11 NPF mechanisms and uses the R2D-VBS	
	to simulate the nucleating organics. This is our comprehensive best-case	
	scenario and used in most analyses in this study.	
No_NPF	A simulation that does not consider any NPF.	
NPF Mech4	A simulation that considers only four traditional inorganic nucleation	
	mechanisms, i.e., the neutral and ion-induced H_2SO_4 - H_2O mechanisms and	
	H_2SO_4 -NH ₃ -H ₂ O mechanisms, which resembles the NPF treatment in	
	commonly used climate models.	
NPF Mech11 constYield	A simulation that includes all 11 NPF mechanisms but assumes that pure-	
	organic and organic- H_2SO_4 nucleation is driven by a fixed fraction of the	
	monoterpene oxidation products, following the treatment of a number of	
	previous modeling studies ¹⁻⁴ . The specific "fixed fractions" used here	
	followed Gordon et al. ⁵ . Specifically, organic-H ₂ SO ₄ nucleation was linked	
	to all oxidation products of monoterpenes; in other words, the "fixed	
	fraction" of monoterpene oxidation products used to drive organic- H_2SO_4	
	nucleation was 1.0. Pure-organic nucleation was assumed driven by highly	
	oxygenated organic molecules (HOMs), the molar yields (fixed fraction) of	
	which were assumed to be 1.4% for the reaction of monoterpenes with O_3	
	and 0.6% for the reaction of monoterpenes with OH.	
$0.67*SO2 0.5*DMS$	The same as "Best-case" except that the $SO2$ and DMS emissions are	
	reduced by a factor of 1.5 and 2, respectively.	
$1.5*SO_2_2*DMS$	The same as "Best-case" except that the $SO2$ and DMS emissions are	
	increased by a factor of 1.5 and 2, respectively.	
$0.33*H_2SO_4$	The same as "Best-case" except that the simulated H_2SO_4 concentrations	
	are reduced by a factor of 3.	
$3*H_2SO_4$	The same as "Best-case" except that the simulated H_2SO_4 concentrations	
	are increased by a factor of 3.	
$0.33*MT$	The same as "Best-case" except that the monoterpene emissions are	
	reduced by a factor of 3.	
org-weak-T-dependence	The same as "Best-case" except that a weaker temperature dependence of	
	pure-organic and organic-H ₂ SO ₄ nucleation rates is used.	

1 **Supplementary Table 1 Summary of model scenarios developed in this study.**

Gas-phase reactions		
Reaction	$k \text{ (molec}^{-1} \text{ cm}^3 \text{ s}^{-1})$	
$I_2 + O \rightarrow IO + I$	$1.30 \cdot 10^{-10}$ a	
$I + O_3 \rightarrow IO + O_2$	$2.00 \cdot 10^{-11} \cdot \exp(-830 \text{ K}/T)$	
$IO + O \rightarrow I + O_2$	$1.40 \cdot 10^{-10}$ a	
$IO + O_3 \rightarrow OIO + O_2$	$3.60 \cdot 10^{-16}$	
$IO + IO \rightarrow OIO + I$	$2.13 \cdot 10^{-11} \cdot \exp(180 \text{ K}/T)$	
	$(1+\exp(-p/19142 \text{ Pa}))$ ^b	
$IO + IO \rightarrow IOIO$	$3.27 \cdot 10^{-11} \cdot \exp(180 \text{ K}/T)$	
	$(1-0.65 \cdot \exp(-p/19142 \text{ Pa}))$ ^b	
$IO + OIO \rightarrow I_2O_3$	$1.55 \cdot 10^{-10}$	
$OIO + OIO \rightarrow I_2O_4$	$9.35 \cdot 10^{-11}$	
$I_2 + OH \rightarrow HOI + I$	$1.80 \cdot 10^{-10}$	
$HOI + OH \rightarrow IO + H2O$	$2.00 \cdot 10^{-13}$	
$IO + OH \rightarrow HO_2 + I$	$1.00 \cdot 10^{-10}$	
$IO + HO2 \rightarrow HOI$	$1.30 \cdot 10^{-11} \cdot \exp(570 \text{ K}/T)$	
$I + HO_2 \rightarrow HI + O_2$	$1.50 \cdot 10^{-11} \cdot \exp(-1090 \text{ K}/T)$	
$HI + OH \rightarrow I + H2O$	$3.00 \cdot 10^{-11}$	
$I_2 + O_3 \rightarrow IO + OIO$	$2.00 \cdot 10^{-15}$ exp(-2050 K/T)	
$I_2 + O_3 \rightarrow IO + I + O_2$	$2.00 \cdot 10^{-15}$ exp(-2050 K/T)	
$IOIO + O3 \rightarrow IOIO4$	$8.20 \cdot 10^{-15}$ exp(763 K/T)	
$IOIO4 + H2O \rightarrow HIO3 + O2 + HOI$	$2.50 \cdot 10^{-12}$ exp(-2481 K/T)	
$OIO + OH \rightarrow HIO_3$	$2.20 \cdot 10^{-10}$ exp(243 K/T)	
$I + NO_3 \rightarrow IO + NO_2$	$4.50 \cdot 10^{-10}$	
$I_2 + NO_3 \rightarrow I + IONO_2$	$1.50 \cdot 10^{-12}$	
$IONO2 + I \rightarrow I2 + NO3$	$1.00 \cdot 10^{-10}$	
$I + NO \rightarrow INO$	k_f^{cd}	
$I + NO_2 \rightarrow INO_2$	k_f ^{ce}	
$IO + NO \rightarrow I + NO_2$	$8.60 \cdot 10^{-12}$ exp(230 K/T)	
$IO + NO_2 \rightarrow IONO_2$	k_f ^{cf}	
$INO + INO \rightarrow I_2 + NO + NO$	$8.40 \cdot 10^{-11} \cdot \exp(-2620 \text{ K}/T)$	
$INO2 + INO2 \rightarrow I2 + NO2 + NO2$	$2.90 \cdot 10^{-11}$ exp(-2600 K/T)	

1 **Supplementary Table 2 Iodine chemical reactions implemented in the model.**

Thermal decomposition

٠

1 **Supplementary Table 3 Henry's law constants and aerosol uptake coefficients for iodine** 2 **species implemented in the model.**

5 **Supplementary References:**

6 1 Gordon, H. *et al.* Causes and importance of new particle formation in the present-day and 7 preindustrial atmospheres. *J. Geophys. Res-Atmos.* **122**, 8739-8760, 8 doi:10.1002/2017jd026844 (2017).

9 2 Scott, C. E. *et al.* The direct and indirect radiative effects of biogenic secondary organic 10 aerosol. *Atmos. Chem. Phys.* **14**, 447-470, doi:10.5194/acp-14-447-2014 (2014).

11 3 Yu, F., Luo, G., Nadykto, A. B. & Herb, J. Impact of temperature dependence on the 12 possible contribution of organics to new particle formation in the atmosphere. *Atmos.* 13 *Chem. Phys.* **17**, 4997-5005, doi:10.5194/acp-17-4997-2017 (2017).

