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S1 Theorems and Proofs

S1.1 Proof of Theorem 1

We provide a more precise statement of Theorem 1 and then prove it. To start, we recall some
preliminaries about exponential families — see Chapter 8 of Barndor↵-Nielsen (2014) for additional
details. Let X be a measurable space with a �-finite measure ⌫. An exponential family is a collection
D of distributions P for which the density can be written in the form

p(x) = a(P )b(x) exp {h✓(P ), t(x)i} , x 2 X ,

for some functions a : D ! R+, b : X ! R+, ✓ : D ! Rk, and t : X ! Rk. We call ✓(P ) and
t(x) = (t1(x), . . . , tk(x)) the parameter and su�cient statistics, respectively, of the distribution.

We say the parametrization ✓ is a�nely independent if there exists no a�ne combination of
the entries ✓i : D ! R that results in the zero function. If ✓ is a�nely independent, then t(x)
is minimal su�cient. Let ⇥ = {✓(P ) 2 Rk : P 2 D} be the parameter space of the family. We
now state two fundamental properties of exponential families, mentioned in Theorem 1, which are
fullness and regularity.

Definition S1. An exponential family D is

1. full if the parameter space ⇥ contains all parameters that induce integrable densities. That
is,

⇥ = {✓
0
2 Rk :

Z
b(x) exp

�
h✓

0
, t(x)i

�
d⌫(x) < 1}, and

2. regular if the parameter space ⇥ is open in Rk under some parametrization ✓ and su�cient
statistics t.

We now formally define the classes D1,D2 and D3, which correspond to the sets of complex nor-
mal distributions, proper complex normal distributions, and circularly symmetric complex normal
distributions. Let D1 be the collection of distributions over Cd with densities

p(x) / exp

⇢
�
1

2
((Rex, Imx)� µ)>⌃�1((Rex, Imx)� µ)

�
, x 2 Cd

, (S1)

for some vector µ 2 R2d and positive definite matrix ⌃ 2 R2d⇥2d. The family D1 represents the
entire family of complex normal distributions which can be parametrized by a complex mean vector
m 2 Cd, complex covariance matrix � 2 Cd⇥d, and complex pseudo-covariance matrix C 2 Cd⇥d.
We denote each distribution by CN (m,�, C). Let D2 be the collection of distributions over Cd with
densities of the same form but for some vector µ 2 R2d and positive definite matrix ⌃ 2 R2d⇥2d

satisfying

⌃ =

✓
A �B

B A

◆
, (S2)

where A 2 Rd⇥d is a symmetric matrix and B 2 Rd⇥d is an anti symmetric matrix (i.e., B = �B
>).

The pseudo-covariance matrix C under the distributions in D2 is the zero matrix. The distribu-
tions in D2 constitute the family of proper complex normal distributions, denoted by CN (m,�, 0).
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The equivalence between the class of distributions of the form given by (S1) and (S2) and proper
complex normal distributions is a consequence of the structure imposed on the real-valued covari-
ance matrix ⌃ when the pseudo-covariance matrix is the zero matrix; see Andersen et al. (1995)
and Picinbono (1996). Finally, we define D3 to be the collection of distributions satisfying all the
aforementioned conditions and µ = 0. This represents the family of circularly symmetric complex
normal distributions, denoted by CN (0,�, 0). Theorem 1 is restated as follows.

Theorem S2. D1,D2 and D3 are all full and regular exponential families.

Proof. Denoting ex = (Rex, Imx), we rewrite the density of P 2 D1 (given in eq. S1) as

p(x) / exp

⇢
�
1

2
(ex� µ)>⌃�1(ex� µ)

�

/ exp

⇢
�
1

2
ex>⌃�1ex+ µ

>⌃�1ex
�

/ exp

⇢
�
1

2
tr
⇣
⌃�1exex>

⌘
+ µ

>⌃�1ex
�
.

The parameter and su�cient statistics are clearly ✓1(P ) = ((⌃�1)ij : i  j) � µ
>⌃�1 and t1(x) =

(exiexj : i  j)�ex, where� denotes the vector concatenation operator. Because t1(x) is a collection of
distinct monomials of orders 1 and 2, the su�cient statistics are a�nely independent and therefore
minimal. Given the parametrization and minimal su�cient statistics, D1 is known to be full and
regular (Barndor↵-Nielsen, 2014, pp. 116–117).

Now consider the family D2, where ⌃ has the form given in (S2). As we prove in Lemma S6,

⌃�1 =

✓
A B

�B A

◆
,

where A 2 Rd⇥d is a symmetric matrix and B 2 Rd⇥d is an anti symmetric matrix (i.e. B = �B
>).

Then, for P 2 D2, the density (S1) can be rewritten as

p(x) / exp

⇢
�
1

2
tr

✓✓
A B

�B A

◆
exex>

◆
+ µ

>⌃�1ex
�

/ exp

⇢
�
1

2

⇣
tr
⇣
A RexRex>

⌘
+ tr

⇣
A ImxImx

>
⌘
+ 2 tr

⇣
B RexImx

>
⌘⌘

+ µ
>⌃�1ex

�

/ exp

⇢
�
1

2

h
tr
n
A (RexRex> + ImxImx

>)
o
+ tr

n
B (RexImx

>
� ImxRex>)

oi
+ µ

>⌃�1ex
�
.

The third line follows from the fact that B = �B
> (one consequence of which is that Bii = 0).

We can easily see that the parameter and su�cient statistics are ✓2(P ) = (Aij : i  j)� (Bij : i <
j) � µ

>⌃�1 and t2(x) = (RexiRexj + ImxiImxj : i  j) � (RexiImxj � ImxiRexj : i < j) � ex.
In addition, t2(x) is a collection of distinct monomials of orders 1 and 2, so the su�cient statistics
are a�nely independent and therefore minimal.

Let p✓0(x) / exp{✓
0>
t2(x)} for ✓0 2 Rd

2+2d. To see that D2 is full, we must show that, for every
✓
0 for which

R
x
exp{t2(x)>✓0}dx < 1, the distribution corresponding to p✓0(x) lies in D2.
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For any such ✓0, it is easy to see from that we could construct a symmetric A, an antisymmetric
B, and vector µ such that

p✓0(x) / exp

⇢
�
1

2
tr

✓✓
A B

�B A

◆
exex>

◆
+ µ

>
✓

A B

�B A

◆
ex
�

= exp

⇢
�
1

2
tr
⇣
⌃�1exex>

⌘
+ µ

>⌃�1ex
� (S3)

and

⌃�1 =

✓
A B

�B A

◆
. (S4)

The fact that (S3) has the same form as the densities in D1 but also
R
p
✓
0
(x)dx < 1 implies

that ⌃�1 must be positive definite since, otherwise, the integration over any eigenvector with a
non positive eigenvalue will diverge to 1 by well-known properties of the multivariate normal
distribution. The matrix ⌃ is also positive definite and has the form in (S2) due to Lemma S6.
There exists P 2 D2 such that the density is identical to p✓0(x). Therefore, D2 is full.

To see that D2 is regular, we need to show that ⇥2 = {✓2(P ) : P 2 D2} is open. We can
construct a linear injection f : Rd

2+2d
! Rd(2d+1)+2d such that

f((Aij : i  j)� (Bij : i < j)�m) = (Sij : i  j)�m,

where

S =

✓
A B

�B A

◆
.

We note that f(✓2(P )) = ✓1(P ) for P 2 D2, where ✓1(P ) is well-defined as D2 ⇢ D1.
Assume, towards a contradiction, that the set ⇥2 is not open in Rd

2+2d. Then, there exists
some ✓0 2 ⇥2 such that for every ✏ there exists another point ✓0 2 Rd

2+2d such that ✓0 = (A0
ij
: i 

j)� (B0
ij
: i < j)�m 62 ⇥2 but ||✓0 � ✓0||2 < ✏. For

S
0 =

✓
A

0
B

0

�B
0

A
0

◆
,

we therefore have that S
0 is not positive definite, and therefore, f(✓0) 62 ⇥1. However, ||f(✓0) �

f(✓0)||2 = ||✓
0
� ✓0||2  ✏. Since ✏ is arbitrary, our previous assumption would imply that ⇥0 is

not open. This contradicts the fact that D1 is regular. Therefore, ⇥2 must be open and so D2 is
regular.

Finally, we want to show the same properties for D3. For each distribution P in this family, the
density has the form in (S1) with µ = 0, i.e.,

p(x) / exp

✓
�
1

2

h
tr
n
A (RexRex> + ImxImx

>)
o
+ tr

n
B (RexImx

>
� ImxRex>)

oi◆
.

The parameter and su�cient statistics are ✓2(P ) = (Aij : i  j) � (Bij : i < j) and t2(x) =
(RexiRexj +ImxiImxj : i  j)� (RexiImxj �ImxiRexj : i < j), which are minimal. The fullness
and regularity of D3 follow as corollaries of those of D2.
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S1.2 The Multivariate Generalized von Mises Distribution

The mGvM distribution generalizes the torus graphs distribution by containing second moment
terms such as (cos⇥i)2, (sin⇥i)2, and (cos⇥i)(sin⇥i) (Navarro et al., 2017).

Definition S3 (mGvM distribution). A random vector⇥d : ⌦ ! [0, 2⇡)d has a mGvM distribution,
denoted ⇥d ⇠ MGVM(⌫, ), for a 2d-dimensional vector ⌫ and 2d⇥ 2d symmetric matrix  if

p⇥(✓) / exp

 
⌫
>
✓
cos ✓
sin ✓

◆
+

✓
cos ✓
sin ✓

◆>
 

✓
cos ✓
sin ✓

◆!
.

By constraining the parameters of the mGvM distribution, we observe that the TG distribution is
a special case of the mGvM distribution.

Lemma S4 (Relationship between the mGvM and TG distributions). If ⇥ ⇠ MGVM(⌫, ) and
 ii =  i+d,i+d for 1  i  d, and  i,i+d = 0 for 1  i  d, then ⇥ ⇠ T G(⌘) for

⌘ij = 2( ij , i,j+d, i+d,j , i+d,j+d)
> and ⌘ii = (⌫i, ⌫i+d).

Proof. Assume that ⇥ ⇠ MGVM(⌫, ) for the conditions stated in the lemma. Then

p⇥(✓) / exp

(
⌫
>
✓
cos ✓
sin ✓

◆
+

✓
cos ✓
sin ✓

◆>
 

✓
cos ✓
sin ✓

◆)

= exp

⇢X

i

�
⌫i ⌫i+d

�✓cos ✓i
sin ✓i

◆
+
X

i

{(cos ✓i)
2
 ii + (sin ✓i)

2
 i+d,i+d}+

X

i 6=j

�
 i,j cos ✓i cos ✓j +  i,j+d cos ✓i sin ✓j+

 i+d,j sin ✓i cos ✓j +  i+d,j+d sin ✓i sin ✓j
��

= exp

⇢X

i

�
⌫i ⌫i+d

�✓cos ✓i
sin ✓i

◆
+
X

i

 ii

+
X

i<j

2
�
 ij  i,j+d  i+d,j  i+d,j+d

�

0

BB@

cos ✓i cos ✓j
cos ✓i sin ✓j
sin ✓i cos ✓j
sin ✓i sin ✓j

1

CCA

�

/ exp

8
>><

>>:

X

i

�
⌫i ⌫i+d

�✓cos ✓i
sin ✓i

◆
+
X

i<j

2
�
 ij  i,j+d  i+d,j  i+d,j+d

�

0

BB@

cos ✓i cos ✓j
cos ✓i sin ✓j
sin ✓i cos ✓j
sin ✓i sin ✓j

1

CCA

9
>>=

>>;

= exp

8
>><

>>:

X

i

⌘
>
i

✓
cos ✓i
sin ✓i

◆
+
X

i<j

⌘
>
ij

0

BB@

cos ✓i cos ✓j
cos ✓i sin ✓j
sin ✓i cos ✓j
sin ✓i sin ✓j

1

CCA

9
>>=

>>;
,

where the final line has the form of the TG distribution, with the stated values of ⌘.

Further, by conditioning the angles of the complex normal distribution on the amplitudes, we
achieve an mGvM distribution for any parameterization of the normal distribution.

S4



Lemma S5 (Complex normal and mGvM distributions). Assume X ⇠ CN (m,�, C). By definition,
there exist µ and ⌃ such that (ReX, ImX) ⇠ N (µ,⌃). Let ⇥i = argXi denote the angle of Xi,
and let Ri = |Xi| denote the magnitude of Xi. Then ⇥ | R = r ⇠ MGVM(⌫, ), where

⌫ =

✓
r

r

◆
� (⌃�1

µ) and  = �
1

2
⌃�1

�

✓
r

r

◆✓
r

r

◆>
.

Proof. Let Z = (ReX, ImX). By a change of variables, note that

pZ(r1 cos ✓1, . . . , rd cos ✓d, r1 sin ✓1, . . . , rd sin ✓d)
Y

i

ri = p⇥,R(✓, r).

Then

p⇥|R(✓ | r) =
p⇥,R(✓, r)

pR(r)
/ p⇥,R(✓, r) / pZ(r1 cos ✓1, . . . , rd cos ✓d, r1 sin ✓1, . . . , rd sin ✓d)

/ exp

(
�
1

2

✓✓
r � cos ✓
r � sin ✓

◆
� µ

◆>
⌃�1

✓✓
r � cos ✓
r � sin ✓

◆
� µ

◆)

/ exp

(✓
r � cos ✓
r � sin ✓

◆>
⌃�1

µ�
1

2

✓
r � cos ✓
r � sin ✓

◆
⌃�1

✓
r � cos ✓
r � sin ✓

◆)

= exp

(✓
cos ✓
sin ✓

◆>✓
(⌃�1

µ)�

✓
r

r

◆◆
�

1

2

✓
cos ✓
sin ✓

◆ 
⌃�1

�

✓
r

r

◆✓
r

r

◆>
!✓

cos ✓
sin ✓

◆)

= exp

(
⌫
>
✓
cos ✓
sin ✓

◆
+

✓
cos ✓
sin ✓

◆>
 

✓
cos ✓
sin ✓

◆)

for the values of ⌫ and  given in the lemma.

S1.3 Proof of Theorem 2

Proof. Note that (ReX, ImX) ⇠ N (µ,⌃). By Lemma S5,

⇥ | R = r ⇠ MGVM(⌫, ) = MGVM

 ✓
r

r

◆
� (⌃�1

µ),�
1

2
⌃�1

✓
r

r

◆✓
r

r

◆>
!
.

If  ii =  i+d,i+d and  i,i+d = 0, then Lemma S4 applies and the corollary follows. By construction,
⌃�1
ii

= ⌃�1
i+d,i+d

and ⌃�1
i,i+d

= 0, and hence

 ii =

(
�
1

2
⌃�1

✓
r

r

◆✓
r

r

◆>
)

ii

= �
1

2
riri⌃

�1
ii

=
�1

2
riri⌃

�1
i+d,i+d

=

(
�
1

2
⌃�1

✓
r

r

◆✓
r

r

◆>
)

i+d,i+d

=  i+d,i+d

and

 i,i+d =

(
�
1

2
⌃�1

✓
r

r

◆✓
r

r

◆>
)

i,i+d

= �
1

2
ri,i+d⌃

�1
i,i+d

= 0,

which meets the requirement.
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S1.4 Structure of Proper Matrices

We need the following auxiliary result for the proof of Theorem 3, that the propriety of the complex
normal distribution induces constraints on the conditional TG distribution.

Lemma S6. Assume that W is a 2d⇥ 2d positive semidefinite, symmetric matrix such that, for a
partition

W =

✓
W11 W12

W
>
12 W22

◆
,

that W12 is antisymmetric (i.e., W12 = �W
>
12) and W11 = W22. Assume that the inverses of each

block of W (i.e., W�1
11 and W

�1
12 ) exist. Then W

�1 is a symmetric matrix for which (W�1)12 =
�(W�1)>12 and (W�1)11 = (W�1)22.

Proof. Let W be a symmetric matrix that can be written as

W =

✓
A B

�B A

◆
.

Using the block-matrix inversion formula which leverages the Schur complement of a matrix (see
Zhang 2006),

W
�1 =

✓
(A�BA

�1(�B))�1
�(A�BA

�1(�B))�1
BA

�1

�A
�1(�B)(A�BA

�1(�B))�1
A

�1 +A
�1(�B)(A�BA

�1(�B))�1
BA

�1

◆

=

✓
(A+BA

�1
B)�1

�(A+BA
�1

B)�1
BA

�1

A
�1

B(A+BA
�1

B)�1
A

�1
�A

�1
B(A+BA

�1
B)�1

BA
�1

◆
.

There are two important aspects of this expression to note. First, the upper right and lower left
blocks are antisymmetric (in other words, W�1

i,j+d
= �W

�1
j,i+d

for 1  i  d and 1  j  d), so

�(A+BA
�1

B)�1
BA

�1 = �(A+BA
�1

B)�1(AB�1)�1

= �((AB�1)(A+BA
�1

B))�1 = �(AB�1
A+B)�1

and

{�(A+BA
�1

B)�1
BA

�1
}
> = {�(AB�1

A+B)�1
}
>

= {�(AB�1
A+B)>}�1 = {�(A(B>)�1

A+B
>)}�1

= (AB�1
A+B)�1 = (A+BA

�1
B)�1

BA
�1

.

Further, the top left and bottom right blocks of A�1 are equal (A�1
ij

= A
�1
i+d,j+d

for 1  i  d, 1 

j  d). To see this, first note that

A
�1

�A
�1

B(A+BA
�1

B)�1
BA

�1

= A
�1(A+BA

�1
B)(A+BA

�1
B)�1

�A
�1

B(A+BA
�1

B)�1
BA

�1

= (I +A
�1

BA
�1

B)(A+BA
�1

B)�1
�A

�1
B(A+BA

�1
B)�1

BA
�1

= (A+BA
�1

B)�1 +A
�1

BA
�1

B(A+BA
�1

B)�1
�A

�1
B(A+BA

�1
B)�1

BA
�1

.

Therefore, we have the desired equality ifA�1
BA

�1
B(A+BA

�1
B)�1 = A

�1
B(A+BA

�1
B)�1

BA
�1.

To show that this is the case, note that

S6



A
�1

BA
�1

B(A+BA
�1

B)�1 = (B�1
AB

�1
A)�1(A+BA

�1
B)�1

= {(A+BA
�1

B)B�1
AB

�1
A}

�1

= (AB�1
AB

�1
A+A)�1

and that

A
�1

B(A+BA
�1

B)�1
BA

�1 = (B�1
A)�1(A+BA

�1
B)�1(AB�1)�1

= {AB
�1(A+BA

�1
B)(B�1

A)}�1

= (AB�1
AB

�1
A+A)�1

.

Therefore, W�1 has the desired form.

We also need the following auxiliary result relating the parametrization of the TG distribution
T G(⌘) to the parametrization T G(⌘(�)) as specified in (2) and (3).

Lemma S7. Assume that ⇥ ⇠ T G(⌘). Then ⇥ ⇠ T G2(⌘(�)) for

�i = ⌘i and �ij =
1

2
(⌘ij,1 + ⌘ij,4,�⌘ij,2 + ⌘ij,3, ⌘ij,1 � ⌘ij,4, ⌘ij,2 + ⌘ij,3),

where ⌘ij,k denotes the kth component of ⌘ij.

Proof. From basic properties of trigonometric functions

�
>
ij

0

BB@

cos(✓i � ✓j)
sin(✓i � ✓j)
cos(✓i + ✓j)
sin(✓i + ✓j)

1

CCA = ⌘
>
ij

0

BB@

cos ✓i cos ✓j
cos ✓i sin ✓j
sin ✓i cos ✓j
sin ✓i sin ✓j

1

CCA =
1

2
⌘
>
ij

0

BB@

cos(✓i + ✓j) + cos(✓i � ✓j)
sin(✓i + ✓j)� sin(✓i � ✓j)
sin(✓i + ✓j) + sin(✓i � ✓j)
cos(✓i � ✓j)� cos(✓i + ✓j)

1

CCA

and hence

�ij =
1

2
(⌘ij,1 + ⌘ij,4,�⌘ij,2 + ⌘ij,3, ⌘ij,1 � ⌘ij,4, ⌘ij,2 + ⌘ij,3).

The proof then follows by comparing the pdfs.

S1.5 Proof of Theorem 3

Proof. Let ⌃ = cov{(ReX, ImX), (ReX, ImX)}. From Picinbono (1996),

⌃11 =
1

2
Re�, ⌃12 = �

1

2
Im�, ⌃21 =

1

2
Im�, and ⌃22 =

1

2
Re�,

so ⌃ is of the the form specified in Lemma S6 as is ⌃�1. Note that ⌃�1 meets the conditions of
Theorem 2 since (⌃�1)ii = (⌃�1)i+d,i+d and (⌃�1)i,i+d = (⌃�1)i+d,i = 0. The second fact follows
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from the observation that the diagonal of any antisymmetric matrix must be zero. Therefore,
⇥ | R = r ⇠ T G(⌘), where

⌘ij =
�1

2
rirj(⌃

�1
i,j

,⌃�1
i,j+d

,⌃�1
i+d,j

,⌃�1
i+d,j+d

).

Therefore,

�ij =
1

2
(⌘ij,1 + ⌘ij,4,�⌘ij,2 + ⌘ij,3, ⌘ij,1 � ⌘ij,4, ⌘ij,2 + ⌘ij,3)

=
1

2

✓
�
1

2
rirj

◆
(2(⌃�1)ij ,�2(⌃�1)i,j+d, 0, 0),

which is exactly the form desired (i.e., �ij,3 = �ij,4 = 0). All parameters are zero except for those
multiplied by statistics of the form cos(✓i� ✓j) or sin(✓i� ✓j). Clearly, these terms are invariant to
a circular shift since (✓i + ✏)� (✓j + ✏) = ✓i � ✓j for all ✏. Therefore, ⇥ is circularly symmetric.

S1.6 Proof of Corollary 4

Proof. We have the same setup as in Theorem 3, so �ij has the same form. By Theorem 2,
⌘i = ri((⌃�1

µ)i, (⌃�1
µ)i+d) and, by Lemma S7, ⌘i = �i. Therefore, µ = E((ReX, ImX)) = 0 and

�i = 0.

S1.7 Proof of Theorem 6

Proof. Let I = [d] \ {i, j}. We note that

argmin
Y 2L( eXI)

E{(Y �Xi)
H(Y �Xi)} = argmin

Y 2L( eXI)

�
E(Y H

Y )� E(Y H
Xi)� E(XH

i Y )
 

= argmin
↵+�H eXI

E

n
(↵+ �

H eXI)
H(↵+ �

H eXI)� ↵
H
Xi �

eXH

I �Xi �X
H

i ↵�X
H

i �
H eXI

o
.

It turns out that �⇤ = cov( eXI)�1 cov( eXI , Xi) and ↵
⇤ = E(Xi) � �

⇤H E( eXI) are the optimal
parameters for the above optimization problem. Therefore

cov{Xi � projL( eXI)
(Xi), Xj � projL( eXI)

(Xj)}

= cov(Xi � [E(Xi) + cov(Xi,
eXI) var( eXI)

�1
{ eXI � E( eXI)}],

Xj � [E(Xj) + cov(Xj ,
eXI) var( eXI)

�1
{ eXI � E( eXI)}])

= cov(Xi, Xj)� cov(Xi,
eXI) var( eXI)

�1 cov( eXI , Xj).

Let eX{i,j} = (Xi, Xi, Xj , Xj)>. Consider the following block matrix, which is a version of e� with
rearranged rows and columns

U =

 
var( eX{i,j}) cov( eX{i,j}, eXI)

cov( eXI , eX{i,j}) var( eXI)

!
.

We can use the Schur complement to note that, if we invert U , the resulting upper-left block is
given by A = var( eX{i,j})� cov( eX{i,j}, eXI) var( eXI)�1 cov( eXI , eX{i,j}). Since U is just a rearranged

version of e�, we can observe that e��1 will contain the entries of A. In particular, note that
e�ij = cov(Xi, Xj) = U1,3. Therefore,
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e��1
i,j

= A1,3 = cov(Xi, Xj)� cov(Xi,
eXI) var( eXI)

�1 cov( eXI , Xj)

= cov{Xi � projL( eXI)
(Xi), Xj � projL( eXI)

(Xj)},

and it immediately follows that

Pij = (e��1
ii

)�1/2e��1
ij

(e��1
jj

)�1/2 = ⇢(Xi, Xj | X[d]\{i,j}),

as desired. A very similar argument establishes that Pi,j+d = e⇢(Xi, Xj | X[d]\{i,j).

S1.8 Proof of Theorem 7

Proof. In the proof of Theorem 6 we show that

cov{Xi � projL( eXI)
(Xi), Xj � projL( eXI)

(Xj)} = cov(Xi, Xj)� cov(Xi,
eXI) var( eXI)

�1 cov( eXI , Xj).

We use this result below. Let

Jd =

✓
Id ◆Id

Id �◆Id

◆
,

where Id is the d-dimensional identity matrix. Note that J
�1
d

= J
H

d
and eX = Jd · (ReX, ImX)>.

Then

cov(Xi, Xj | XI) = cov

⇢
(1 ◆)

✓
ReXi

ImXi

◆
, (1 ◆)

✓
ReXj

ImXj

◆ ����XI

�

= (1 ◆) cov

⇢✓
ReXi

ImXi

◆
,

✓
ReXj

ImXj

◆ ����XI

�✓
1
�◆

◆
.

Recall that X ⇠ CN (m,�, C) if (ReX, ImX) ⇠ N (µ,⌃). Based on the Schur complement formula,
the conditional covariance of a real-valued Gaussian distribution is

cov(Xi, Xj | XI)

= (1 ◆) cov

⇢✓
ReXi

ImXi

◆
,

✓
ReXj

ImXj

◆ ����

✓
ReXI
ImXI

◆�✓
1
�◆

◆

= (1 ◆) cov

⇢✓
ReXi

ImXi

◆
,

✓
ReXj

ImXj

◆�✓
1
�◆

◆

� (1 ◆) cov

⇢✓
ReXi

ImXi

◆
,

✓
ReXI
ImXI

◆�✓
var

✓
ReXI
ImXI

◆◆�1

cov

⇢✓
ReXI
ImXI

◆
,

✓
ReXj

ImXj

◆�✓
1
�◆

◆
.

Similarly,

var( eXI) = var

⇢
J|I|

✓
ReXI
ImXI

◆�
= J|I| var

⇢✓
ReXI
ImXI

◆�
J
H

|I|

and

cov(Xi,
eXI) = cov

⇢
(1 ◆)

✓
ReXi

ImXi

◆
, J|I|

✓
ReXI
ImXI

◆�
= (1 ◆) cov

⇢✓
ReXi

ImXi

◆
,

✓
ReXI
ImXI

◆�
J
H

|I|.
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We then see that

var( eXI)
�1 =

⇢
J|I| var

✓
ReXI
ImXI

◆
J
H

|I|

��1

= J|I|

⇢
var

✓
ReXI
ImXI

◆��1

J
H

|I|

since J
H

d
= J

�1
d

. Therefore,

cov
n
Xi � projL( eXI)

(Xi), Xj � projL( eXI)
(Xj)

o

= cov(Xi, Xj)� cov(Xi,
eXI){var( eXI)}

�1 cov( eXI , Xj)

= (1 ◆) cov

⇢✓
ReXi

ImXi

◆
,

✓
ReXj

ImXj

◆�✓
1
�◆

◆

� (1 ◆) cov

⇢✓
ReXi

ImXi

◆
,

✓
ReXI
ImXI

◆�
J
H

|I|J|I|

⇢
var

✓
ReXI
ImXI

◆��1

J
H

|I|J|I|

⇥ cov

⇢✓
ReXI
ImXI

◆
,

✓
ReXi

ImXi

◆�✓
1
�◆

◆

= (1 ◆) cov

⇢✓
ReXi

ImXi

◆
,

✓
ReXj

ImXj

◆�✓
1
�◆

◆

� (1 ◆) cov

⇢✓
ReXi

ImXi

◆
,

✓
ReXI
ImXI

◆�⇢
var

✓
ReXI
ImXI

◆��1

cov

⇢✓
ReXI
ImXI

◆
,

✓
ReXj

ImXj

◆�✓
1
�◆

◆

= cov(Xi, Xj | XI).

Letting j = i, we can see that, likewise, the conditional variance and the variance of the terms
Xi � projL(XI) are the same. Thus, the partial correlation and the conditional correlation are the
same. We can apply a very similar strategy to show that the pseudo partial correlation and the
pseudo conditional correlation are the same.

S1.9 Proof of Theorem 8

Proof. Let I = [d] \ {i, j}. Assume cov(Xi, Xj | XI) = pcov(Xi, Xj | XI) = 0. Suppose that

Jd =

✓
Id ◆Id

Id �◆Id

◆
. Then

J1 cov

⇢✓
ReXi

ImXi

◆
,

✓
ReXj

ImXj

◆ ����XI

�
J
H

1

= cov
⇣
eXi,

eXj

���XI

⌘
=

✓
cov(Xi, Xj | XI) pcov(Xi, Xj | XI)
pcov(Xj , Xi | XI) cov(Xj , Xi | XI)

◆
= 0

and so

cov

⇢✓
ReXi

ImXi

◆
,

✓
ReXj

ImXj

◆ ����XI

�
= 0

since J1 is invertible (namely J
�1
1 = J

H

1 ). By properties of the real normal distribution, this implies
that

✓
ReXi

ImXi

◆
??

✓
ReXj

ImXj

◆ ����XI =) Xi ?? Xj | XI ,

as desired. The other direction is trivially true from the definition of covariance.
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S2 Examples Comparing PLV, Amplitude Correlation, and Com-
plex Correlation

It is helpful to reconsider the single-frequency signals Xi(t) = Ri exp{◆(⇥i + 2⇡!0t)} discussed in
Section 4.1. Writing the purely angular factor in the rotational phase correlation (which is the
factor estimated by PLV) as

PLV12(!) =
���E

⇣
e
◆(⇥1�⇥2)

⌘���,

in the case that (R1, R2) ?? (⇥1,⇥2), (4) and (5) give

fii(!) = E(R2
i ) = var(Ri) + E(Ri)

2

and

|f12(!)| = E(R1R2)
���E{e◆(⇥1�⇥2)}

��� = (cov(R1, R2) + E(R1) E(R2))PLV12(!).

Letting ICV(Ri) = E(Ri)/
p
var(Ri) be the inverse coe�cient of variation of Ri for i 2 {1, 2}, the

coherence, which is the absolute value of the complex correlation, at frequency ! is

⌧12(!) = |corr{X1(t), X2(t)}| =
cov(R1, R2) + E(R1) E(R2)p

(var(R1) + E(R1)2)(var(R2) + E(R2)2)
PLV12(!)

=
corr(R1, R2) + ICV(R1)ICV(R2)p
(1 + ICV(R1)2)(1 + ICV(R2)2)

PLV12(!).

Thus, in this independent case, if the amplitude is highly concentrated so that the ICV is large,
coherence and PLV will be roughly equal, but if the ICV is small or moderate, they will di↵er.

We can observe instances in which the PLV provides stronger evidence of an association than
complex correlation. For instance, assume that ⇥1 ⇠ U [�⇡,⇡) and ⇥2 = ⇥1 + ✏ (where ✏ is a von
Mises random variable concentrated around zero), and let R1 = R2 = |⇥1 �⇥2|. In this case, PLV
is large, but the complex covariance will be relatively small due to the specific form of R1 and R2.

Finally, there are numerous cases in which complex covariance (and thus coherence in the
stationary, band-pass-filtered case) may reveal information about associations not apparent by
examining either PLV or amplitude correlation. We show some of these cases in Table S1. Overall,
coherence and PLV can assess phase interaction di↵erently, and in many applications the situations
discussed here may usefully inform the choice of one over the other.
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Explanation Setting Result

PLV, amplitude covariance
and complex means are zero,

but complex covariance is nonzero

⇥1,⇥2
iid
⇠ U [�⇡,⇡)

R1 = ⇥2

R2 = ⇥1

PLV(⇥1,⇥2) = 0

cov(R1, R2) = 0
E(X1) = E(X2) = 0
|cov(X1, X2)| > 0
|pcov(X1, X2)| > 0

PLV, amplitude covariance
and complex means are zero,

but complex covariance is nonzero

⇥1,⇥2
iid
⇠ U [�⇡,⇡)

R1 = ⇥1 +⇥2 mod 2⇡
R2 = ⇥1 �⇥2 mod 2⇡

PLV(⇥1,⇥2) = 0

cov(R1, R2) = 0
E(X1) = E(X2) = 0
|cov(X1, X2)| > 0

PLV, and amplitude covariance
are zero, but complex means

and complex covariance are nonzero

⇥1,⇥2
iid
⇠ U [�⇡,⇡)

R1 = ⇥1 +⇥2

R2 = ⇥1 �⇥2 + 2⇡

PLV(⇥1,⇥2) = 0

cov(R1, R2) = 0
E(X1) 6= 0, E(X2) 6= 0

|cov(X1, X2)| > 0

PLV, amplitude covariance
are complex covariance are zero
but complex means are nonzero

⇥1,⇥2
iid
⇠ U [�⇡,⇡)

R1 = ⇥1

R2 = ⇥2

PLV(⇥1,⇥2) = 0

cov(R1, R2) = 0
E(X1) 6= 0, E(X2) 6= 0

|cov(X1, X2)| = 0
|pcov(X1, X2)| = 0

Table S1: Examples of various ways in which complex covariance and means can capture associ-
ations not captured by PLV or amplitude correlation. In all cases, the variables are independent
unless otherwise stated. We define X1 = R1 exp(◆⇥1) and X2 = R2 exp(◆⇥2).
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S3 Supplemental Figures

Figure S1: Estimation error as a function of sample size. To construct a simulation similar to the
data analyzed in Section 6, we first fit a model to the dataset described in Section 6 and then
simulate synthetic datasets by using those estimated parameters. We then estimate parameters
for the synthetic datasets for a variety of values of N , the size of the simulated dataset. We then
compute the estimation error as a function of N . For any matrix A, let |A| =

P
ij
|A|ij , let b�

denote the estimated latent covariance matrix, and let � denote the true latent covariance matrix.
Our metric for estimation error is the ratio |b���|/|�|. Error bars denote 95% confidence intervals
for the error.

S13



Figure S2: Elements of the covariance and pseudo-covariance matrices for the LFP data. Both the
covariance and pseudo-covariance matrices are plotted, denoted by cov(X) and pcov(X), respec-
tively (units are arbitrary). In a proper complex normal distribution, the matrix pcov(X) is exactly
equal to zero. In this figure, we observe that the entries in both Re{pcov(X)} and Im{pcov(X)}
are much smaller than those in Re{cov(X)} and Im{cov(X)}, which suggests that the assumption
of propriety may be reasonable.
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