
PLOS ONE
 

Using Multi-Label Ensemble CNN Classifiers to Mitigate Labelling Inconsistencies in
Patch-level Gleason Grading

--Manuscript Draft--
 

Manuscript Number: PONE-D-24-08473

Article Type: Research Article

Full Title: Using Multi-Label Ensemble CNN Classifiers to Mitigate Labelling Inconsistencies in
Patch-level Gleason Grading

Short Title: Gleason Grading through Multi-Label Ensemble CNN Classifier

Corresponding Author: Muhammad Bilal, Ph.D.
King Abdulaziz University Faculty of Engineering
Jeddah, SAUDI ARABIA

Keywords: Machine Learning;  Image Recognition;  Multi-Label Classification;  Convolutional
Neural Networks;  Gleason Grading.

Abstract: This paper presents a novel approach to enhance the accuracy of patch-level Gleason
grading in prostate histopathology images, a critical task in the diagnosis and
prognosis of prostate cancer. This study shows that the Gleason grading accuracy can
be improved by addressing the prevalent issue of label inconsistencies in the SICAPv2
prostate dataset, which employs a majority voting scheme for patch-level labels. We
propose a multi-label ensemble deep-learning classifier that effectively mitigates these
inconsistencies and yields more accurate results than the state-of-the-art works.
Specifically, our approach leverages the strengths of three different one-vs-all deep
learning models in an ensemble to learn diverse features from the histopathology
images to individually indicate the presence of one or more Gleason grades (G3, G4,
and G5) in each patch. These deep learning models have been trained using transfer
learning to fine-tune a variant of the ResNet18 CNN classifier chosen after an
extensive ablation study. Experimental results demonstrate that our multi-label
ensemble classifier significantly outperforms traditional single-label classifiers reported
in the literature by at least 14% and 4% on accuracy and f1-score metrics respectively.
These results underscore the potential of our proposed machine learning approach to
improve the accuracy and consistency of prostate cancer grading.
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trained using transfer learning to fine-tune a variant of the ResNet18 CNN classifier chosen after an extensive 24 

ablation study. Experimental results demonstrate that our multi-label ensemble classifier significantly outperforms 25 

traditional single-label classifiers reported in the literature by at least 14% and 4% on accuracy and f1-score metrics 26 

respectively. These results underscore the potential of our proposed machine learning approach to improve the 27 

accuracy and consistency of prostate cancer grading. 28 
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1. Introduction 31 

Prostate cancer is one of the most common types of cancer in men, posing significant challenges in diagnosis and 32 

treatment. Traditional diagnostic methods, such as biopsy followed by histopathological examination, are invasive 33 

and subject to inter-observer variability. With the advent of digital pathology, the potential for computer-aided 34 

diagnosis has opened up, promising more accurate and consistent results. In this regard, various researchers have 35 

considered Deep learning, a subset of machine learning, which has shown remarkable success in image recognition 36 

tasks, making it a promising tool for digital pathology as well. In recent years, there has been a surge of research 37 

exploring the application of deep learning methodologies to digital pathology in prostate cancer. These studies 38 

have spanned a range of tasks, from pre-processing tasks like quality assessment and staining normalization, to 39 

diagnostic tasks like cancer detection and Gleason grading, and even prediction tasks such as recurrence prediction 40 

or genomic correlations [1]. The research in this area has been fueled by the fact that conventional image recogni-41 

tion tasks and the analysis of whole slide images (WSIs) in digital pathology share several similarities, which make 42 

deep learning techniques highly applicable and beneficial for both. Moreover, transfer learning, a powerful tech-43 

nique in deep learning, where a model trained on one task is repurposed on a related task has been instrumental 44 

in this field since in digital pathology, annotated data can be scarce [2]. Thus, various well-known neural network 45 

architectures pre-trained for general purpose image recognition tasks have been readily adapted by the researchers 46 

for digital pathology domain. Network fine-tuning as well as using activations from inner layers as features have 47 

been tried. Thus, by leveraging pre-trained models, researchers can overcome the challenge of limited annotated 48 

data in the field of digital pathology and improve the performance of deep learning models in detecting and clas-49 

sifying prostate cancer from WSIs. However, as suggested by Rabilloud et al. [3], there is still room for improve-50 

ment and more work is needed to validate these models externally and ensure their robustness in real-world clin-51 

ical settings. It is particularly important to note here that while there are similarities with the general-purpose 52 

imagery, there are also unique challenges in digital pathology, such as the need for extremely high-resolution 53 

image analysis, that require specialized adaptations of these techniques.  54 

A critical component of prostate cancer diagnosis and prognosis is ‘Gleason Grading’, a system used to evaluate 55 

the stage of prostate cancer using prostate biopsy samples. However, it presents several challenges. There is often 56 



 

considerable inter-observer variability even among expert pathologists, which could lead to unnecessary treatment 57 

or missing a severe diagnosis. This makes the task of Gleason grading difficult and subjective due to the need for 58 

visual assessment of cell differentiation and Gleason pattern predominance. In a bid to come up with a robust 59 

automated method for Gleason scoring through deep learning, researchers have commonly employed patch-based 60 

detection. This method involves dividing the whole slide images (WSIs) into smaller, manageable 'patches' of im-61 

ages, which are then analyzed individually [4, 5]. An initial study by Speier et al. [5] proposed an automatic patch 62 

selection process based on image features. This algorithm segments the biopsy and aligns patches based on the 63 

tissue contour to maximize the amount of contextual information in each patch. The patches are then used to train 64 

a fully convolutional network (machine learning model) to segment high grade, low grade, and benign tissue from 65 

a set of histopathological slides. Another similar study used a convolutional neural network (CNN) for automated 66 

detection of Gleason patterns and determination of the grade groups [6]. The outcome of the CNN was subse-67 

quently converted into probability maps, and the grade group of the whole biopsy was obtained according to these 68 

probability maps. Another notable recent effort is the introduction of SICAPv2 dataset [7] consisting of 155 biopsies 69 

(WSIs) from 95 different patients. The dataset has pixel-level Gleason Grading (GG) labeled through consensus of 70 

expert pathologists. The authors claimed unprecedented detection accuracy using a custom CNN architecture to 71 

classify the GG labels at the patch level. However, as noted earlier, the labelling of WSIs being a tedious task, this 72 

dataset also suffers from inexact and incomplete pixel-level labelling [8]. Specifically, the patch-level labelling has 73 

been done through majority vote of how each pixel in the patch is labeled according to the Gleason grade. This 74 

approach, however, leads to at least three problems i.e. 75 

Loss of Information: The majority voting scheme potentially ignores the information related to the minority clas-76 

ses which are inevitably present in numerous patches 77 

Misclassification: If the patch contains a mix of different Gleason grades, the majority voting scheme could result 78 

in misclassification since it is highly sensitive to the manual pixel-level labelling done by the pathologists 79 

Labelling Noise: The presence of label noise can negatively affect the training performance of the machine learning 80 

models which rely heavily on the accuracy of the provided labels 81 

 82 



 

To this end, the work described in this paper,  83 

 Provides a statistical analysis of the patch-level labelling noise in SICAPv2 prostate histology dataset. 84 

 Proposes an ensemble machine learning classifier to detect all occurrences (multi-labels) of Gleason grades 85 

at the patch level, rather than just the majority grade. 86 

 Provides an open-source framework for Gleason grading at patch and WSI-level based on the proposed 87 

ensemble classifier to facilitate researchers and practitioners working in the field of digital histopathology. 88 

2. Background 89 

As noted earlier, various researchers have considered using machine learning approaches, especially deep learn-90 

ing, to advance the field of digital pathology in the sub-domain of prostate cancer detection and grading [9-12]. 91 

Abut et al. [13] have explored how the medical field is experiencing a data explosion, particularly with images and 92 

other unstructured data which presents both opportunities and challenges for classifying and segmenting these 93 

data sources. Traditional statistical methods combined with image processing techniques have been used to solve 94 

medical problems. However, the increasing size and resolution of data have led to advancements in artificial in-95 

telligence, especially deep learning techniques, for evaluating these data to identify, classify, and quantify patterns 96 

for clinical needs. Ruiz-Fresneda et al. [14] have provided a study which examines worldwide scientific output on 97 

the application of machine learning to the most significant types of cancer, using a range of bibliometric measures. 98 

On similar lines, Morozov et al. [15] have provided a comprehensive review of the precision of various Artificial 99 

Intelligence (AI) techniques in diagnosing and grading prostate cancer based on histological analysis. Their con-100 

clusion was that the precision of AI in identifying and grading Prostate Cancer (PCa) matches that of skilled 101 

pathologists. This promising method has numerous potential clinical uses, leading to faster and more efficient 102 

pathology reports. However, they also cautioned that the implementation of AI in routine practice may be hin-103 

dered by the complex and time-consuming process of training and fine-tuning convolutional neural networks. 104 

Akinnuwesi et al. [16] have explored the utility of a conventional machine learning algorithm i.e. Support Vector 105 

Machine (SVM) on a small dataset [17]. They have reported 98.6% accuracy for the binary classification task. Other 106 

researchers such as Li et al. [18] have considered deep learning approaches in prostate cancer diagnosis using 107 



 

Magnetic Resonance Imaging (MRI). However, while MRI is more accurate than WSI testing, it still faces several 108 

challenges such as increased cost, lack of broad availability, differences in MRI acquisition and interpretation pro-109 

tocols. Moreover, WSI is particularly useful for Gleason grading and has been considered widely by the research-110 

ers. For instance, Mandal et al. [19] have investigated transfer learning for adapting well-known CNN architectures 111 

to the task of cancer detection. However, WSIs require careful processing as noted by Kanwal et al. [20] and Foucart 112 

et al. [21]. Another recent study has developed a deep learning model that uses gigapixel pathology images and 113 

slide-level labels for prostate cancer detection and Gleason grading [22]. The model first crops whole-slide images 114 

into small patches and extracts features from these patches using a deep learning model trained with self-super-115 

vised learning. Tabatabaei et al. [23, 24] have considered the problem of making manual annotation less laborious 116 

through automated retrieval of similar cancerous patches using a CNN-based autoencoder. Recently, Morales-117 

Álvarez et al. [25] have proposed the use of multiple instance learning to tackle the problem of patch-level label 118 

generation by exploiting the correlation among neighboring patches. Although 95.11% accuracy has been reported 119 

on SICAPv2 dataset, this study is limited to the binary cancer detection task and Gleason grading has not been 120 

considered. In a similar approach proposed by Schmidt et al. [26], a multi-class grading with an F1-score of 0.72 121 

has been reported. However, both works do not reproduce the detailed results on the four validation and one test 122 

sets of SICAPv2 dataset. The latter work has also reported an F1-score of 0.81 on the PANDA dataset which is 123 

another comprehensive collection of prostate cancer biopsies used for the Prostate cANcer graDe Assessment 124 

(PANDA) Challenge [27]. This dataset consists of almost 11,000 biopsies available as whole-slide images of hema-125 

toxylin and eosin (H&E) stained tissue specimens. Similar to SICAPv2, the grading process for this dataset also 126 

involves finding and classifying cancer tissue into Gleason patterns (3, 4, or 5) based on the architectural growth 127 

patterns of the tumor.  128 

Pati et al. [28] have considered both segmentation of the WSIs as well as the classification at the patch-level on 129 

three different datasets including SICAP. However, their reported F1 score on the latter is merely 0.65 which is 130 

lower than the previously reported results in the literature. Golfe et al. [29, 30] have taken another innovative 131 

approach to improve the Gleason grading in the wake of insufficient, imbalanced and poorly labelled training 132 

examples. Specifically, they have trained a generative network to artificially create more training examples than 133 
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are available in the original SICAP dataset. The main idea is to enhance the classification accuracy through more 134 

variations in the training data. They have reported an average accuracy and F1-score of 0.71 and 0.67 respectively 135 

which is a marginal improvement over the work of Silva-Rodríguez et al. [7].  136 

Ambrosini et al. [31] have trained a custom CNN for the detection of cribriform pattern which is a specific arrange-137 

ment of cells that is seen in WSIs for some types of cancer, including prostate cancer. It is characterized by small, 138 

round or oval glands that are arranged in a sieve-like pattern. The cribriform pattern is thought to be associated 139 

with more aggressive cancers, and it may be a factor in determining a patient's prognosis. They have reported a 140 

mean area under the curve of up to 0.81 in sensitivity vs false positives graph. In comparison, Silva-Rodríguez et 141 

al. [7] have also considered detection of cribriform pattern with a score of 0.82. However, the comparison is incon-142 

clusive since very different datasets have been employed by these two studies.  143 

  This brief overview of recent studies on machine learning methods for detecting and classifying prostate cancer 144 

from WSIs clearly indicates that there is significant scope for enhancement, particularly in dealing with the issue 145 

of noisy labels at the patch level. 146 

3. Materials and Methods 147 

This section describes our approach to accurately assign Gleason grades to the patches extracted from WSIs for 148 

prostate cancer using a multi-label approach. Our methodology leverages the power of CNNs and the concept of 149 

transfer learning for recognizing intricate imaging patterns for classification. Specifically, we utilize pre-trained 150 

CNN architectures as the backbone of our model, capitalizing on their proven ability to extract robust features 151 

from image data. The models are trained and validated using the SICAPv2 dataset, a comprehensive collection of 152 

prostate histopathology images with annotated Gleason grades. This approach allows us to harness the existing 153 

knowledge encapsulated in these architectures and adapt it to the specific task of Gleason grade detection. More-154 

over, the multi-label approach enables the model to predict multiple Gleason grades that may be present in a single 155 

image, thereby providing a more nuanced understanding of the disease's severity. Specific details of the proposed 156 

detection framework have been given in the following sub-sections. The effectiveness of the proposed approach 157 



 

has been validated by comparing it with state-of-the-art results reported in the literature using various metrics, as 158 

detailed in Section 4. 159 

3.1. Dataset Overview 160 

The focus of this research is the SICAPv2 dataset, comprising 155 biopsies from 95 individual patients. WSIs have 161 

been obtained from tissue samples by slicing, staining and ultimately digitizing. Skilled urogenital pathologists 162 

reviewed these slides and assigned a unified Gleason score to each biopsy. The distribution of primary Gleason 163 

grades (GG) in the biopsies is as follows: 36 noncancerous regions, 40 samples with Gleason grade 3 (GG3), 64 with 164 

Gleason grade 4 (GG4), and 15 with Gleason grade 5 (GG5). To handle the large WSIs, they were downsampled to 165 

10x resolution and segmented into 512x512 patches with a 50% overlap. A tissue presence mask for the patches 166 

was generated using the Otsu threshold method. Patches with less than 20% tissue were excluded for model de-167 

velopment aimed at predicting the main Gleason grade. The database comprises 4417 non-cancerous patches, 1635 168 

labelled as GG3, 3622 as GG4, and 665 as GG5. It's important to note that in cases where a patch contained multiple 169 

annotated grades, the label of the predominant grade was assigned. Additionally, 763 GG4 patches also contain 170 

annotated cribriform glandular regions. To facilitate model training and optimize the involved hyperparameters, 171 

the dataset has been partitioned by the original authors using a cross-validation approach. Specifically, each pa-172 

tient was exclusively allocated to one-fold to prevent overestimation of system performance and ensure its gener-173 

alization. As such, the database was split into 5 groups (i.e. Val1, Val2, Val3, Val4 and Test), each containing 174 

roughly 20% of the patches. It's important to highlight that this division aimed to maintain class balance across 175 

sets. 176 



177 

Figure 1. Examples of misclassified pixels due to majority voting-based labelling in SICAPv2 dataset. The 178 

pixels belonging to the minority class don’t get acknowledged separately (a) RGB Patch; (b) Labelling Mask; 179 

(c) Probability distribution estimate of the grades/classes represented in the Mask180 

3.2. Patch-level Labelling Inconsistencies 181 

As previously outlined, Gleason grading for prostate cancer involves two distinct labelling approaches at the 182 

patch-level and whole slide image (WSI) level, each with its own set of benefits and challenges. The patch-level 183 

labelling method assigns labels to individual "patches" within a WSI, allowing for a detailed tissue analysis. This 184 

is particularly beneficial when a single WSI contains multiple Gleason grades. However, this method requires 185 

significant time and expertise for manual annotation of each patch. As mentioned before, SICAPv2 has provided 186 

patch-level labels to facilitate classification. This scheme requires that if a patch contains more than one annotated 187 

grade, the label typically assigned is the majority grade. This practice can lead to several issues. For instance, it 188 

may result in information loss about other grades present within the same patch, potentially oversimplifying the 189 

tissue's complexity and heterogeneity. Additionally, the majority grade may not accurately represent the entire 190 
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patch's characteristics. For example, a patch might contain a substantial amount of a higher Gleason grade, but if 191 

it's not the majority, it could be overlooked, potentially underestimating the disease's severity. There can also be 192 

variability in the assignment of the majority grade among different observers, leading to label inconsistencies. This 193 

is especially true in cases where the distribution of different grades within a patch is nearly equal. Lastly, a model 194 

trained on such data might not perform well in real-world scenarios where multiple Gleason grades are present in 195 

a single patch. Thus, a patch might contain a substantial amount of a higher Gleason grade, but if it’s not the 196 

majority, it could be overlooked, potentially underestimating the disease’s severity. To address these issues, this 197 

work has proposed multi-label classification which allows each patch to be assigned multiple labels corresponding 198 

to the different Gleason grades present, accurately capturing the tissue's complexity and heterogeneity. 199 

To appreciate the level of label inconsistencies in SICAPv2 dataset, several statistics have been collected in this 200 

study. Figure 1 shows three example patches where pixels depict a variety of different grades (mask manually 201 

annotated by expert histopathologists) while the label has been assigned based on simple majority vote. Thus, a 202 

significant number of pixels in a patch could be misclassified due to a higher level of granularity. Figure 2 provides 203 

a statistical insight into the label inconsistency problem by showing probability distributions of misclassified pixel 204 

belonging to different grades/classes in the patches belonging to SICAPv2 dataset partition ‘Val1’. It can be ob-205 

served that upto 30% of pixels could be mislabeled if they don’t belong to the majority class. 206 

The misclassification statistics for SICAPv2 dataset have been summarized in Table 1. It can be noticed that while 207 

on average only up to 2% of pixels are misclassified in a given set, as many as 30% could be misclassified in indi-208 

vidual instances. This misclassification can potentially lead to suboptimal performance while training a machine 209 

learning classifier especially in the wake of high level of imbalance. In the light of these observations, this study 210 

suggests implementing a multi-label strategy where each patch could carry multiple labels. The assignment of 211 

these labels depends on whether the proportion of pixels that fall into a particular category exceeds a specified 212 

threshold. 213 

 214 

 215 



 

 216 

Figure 2. Probability distributions of misclassified pixel belonging to different classes in SICAPv2 dataset 217 

partition ‘Val1’ (a) G3 training; (b) G3 test; (c) G4 test; (d) G4 test; (e) G5 test; (f) G5 test 218 

Comment on Text
(c) and (e) are training not test



 

Table 1. Summarized statistics related to misclassification of different classes in SICAPv2 dataset partitions 219 

 
Class 

Average area of  

misclassified pixels 

Maximum area of  

misclassified pixels 

Val1 

(Train) 

G3 1.7% 30% 

G4 1.8% 30% 

G5 1.1% 22% 

Val1 

(Test) 

G3 1.6% 27% 

G4 1.8% 25% 

G5 1.8% 30% 

Val2 

(Train) 

G3 1.7% 30% 

G4 1.9% 30% 

G5 1.7% 30% 

Val2 

(Test) 

G3 1.3% 25% 

G4 1.4% 25% 

G5 0.3% 7% 

Val3 

(Train) 

G3 1.5% 25% 

G4 1.6% 25% 

G5 1.7% 30% 

Val3 

(Test) 

G3 1.7% 30% 

G4 1.9% 30% 

G5 1.2% 22% 

Test 

(Train) 

G3 1.7% 30% 

G4 1.9% 30% 

G5 1.7% 30% 

Test 

(Test) 

G3 1.1% 18% 

G4 1.0% 17% 

G5 0.5% 10% 

 220 

3.3. Methods 221 

In this study, we propose an ensemble classifier to generate a multi-label hypothesis for every individual test input 222 

patch. The proposed ensemble classifier, shown in Figure 3, itself consists of individual CNN-based one-vs-all 223 

classifiers to hypothesize the presence or absence of each corresponding class i.e. Gleason Grade 3, 4 or 5. The 224 

rationalization behind the conception of this ensemble classifier is two-fold. First, each one-vs-all CNN classifier 225 

is deemed to perform better since all the layers (initial as well as final) will be devoted to feature extraction and 226 



 

classification specifically for each class. In contrast, a single multi-class CNN classifier shares the features extrac-227 

tion (initial layers) for all classes and only the head is devoted individually to each class. Second, multi-label ap-228 

proach to mitigate the labelling inconsistency problem can be efficiently handled by one-vs-all ensemble classifier 229 

especially since the number of classes are few and each classifier could be individually fine-tuned to address a 230 

single label. 231 

 232 

Figure 3. Proposed ensemble classifier with individual CNN-based one-vs-all binary classifiers 233 

The input to the ensemble classifier is a 512 × 512 image patch to be consistent with the default size of SICAPv2 234 

dataset patches. Each individual classifier is a CNN dedicatedly trained for each of the three Gleason Grades i.e. 235 

G3, G4 and G5. These classifiers detect the corresponding class against the default Non-Cancerous (NC) class and 236 

all other grades (one-vs-all classifiers). The multi-label hypothesis is a concatenation of the respective outputs from 237 

each classifier. Due to the relatively small size of the dataset, a transfer learning approach is proposed to prevent 238 

overfitting and training difficulties. For this purpose, different well-known CNN architectures such as ResNet18, 239 

ResNet50 and Inception etc. [32] pre-trained on ImageNet dataset [33] and their derivatives have been considered 240 

in the ablation study to select the best performing network. 241 

The training and testing procedure of the proposed multi-label ensemble classifier has been depicted in Figure 4. 242 

Since the original dataset comes only with patch-level labels decided based on the majority votes, the first step is 243 

to generate multi-labels for each patch using the provided labelling masks. The label for each class (G3, G4 and 244 

G5) would be included in the output multi-label if the pixels corresponding to that class are above a certain per-245 

centage threshold. NC label is issued only if none of the pixels belonging to G3, G4 or G5 are present. Appropriate 246 

Comment on Text
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threshold values for training and testing respectively have been found using the ablation study described in the 247 

next section. The split between training and test sub-groups is based on the guidelines of the original dataset. The 248 

ensemble model is then trained by individually training the three component CNN one-vs-all models for each 249 

class i.e. G3, G4 and G5. The proposed multi-label ensemble classifier is then tested on the test examples for detec-250 

tion performance using standard metrics (e.g. accuracy and F1-Score etc.) as detailed in the next section.   251 

 252 

Figure 4. Training and testing paradigm for the proposed multi-label ensemble classifiers 253 

A critical consideration while training the one-vs-all ensemble classifiers for multi-label scenario is the high data 254 

imbalance since the "all" category inevitably has many more training examples than the "one" category, leading to 255 

a bias towards the majority class. A potential solution to this problem is the use of a weighted cross-entropy loss 256 

function while training the models and has been adopted by Silva-Rodríguez et al. [7] even for their multi-class 257 

model since SICAPv2 is inherently an imbalanced dataset. Specifically, this function assigns more weight to under-258 



 

represented classes and less weight to over-represented classes, penalizing the model more for misclassifying mi-259 

nority classes. However, setting these weights requires careful consideration to avoid overfitting to the minority 260 

class. In this work, we have used ablation experiments to empirically determine the optimal weights.  261 

The whole training and testing framework for the proposed ensemble classifier has been implemented in Matlab 262 

environment (R2022b) using Deep Learning Toolbox [32]. The computing environment is Intel(R) Core(TM) i9-263 

9900K CPU @ 3.60GHz with 64 GB RAM and NVIDIA GeForce RTX 2080 Ti GPU.  264 

4. Results 265 

This section presents the findings of our comprehensive study using the proposed ensemble classifier consisting 266 

of individual one-vs-all sub-classifiers for Gleason grade scoring task using multi-label approach. The following 267 

sub-section describes the ablation study conducted for a detailed analysis of the impact of various hyperparame-268 

ters on the performance of the classifier. The patch-level Gleason grading results given later in this section demon-269 

strate the effectiveness of our proposed method in classifying individual patches of histopathological images. Fi-270 

nally, the WSI-level labelling results illustrate the classifier's ability to accurately label entire histopathological 271 

slides. These results collectively highlight the robustness and efficacy of our proposed ensemble classifier in 272 

Gleason grade scoring.  273 

4.1 Ablation Study 274 

This sub-section presents the results of the ablation study conducted to tune various hyperparameters for the pro-275 

posed ensemble classifier. These hyperparameters include the CNN architectures of the one-vs-all sub-classifiers, 276 

the threshold for assigning multi-labels at the patch level based on the pixel percentage belonging to a particular 277 

class, the number of epochs for training the model, the learning rate, and the L2 regularization factor. By system-278 

atically varying these hyperparameters, the influence of each on the model's performance has been studied and 279 

used to identify the final configuration suitable for the Gleason grade scoring task practically. For this purpose, 280 

the validation sets i.e. Val1, Val2, Val3 and Val4 of SICAPv2 datasets have been employed in all the experimenta-281 

tions.  282 
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While selecting the appropriate CNN architecture for each of the one-vs-all sub-classifiers to be used in the ensem-283 

ble for each class, we have considered well-known CNNs e.g. ResNet18, ResNet50 and Inception pre-trained on 284 

ImageNet for transfer learning because these have learned robust feature representations, which can be leveraged 285 

to achieve high performance on our specific task with less data and training time. However, we observed a com-286 

mon trend of overfitting across these networks. Overfitting is a modeling error that occurs when a function is too 287 

closely fit to a limited set of data points and may therefore fail to predict additional data or future observations 288 

reliably. Figure 5 depicts one such scenario where we used ResNet18 as the sub-classifier for G3 grade on training 289 

set of ‘Val1’. It can be seen that as the training progressed, the divergence between the training loss and validation 290 

loss increases which is a classic sign of overfitting. This problem can be mitigated through techniques such as using 291 

a lower complexity model, L2 regularization, early stopping, and data augmentation. To this end, we have em-292 

ployed standard image data augmentation techniques (resizing, rotation, translation and flipping) and early stop-293 

ping if the validation loss increases for 8 consecutive epochs. 294 

 295 

Figure 5. Overfitting observed with ResNet18 CNN as sub-classifier for G3 grade classification in ‘Val1’ train-296 

ing set 297 

Additionally, given that even ResNet18 despite being the least complex among all considered CNNs led to over-298 

fitting, we have attempted to simplify it further. This was done by eliminating some of its final layers, thereby 299 



 

reducing its complexity and potentially making it less susceptible to overfitting. Specifically, the `conv5` layer 300 

group and half of the `conv4` layer group (i.e., `4b`) of the standard ResNet18 architecture have been eliminated. 301 

This effectively reduced the model's complexity, making it less prone to overfitting. Thus, the final Global Average 302 

Pooling (GAP) layer has been directly connected to the output of `res4a_relu`. Finally, a fully connected and Soft-303 

Max layer for classification have been placed at the end of the proposed architecture. The architectural details of 304 

this proposed architecture have been given in Table 2. In addition to the aforementioned modifications, it's im-305 

portant to note that our initial attempts at mitigating overfitting by only removing the ̀ conv5` layer from ResNet18 306 

were not successful. The model continued to overfit despite this simplification. On the other hand, when we further 307 

removed the `res4a` layer, we observed a drop in the accuracy i.e. underfitting. Thus, the present architecture has 308 

been selected to strike a balance.   309 

Table 2. Architecture of the proposed CNN model for binary classifica-

tion (one-vs-all) 

Layer Name Activation Size 

Image Input 224 × 224× 3 

Conv1 (7 × 7, 64) Stride 2, BN, Relu, 

MAP-2 
112 × 112× 64 

Conv2a (3 × 3, 64) Stride 1, BN, Relu 56 × 56× 64 

Conv2b (3 × 3, 64) Stride 1, BN, Relu 56 × 56× 64 

Conv3a (3 × 3, 128) Stride 2, BN, Relu 28 × 28× 128 

Conv3b (3 × 3, 128) Stride 1, BN, Relu 28 × 28 × 128 

Conv4a (3 × 3, 256) Stride 1, Relu, GAP 1 × 1 × 256 

Fully Connected, SoftMax 2 

 310 

While training the proposed CNN architectures for each sub-class (G3, G4 and G5), a learning rate of ‘1e-3’ was 311 

selected. This value was found to be optimal as higher learning rates led to suboptimal results, while lower rates 312 

required a greater number of epochs to converge. The learning rate has been scheduled to drop by 0.1 every 15th 313 

epoch. Moreover, the learning rate of the final fully connected layer is set to be ‘10’ times higher than that of the 314 

initial layers, adhering to the practice of transfer learning. This approach ensures that the initial layers, which have 315 

been pre-trained on the ImageNet dataset, largely retain their learned weights. Meanwhile, the final layer can 316 

quickly adapt to the examples from the Sicapv2 dataset. Although convergence has been observed to be generally 317 



 

achieved after ‘15’ epochs in all the conducted experiments, the training is extended to ‘50’ epochs for extra meas-318 

ure. This additional training helps to fine-tune the model as the initial layers also gradually adopt to the dataset 319 

and potentially improve its ability to generalize from the training data to unseen data. Adam optimizer has been 320 

used throughout all the experiments as the initial experiments with SGDM did not yield promising results.  321 

 322 

Table 3. Effect of L2 Regularization pa-

rameter on F1-score (Validation Set)  

Value F1-Score 

1e-3 0.68 

9e-3 0.69 

9.5e-3 0.71 

1e-2 0.71 

1.2e-2 0.71 

2e-2 0.68 

1e-1 0.6 

 323 

Since, overfitting is a serious concern in Sicapv2 dataset owing to its smaller size, in order to identify the most 324 

effective L2 regularization parameter, the study involved a series of experiments on the four validation sets (Val1, 325 

Val2, Val3 and Val4), systematically varying the L2 regularization parameter to evaluate its impact on the model's 326 

performance. The results have been given in Table 3. For sake of brevity, only the experimental values around ‘1e-327 

2’ have been reported which was found to be the optimal value yielding the highest F1 score of ‘0.71’. Figure 6 328 

depicts an example training loss curve after optimizing the hyperparameters mentioned above. It can be noticed 329 

that the overfitting has been managed effectively.  330 

Finally, to assign multiple labels to each patch based on the percentage of pixels belonging to each class i.e. G3, G4 331 

and G5, our experimental results have shown that the presence of even 1% pixels belonging to a particular class is 332 

enough for training and classification. For a patch size of 512 × 512, this corresponds to at least 2621 pixels. Using 333 

a higher threshold leads to elimination of too many training examples which leads to overfitting especially for G5 334 

class which has too few example patches. On the other hand, a lower threshold means too few representative pixels 335 

in a given patch for extracting meaningful features.  336 



 

 337 

 338 

 339 

Figure 6. Training loss curves for the proposed CNN architecture as sub-classifier for G3 grade classification 340 

in ‘Val1’ training set after hyperparameter optimization 341 

 342 

The proposed ensemble classifier has been trained and tested on the SICAPv2 dataset using the obtained hyperpa-343 

rameters. The results have been reported in the next sub-section.   344 

4.2 Patch-Level Gleason Grading Results  345 

The proposed ensemble classifier has been compared against the state-of-the-art works in Table 4. Every constitu-346 

ent one-vs-all sub-classifier is based on the CNN architecture depicted in Table 2 and has been trained four times 347 

for each of the validation and test sets of SICAPv2 datasets to ensure consistency of the results. Standard deviation 348 

of less than 0.05 has been observed in all the experiments which indicates high repeatability of the proposed ap-349 

proach. Accuracy and F1-scores have been reported in each case. Due to the imbalanced nature of the dataset, a 350 

higher F1-score is more important and indicative of a more robust model. It can be observed that the proposed 351 



 

model achieves higher accuracy as well as F1-score (average of all classes) than the recent works reported in the 352 

literature on both validation and test sets of SICAPv2 dataset.  353 

Precision-recall curves for the individual sub-classifiers on validation and test sets have been plotted in Figures 7-354 

11. F1-score has been overlayed as well. The values reported in Table 4 correspond to the best value obtained for 355 

each curve.  356 

Table 4. Comparison of the proposed ensemble classifier against reference works 

Model Accuracy 
F1-Score 

Average NC G3 G4 G5 

Test Set 

Ensemble Classifier  

Proposed  
0.85 0.71 0.85 0.69 0.75 0.54 

FSConv [7] 0.67 0.65 0.86 0.59 0.54 0.61 

ProGleason-GAN [29] 0.71 0.67 - - - - 

WHOLESIGHT [28] - 0.66 - - - - 

Validation Set 

Proposed Ensemble 0.87 0.75 0.83 0.72 0.77 0.69 

FSConv [7] 0.76 0.71 0.88 0.73 0.71 0.54 

 357 

 358 

a        b      c 359 

Figure 7. Precision-Recall and F1-Score curves for the sub-classifiers in the ensemble detector on SICAPv2 360 

‘test’ set (a) G3 (b) G4 (c) G5 361 

 362 

 363 

a        b      c 364 

Figure 8. Precision-Recall and F1-Score curves for the sub-classifiers in the ensemble detector on SICAPv2 365 

‘val1’ set (a) G3 (b) G4 (c) G5 366 



 

 367 

a        b      c 368 

Figure 9. Precision-Recall and F1-Score curves for the sub-classifiers in the ensemble detector on SICAPv2 369 

‘val2’ set (a) G3 (b) G4 (c) G5 370 

 371 

 372 

a        b      c 373 

Figure 10. Precision-Recall and F1-Score curves for the sub-classifiers in the ensemble detector on SICAPv2 374 

‘val3’ set (a) G3 (b) G4 (c) G5 375 

 376 

 377 

a        b        c 378 

Figure 11. Precision-Recall and F1-Score curves for the sub-classifiers in the ensemble detector on SICAPv2 379 

‘val4’ set (a) G3 (b) G4 (c) G5 380 

 381 

To gain further insight into the decision-making process of the trained CNN models, Figure 12, Figure 13 and 382 

Figure 14 depict ‘Grad-CAM’ [34] visualization of the three sub-classifiers on three different examples. Grad-CAM 383 

provides a visual explanation of the decision-making process of a CNN, which is crucial in medical imaging. Spe-384 

cifically, it generates a heatmap that highlights the significant regions in the input image that the CNN focuses on 385 



 

when making a prediction. This allows medical professionals to understand why a particular diagnosis was made. 386 

Figure 12 shows an example patch containing only G5, labelled orange in the mask. The corresponding heat map 387 

for the G5 sub-classifier roughly corresponds to the labelled mask emphasizing the confidence in its utility.   388 

 389 

Figure 12. Grad-CAM visualization on example 1 a) input patch b) label mask c) G3 sub-classifier heat map d) 390 

G4 sub-classifier heat map e) G5 sub-classifier heat map 391 

 392 

The example shown in Figure 13 contains both G4 and G5 categories (Cyan and Orange labels) and have been 393 

rightly classified by their corresponding sub-classifiers as indicated by their respective heatmaps. The heatmap for 394 

G5, however, significantly overlaps that of G4 indicating the similarities between these two classes. Figure 14 395 

shows another interesting example containing only G3 class (labelled yellow). The labelling area only makes up a 396 

small portion of the whole mask towards the bottom. Despite this, the corresponding heatmap for only G3 classifier 397 

shows a strong activation map.  398 
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 399 

Figure 13. Grad-CAM visualization on example 2 a) input patch b) label mask c) G3 sub-classifier heat map d) 400 

G4 sub-classifier heat map e) G5 sub-classifier heat map 401 

 402 

 403 

Figure 14. Grad-CAM visualization on example 3 a) input patch b) label mask c) G3 sub-classifier heat map d) 404 

G4 sub-classifier heat map e) G5 sub-classifier heat map 405 



 

Figure 15 shows the corresponding activation maps for the proposed classifier on a whole biopsy slide with 406 

Gleason grades labelled G4 and G5 as primary and secondary respectively.  407 

 408 

Figure 15. Activation maps on a WSI example a) Input image b) G3 c) G4 d) G5 409 



 

5. Discussion 410 

The proposed multi-label classification approach for Gleason grading of prostate cancer at the patch-level by em-411 

ploying an ensemble of sub-classifiers to individually detect each of the three Gleason grades (G3, G4, and G5) 412 

represents a departure from traditional multi-class classification techniques. The results presented in the previous 413 

section demonstrate the effectiveness of our proposed method since it achieved a significant improvement over 414 

the state-of-the-art work on both test and validation sets of SICAPv2 dataset. Specifically, our model outperformed 415 

by achieving 14% higher accuracy and a 4% higher F1-score on the test set (Table 4). Given the imbalance in the 416 

dataset, the F1-score becomes a more significant metric than accuracy. Our proposed classifier demonstrated su-417 

perior performance on the G3 and G4 classes, achieving a higher F1-score compared to competing models. More 418 

importantly, despite the individual class performance, our model maintained a higher average F1-score. This in-419 

dicates that our model is not only effective at identifying specific Gleason grades but also maintains a balanced 420 

performance across all classes, which is crucial in the context of imbalanced datasets. This further underscores the 421 

robustness and reliability of our proposed multi-label classification approach for Gleason grading in prostate can-422 

cer detection. 423 

The lower F1-score for the G5 class on the test set can indeed be attributed to the significant class imbalance, with 424 

only 250 examples for G5 compared to 1873 for the remaining classes. This imbalance can skew the performance 425 

metrics and make it challenging to achieve high scores for underrepresented classes. However, it's encouraging to 426 

see that the performance on the validation set is better, with only the G3 classifier slightly underperforming. More-427 

over, despite these individual class performances, the average F1-score of our model is superior on both sets. This 428 

demonstrates the robustness of our proposed multi-label classification approach, even in the face of significant 429 

class imbalances. 430 

Incorporating the important observation of pixels belonging to multiple classes being present in each patch, our 431 

study's results demonstrate the superiority of the multi-label approach over conventional multi-class classification 432 

for Gleason grade classification at the patch level. This is particularly evident in certain patches where pixels be-433 

longing to more than one class can be present, making the classification of a patch to just a single Gleason score 434 

inappropriate. Despite the class imbalance, our multi-label approach achieved a higher average F1-score on both 435 



 

the test and validation sets, indicating effective identification of each Gleason grade independently. The multi-436 

label approach proved more robust to class imbalance, achieving a higher average F1-score even with fewer ex-437 

amples of the G5 class. This robustness is crucial in medical imaging, where certain conditions may be underrepre-438 

sented. The multi-label approach also allows for more fine-grained classification, treating each Gleason grade as a 439 

separate label, enabling more nuanced predictions beneficial at the patch level where subtle differences can be 440 

crucial for accurate diagnosis. The improved F1-scores for the G3 and G4 classes on the validation set further 441 

underscore the effectiveness of the multi-label approach. These results suggest that the multi-label approach pro-442 

vides a more accurate and robust method for Gleason grade classification at the patch level, making it a promising 443 

technique for improving the accuracy and reliability of prostate cancer detection. 444 

6. Conclusions 445 

This study has proposed a multi-label ensemble deep-learning classifier to increase the accuracy of Gleason grad-446 

ing by effectively addressing the issue of label inconsistencies inherently present in the dataset patches. The pro-447 

posed ensemble classifier consists of three one-vs-all sub-classifiers, fine-tuned variants of the ResNet18 CNN ar-448 

chitecture, to accurately indicate the presence of one or more Gleason grades (G3, G4, and G5) in each patch. The 449 

experimental results demonstrate the superiority of our approach over traditional single-label classifiers, thereby 450 

enhancing the accuracy and consistency of Gleason grading. One potential improvement for the future tasks is 451 

deemed to be the segmentation of the labeling masks at pixel-level granularity, which could increase the accuracy 452 

of patch-level Gleason scoring. Additionally, the labeling noise due to manual annotation could be mitigated by 453 

generating labeling masks through the trained model and then re-verifying them through human experts. These 454 

enhancements could further improve the precision of Gleason grading and contribute to the ongoing efforts to 455 

leverage advanced machine learning techniques in cancer diagnostics. The proposed framework has been made 456 

available as open-source code to facilitate researchers and practitioners working in the field of digital histopathol-457 

ogy. 458 

 459 
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 1 

Figure 1. Examples of misclassified pixels due to majority voting-based labelling in SICAPv2 dataset. The 2 

pixels belonging to the minority class don’t get acknowledged separately (a) RGB Patch; (b) Labelling Mask; 3 

(c) Probability distribution estimate of the grades/classes represented in the Mask 4 
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 6 

Figure 2. Probability distributions of misclassified pixel belonging to different classes in SICAPv2 dataset 7 

partition ‘Val1’ (a) G3 training; (b) G3 test; (c) G4 test; (d) G4 test; (e) G5 test; (f) G5 test 8 



 

 9 

Figure 3. Proposed ensemble classifier with individual CNN-based one-vs-all binary classifiers 10 
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 15 

Figure 4. Training and testing paradigm for the proposed multi-label ensemble classifiers 16 
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 19 

Figure 5. Overfitting observed with ResNet18 CNN as sub-classifier for G3 grade classification in ‘Val1’ train-20 

ing set 21 
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 28 

Figure 6. Training loss curves for the proposed CNN architecture as sub-classifier for G3 grade classification 29 

in ‘Val1’ training set after hyperparameter optimization 30 
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c 46 

Figure 7. Precision-Recall and F1-Score curves for the sub-classifiers in the ensemble detector on SICAPv2 47 

‘test’ set (a) G3 (b) G4 (c) G5 48 
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Figure 8. Precision-Recall and F1-Score curves for the sub-classifiers in the ensemble detector on SICAPv2 56 

‘val1’ set (a) G3 (b) G4 (c) G5 57 

  58 



 

 59 

a 60 

 61 

b 62 

 63 

c 64 

Figure 9. Precision-Recall and F1-Score curves for the sub-classifiers in the ensemble detector on SICAPv2 65 

‘val2’ set (a) G3 (b) G4 (c) G5 66 
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Figure 10. Precision-Recall and F1-Score curves for the sub-classifiers in the ensemble detector on SICAPv2 75 

‘val3’ set (a) G3 (b) G4 (c) G5 76 

 77 



 

 78 

a 79 

 80 

b 81 

 82 

c 83 

Figure 11. Precision-Recall and F1-Score curves for the sub-classifiers in the ensemble detector on SICAPv2 84 

‘val4’ set (a) G3 (b) G4 (c) G5 85 
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 89 

Figure 12. Grad-CAM visualization on example 1 a) input patch b) label mask c) G3 sub-classifier heat map d) 90 

G4 sub-classifier heat map e) G5 sub-classifier heat map 91 
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 94 

Figure 13. Grad-CAM visualization on example 2 a) input patch b) label mask c) G3 sub-classifier heat map d) 95 

G4 sub-classifier heat map e) G5 sub-classifier heat map 96 
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 99 

Figure 14. Grad-CAM visualization on example 3 a) input patch b) label mask c) G3 sub-classifier heat map d) 100 

G4 sub-classifier heat map e) G5 sub-classifier heat map 101 

Figure 15 shows the corresponding activation maps for the proposed classifier on a whole biopsy slide with 102 

Gleason grades labelled G4 and G5 as primary and secondary respectively. 103 



 

 104 

Figure 15. Activation maps on a WSI example a) Input image b) G3 c) G4 d) G5 105 

5. Discussion 106 




