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Supplementary of HEARTSVG 

Xin Yuan, Yanran Ma, Ruitian Gao, Shuya Cui, Yifan Wang, Botao Fa, Shiyang Ma, Ting Wei, 

Shuangge Ma, and Zhangsheng Yu  

1. Simulation Results 

1.1 Simulation 1 additional figures 

We used 𝐹! score, recall, precision, specificity, and false positive (FP) to comprehensively 

evaluate the performance of HEARTSVG and SpatialDE, SPARK, and SPARK-X. All 

simulation settings were illustrated in the two sections, Simulation and Methods. Each 

simulation scenario has 50 replications. Simulation datasets were generated by varying the 

sample size (from 1500 to 50000), ZINB parameters (𝑠𝑖𝑧𝑒 = 0.15, 0.5, 1.5,𝑚𝑢 = 0.5, 5, 15), 

and SVG percentages (hotspot, streak =5%, gradient=15%). The paper presented the 

simulation scenario with ZINB parameters (𝑠𝑖𝑧𝑒 = 0.5,𝑚𝑢 = 0.5). The complete simulation 

results were shown in this supplementary. 
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All simulation results of the hotspot pattern 
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Figure S1 Simulation results of hotspot pattern. a, F1 score, b, recall, c, precision, d, FPR. 

Source data are provided with this paper.      
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All simulation results of streak pattern 
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Figure S2 Simulation results of streak pattern. a, F1 score, b, recall, c, precision, d, FPR. 

Source data are provided with this paper. 
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All simulation results of gradient patter 

 

 



 7 

 
Figure S3 Simulation results of gradient pattern. a, F1 score, b, recall, c, precision, d, FPR. 

Source data are provided with this paper.  
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1.2 Simulation 2 additional figures 

Because the uncertainty surrounding the number of SVGs in real data is unknown, we 

generated simulation datasets with varying percentages (from 0% to 50%) of SVGs and 

sample sizes (from 3000 to 10,000) in three representative spatial patterns. We also 

compared the performance of HEARTSVG and SPARK-X using 𝐹! score, and false 

positive (FP). The paper presented the simulation scenario with ZINB parameters (𝑠𝑖𝑧𝑒 =

0.5,𝑚𝑢 = 0.5) and moderate sample size (n=5000). The complete simulation results were 

shown in this supplementary. 

Hotspot pattern with varying percentages of SVGs 

 

Figure S4 Simulation2 results of hotspot pattern. a, FPR comparison between 

HEARTSVG and SPARK-X for different percentages of SVGs. b, 𝐹! score comparison 

between HEARTSVG and SPARK-X for the same conditions. In each boxplot, the lower 

hinge, upper hinge, and center line represent the 25th percentile (first quartile), 75th 
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percentile (third quartile), and 50th percentile (median value), respectively. Whiskers extend 

no further than ±1.5 times the inter-quartile range. Data beyond the end of the whiskers are 

considered outliers and are plotted individually. Source data are provided with this paper.   

Streak pattern with varying percentages of SVGs 

 

Figure S5 Simulation2 results of streak pattern. a, FPR comparison between HEARTSVG 

and SPARK-X for different percentages of SVGs. b, 𝐹!  score comparison between 

HEARTSVG and SPARK-X for the same conditions. In each boxplot, the lower hinge, upper 

hinge, and center line represent the 25th percentile (first quartile), 75th percentile (third 

quartile), and 50th percentile (median value), respectively. Whiskers extend no further than 

±1.5 times the inter-quartile range. Data beyond the end of the whiskers are considered 

outliers and are plotted individually. Source data are provided with this paper. 
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Gradient pattern with varying percentages of SVGs 

 

Figure S6 Simulation2 results of gradient pattern. a, FPR comparison between 

HEARTSVG and SPARK-X for different percentages of SVGs. b, 𝐹! score comparison 

between HEARTSVG and SPARK-X for the same conditions. In each boxplot, the lower 

hinge, upper hinge, and center line represent the 25th percentile (first quartile), 75th 

percentile (third quartile), and 50th percentile (median value), respectively. Whiskers extend 

no further than ±1.5 times the inter-quartile range. Data beyond the end of the whiskers are 

considered outliers and are plotted individually. Source data are provided with this paper. 
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1.3 More comparisons 

We evaluated time consumption and memory requirements of four methods (HEARTSVG, 

SPARK-X, scGCO, and Squidpy) on real biological samples from mouse hypothalamus, 

comprising 1027,848 cells and 161 genes (Figure S7). HEARTSVG required 1.43 mins and 

7.31 GB, scGCO needed a runtime of 112 mins and 14.72 GB, SPARK-X took 0.62 mins 

and 5.78 GB, and Squidpy took 3.73 mins, and 7.78GB. We attempted to compare the 

performance of HEARTSVG, scGCO, SPARK-X and Squidpy on simulated data with 2 

million cells (1000 simulated genes). HEARTSVG completed the computation in 4 to .5 

minutes and 82.70GB, Squidpy took 188.5 minutes and 343.7 GB, while SPARK-X and 

scGCO failed to scale to the dataset with 2 million cells. The new results are presented below 

and depicted in both the revised manuscript and the supplementary materials. 

 

Figure S7 a, Bar diagram shows time consumption (y-axis) of four methods on mouse 

hypothalamus data (1027,848 cells and 161 genes) by MERFISH technology. b, Bar 

diagram shows memory requirements (y-axis) of four methods. 
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2. Methods 

 
 

Figure S8 Example of ST data. 

2.1 The following demonstrates the rationality of HEARTSVG.  

For a gene 𝑔 without the spatial pattern in the ST data, its expression count 𝑒 is 

independent of its coordinates (𝑥, 𝑦). Define 𝑓(𝑥, 𝑦, 𝑒) = 𝑔(𝑒|𝛉), the gene 𝑔’s expression 

𝑒 of each spot is only dependent on the parameters 𝛉 (e.g., 𝛉 could be the 𝜆 of the 

Poisson distribution, (𝛼, 𝛽) of the Gamma distribution, etc.). 

That is, the gene 𝑔’s expression counts 𝑒 of the SRT data are independent and identically 

distributed random variables (Abbreviated as iid random variables). 

We assume that every row has 𝑛" elements, every column has 𝑛! elements and expression 

matrix are a 𝑛! ∗ 𝑛" matrix (Fig.S8). Next, take the marginal expression series obtained by 

the semi-pooling process with the row direction and feature map (1 ∗ 𝑛") as an example. 

The gene g’s expressions of the first row are denoted by 𝑟#! = <𝑒#!$! , … , 𝑒#!$" , … , 𝑒#!$#$>
𝑻
. 

The joint distribution of the first row is 𝑓?𝑟#!|𝛉@ = 𝑓 <𝑒#!$! , … , 𝑒#!$" , … , 𝑒#!$#$A𝛉> =

∏ 𝑔 <𝑒#!$"A𝛉>
&$
'(! . Similarly, the expression vector and joint distribution of the second row 

are 𝑟#$ = <𝑒#$$! , … , 𝑒#$$" , … , 𝑒#$$#$>
𝑻
 and 𝑓 <𝑒#$$! , … , 𝑒#$$" , … , 𝑒#$$#$A𝛉> =

∏ 𝑔(𝑒#$$"|𝛉)
&$
'(! , respectively. The expression vector and joint distribution of the 𝑖-th row 



 13 

are 𝑟#% = <𝑒#%$! , … , 𝑒#%$" , … , 𝑒#%$#$>
𝑻
 and 𝑓 <𝑒#%$! , … , 𝑒#%$" , … , 𝑒#%$#$A𝛉> =

∏ 𝑔(𝑒#%$"|𝛉)
&$
'(! , respectively. Obviously, the joint distributions of each row’s expressions 

are identically distributed. 𝑟#! and 𝑟#$ have no overlapping elements. Hence, it is easy to 

prove that  𝑓?𝑟#! , 𝑟#$|𝛉@ = 𝑓?𝑟#!|𝛉@ ∗ 𝑓(𝑟#$|𝛉), which means 𝑟#! and 𝑟#$ are independent 

and identically distributed random variables.     

Similarly, we can prove that, ∀	𝑖!, 𝑖" = 1,… , 𝑛!, 𝑎𝑛𝑑	𝑖! ≠ 𝑖", 𝑟#%!  and 𝑟#%$  are iid 

variables. By the similar derivation process as above, we can prove that the elements of the 

marginal expression series obtained by semi-pooling parameters with different parameters 

are iid variables. This is a very strong condition and is hard to verify empirically. 

In practice, we assume that the expression counts of the non-SVG gene at a given location 

(𝑥) , 𝑦') are independent of expressions at nearby locations. Therefore, we applied the 

Portmanteau test to test several autocorrelations of 𝑟* that are simultaneously at zero to 

determine whether the gene is a SVG. The null and alternative hypotheses are: 

H+:	𝜌! =,… ,= 𝜌, = 0,H-:	∃	𝑘 ∈ {1, … ,𝑚}, 𝜌. ≠ 0 

To simplify the symbolic representation, we rewrite the subscript of the marginal expression 

series as 𝐫 = (𝑟!, . . , 𝑟* , … , 𝑟/)/, define the autocovariance of order 𝑚 as: 

 𝛾! = 𝐶𝑜𝑣(𝑟" , 𝑟"#!) = 𝐶𝑜𝑣(𝑟" , 𝑟"$!), for	all	𝑘 ≥ 0, and the 𝑗th order autocorrelation (ACF) as 

𝜌! =
%!
%"

. 

If gene 𝑔 is non-SVG without a spatial pattern in ST data, our purpose is to test the null 

hypothesis: H+:	𝜌! = ⋯ = 𝜌, = 0. 
The test statistic is defined as 𝑄, = 𝑇∑ 𝜌X.",

.(!  followed by chi-distribution with 𝑚 degree 

of freedom, where 𝛾X. =
!

/0.
∑ (𝑟* − 𝑟̅)(𝑟*0. − 𝑟̅)/
*(!1. , 𝑘 = 0,… , 𝑇 − 1, 𝑟̅ is the mean of 

𝐫, and introduce  𝜌X. =
23&
23'

. The 𝑃 value for testing the null hypothesis can be 

calculated by 𝑝 = P(χ&(𝑑𝑓 = 𝑚) > 𝑄'	|	H(	is	true) 

Stouffer’s method  

We combined all four P values into a single P value by Stouffer’s method. The Stouffer’s 

statistic is defined as 𝑧4*567789 = ∑ :%
√<
	~	𝑁(0,1)<

)(! , where 𝑧) = Φ0!(1 − 𝑝)), Φ0!(∙) is 
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the inverse of the cumulative distribution function of a standard normal distribution. Hence, 

the combined p of four p-values is calculated by 𝒑𝒄 = 𝟏 −𝚽(𝒛). 

Why use the Stouffer Combination? 

In the 10X Visium colorectal cancer data, we selected the top 500 overlaps from the results 

of all six methods as SVGs and created non-SVGs by randomly rearranging gene expressions 

of SVGs. Then, we investigated the distributions of p-values obtained from the 

autocorrelation test applied to the marginal expression time series (Figure S10 a-d). 

Moreover, we compared two common combination methods: Fisher’s combination method 

and Stouffer’s method. Fisher’s method (𝑧)*+,-. = −2∑ ln(p/)~	𝜒&(df = 8)0
*12 ) directly 

processed the p-values, while Stouffer’s method (𝑧3"4566-. = ∑ 7#$(2#9%)
√0

	~	𝑁(0,1)0
*12 ) first 

transformed the p-values into Z-scores, and then combined them. We calculated the 

combined p-value statistics of the two methods, plotted the density histograms (Figure S10e, 

S10f), and compared them with their theoretical distribution density curves (the black solid 

lines in the figure), as shown in Figure S10. It can be seen that the distribution of Stouffer’s 

statistic was closer to the theoretical distribution, indicating that choosing Stouffer’s method 

was reasonable.  
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Figure S9 a-d, The density distributions of p-values obtained from the autocorrelation test 

applied to the marginal expression time series. e, The density distributions of Stouffer’s 

statistic. The black solid line show the theoretical distribution (𝑁(0,1)) of the Stouffer’s 

statistic. f, The density distributions of Fisher’s statistic. The black solid line shows the 

theoretical distribution (𝜒"(𝑑𝑓 = 8) of the Fisher’s statistic. 

2.2 Semi-pooling process 

The semi-pooling process needs two parameters: direction parameter and feature map 

parameter. For each gene, the spatial expression data was averaged according to the given 

direction and step parameters, and the mean value was used as the new marginal expression 

value (Figure S12). HEARTSVG used four sets of different semi-pooling parameters, which 

are: 

1) Direction: row direction, feature map: 1 × 𝑛95>; 

2) Direction: row direction, step:  feature map: 1 × [ln	(𝑛95>)]; 

3) Direction: column direction, feature map: 1 × 𝑛?5@; 

4) Direction: column direction, step:  feature map: 1 × [ln	(𝑛?5@)] 
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where 𝑛95>  is the number of rows in the spatial transcriptome data,  𝑛?5@ is the number 

of columns in the spatial transcriptome data, and [∙] means rounding to the nearest integer. 

 
Figure S10 Illustration of the semi-pooling process. a, Spatial expression data schematic 

diagram. We assume the expression value of the gene in each cell is the order value of the 

column it belongs to. b, Four marginal expression series. c-f, The flowchart of each new 

marginal expression series based on four different sets of parameters. 
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2.3 Auto-clustering module 

The auto-clustering module uses the hierarchical clustering algorithm to cluster SVGs into 

different spatial expression patterns based on their expression and location similarity. The 

steps of the auto-clustering module are as follows: 

Step 1: Calculate the similarity between each pair of genes based on spatial expression and 

generation of the distance matrix. 

We calculated the Euclidean distance between each pair of SVGs based on their expression 

and positions, serving as a measure of similarity among SVGs. 

Step 2: Construct a clustering tree based on the distance matrix using the complete linkage 

criterion. The resulting hierarchy of clusters can be visualized as a dendrogram. 

Initially, each gene is assigned to its own cluster. Then, in each iteration, the two closest 

clusters are merged into a new cluster using the complete linkage method, which is a method 

that determines the distance between two clusters by the maximum distance between any two 

data points from different clusters, to ensure significant dissimilarity between clusters. This 

process repeats until all data points are eventually merged into a single cluster (a clustering 

tree).  

Step 3: Determination of the final clustering results by cutting the dendrogram at a certain 

height or distance threshold. The cutting height is chosen using the maximum breakpoint of 

all breakpoints selected by the Yamamoto test. 

After forming the hierarchical structure, we arrange the heights in ascending order and utilize 

the Yamamoto test to identify breakpoints at different height thresholds. The maximum 

breakpoint value is employed as the cutting height to determine the final number of clusters.  

The Yamamoto test employs the rolling window method to calculate the difference of 

heights before and after each point. If the difference exceeds the threshold, the i-th point is 

considered a breakpoint. The details were listed below. 

We had a serial: ℎ!, … ℎ) , … , ℎA，set window width: 2 ∗ 𝑛B89)5C. Then we calculated the 

difference of heights before and after the i-th point: 𝐷(ℎ)) =
|,8E&FG%()*+,-*H0,8E&FG%(.+/*-H|

4CFI%()*+,-*H14C(G%(.+/*-)
， 

where, H)0L87598 = (ℎ)0!, … , ℎ)0&0*-%,1), H)0E7*89 = (ℎ)1!, … , ℎ)1&0*-%,1), mean(·)  and 
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sd(·) are the mean and standard error function, the 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = *!(2((C7(&0*-%,10!)

M&0*-%,1
. If 

𝐷(ℎ)) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑， the i-th point is a breakpoint. We identified all breakpoints of the 

serial and chose the max breakpoint as the cutting height of the cluster tree. 

The rationale behind the Yamamoto test lies in the characteristics of hierarchical clustering. 

SVG clusters with similar spatial expression patterns have smaller distances and form 

clusters at lower heights in the tree structure, while SVG clusters with different patterns have 

larger distances and form clusters at higher heights in the tree structure. Thus, when merging 

clusters of SVGs with different patterns, there is a noticeable jump in height.  

2.4 Simulation parameters 

Table S1 Simulation settings of simulated data 

 

 non-SVG and non-marked area of 
SVGs 

marked area of SVGs 

probability of 
extra zeros 

mu/lambda  size 
probability of 
extra zeros 

mu/lambda size 

ZINB 0.8 0.5 0.5 0.267 1 1 

ZIP 0.6 2 - 0.2 6 - 

NB - 0.5 1.5 - 1.5 1.5 

Poisson - 0.5 - - 1.5 - 

We used four distributions, Poisson, ZIP, NB, and ZINB, in our simulation. ZINB 

distribution is suitable for simulating highly sparse data. Poisson, ZIP, NB are suitable for 

simulating moderately sparse data, where the mean and variance of Poisson distribution are 

equal, while ZIP, NB can simulate higher dispersion than Poisson distribution. 

Over-dispersion is a characteristic of spatial transcriptomics data and single-cell data.  

We used Poisson distribution to generate simulated data and followed the parameter 

settings of SPARK1. Firstly, we introduce the parameters used in the SPARK manuscript. 

For the gene expression in the i-th spot/cell of non-SVG and non-marked area of SVG, the 

parameter of the Poisson distribution is: 
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𝜆&5& = 𝑁) ∗ 𝑒𝑥𝑝(−10.2 + 𝜏)) 

For the gene expression in the marked area of SVG, the parameter of the Poisson distribution 

is: 

𝜆NOP = 𝑁) ∗ exp	(−9.1 + 𝜏)) 

Where 𝑁) is the total read counts obtained from the real data seqFISH data2,	 𝜏) is drawn 

from a normal distribution with mean zero and variance being 0.35. According to the above 

method, the range of 𝜆&5&is about (0.01,1),	 and	 the range of 𝜆NOP  is about (0.03,3). To 

simplify our simulation, we set 𝜆&5& = 0.5, 𝜆NOP = 1.5, which is three times of the former. 

For the simulated data based on the NB distribution, we followed the simulation 

parameter settings of SPARK-X3. For gen non-SVGs and non-marked area of SVGs, gene 

expression follows 𝑁𝐵(𝑠𝑖𝑧𝑒 = 1.5, 𝜇 = 0.5). For marked area of SVGs, gene expression 

follows 𝑁𝐵(𝑠𝑖𝑧𝑒 = 1.5, 𝜇 = 1.5). The parameter size	 𝑠𝑖𝑧𝑒 = 1.5 remains unchanged, and	

𝑚𝑢NOP = 1.5 is three times the value	 𝑚𝑢&5& = 0.5.	  

For both ZIP and ZINB distributions, which are zero-inflated models, we need to set a 

zero-proportion parameter to control the proportion of zeros. To determine this parameter, 

we refer to the criteria for SVG in SPA-GCN4："(1) the percentage of spots expressing the 

gene in the target domain, that is, in-fraction, is >80%; (2) for each neighboring domain, the 

ratio of the percentages of spots expressing the gene in the target domain and the neighboring 

domain(s), that is, in/out fraction ratio, is >1; and (3) the expression fold change between the 

target and neighboring domain(s) is >1.5. If a user is interested in finding SVGs for a 

particular combination of spatial domains, SpaGCN offers the option to do so."4 

Therefore, in the ZIP distribution, for the gene expression of non-SVG and non-marked 

area of SVGs, following 𝑍𝐼𝑃(0.6,2). For the gene expression of marked area of SVG, 

following 𝑍𝐼𝑃(0.2,6). In this case, in the ZIP distribution, the zero proportion of the gene of 

non-SVG and non-marked area of SVG is 0.654, and the mean is 0.8. The zero proportion of 

the gene of the marked area of SVG is 0.202, and the mean is 4.8. Compared with the 

Poisson distribution, the zero proportions of both are close, but the dispersion and expression 

level of the gene of the marked area of SVG are higher. 

For the ZINB distribution, we followed the parameter settings for highly sparse data in the 

SPARK-X3 and the criteria for SVG in the SPA-GCN4. We assumed that the gene expression 
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of non-SVG and non-marked area of SVG had more than 94% zeros, while the gene of 

marked area of SVG had a significantly lower zero proportion. Specifically, for non-SVG 

and non-marked area of SVG, the probability of extra zeros was 0.8, the probability of extra 

zeros marked area of SVG was 0.8/3. Thus, the gene expression of non-SVG and 

non-marked area of SVGs, follows 𝑍𝐼𝑁𝐵(0.8,0.5,0.5). The gene expression of marked area 

of SVG, following 𝑍𝐼𝑁𝐵(0.267,1,1). In this case, in the ZINB distribution, the zero 

proportion of the gene of non-SVG and non-marked area of SVG was 0.941, and the mean 

was 0.1. The zero proportion of the gene of marked area of SVG was 0.633, and the mean 

was 0.733. Here, we note that the SPARK-X3 used the NB distribution to generate highly 

sparse simulated data. For the gene expression of non-SVG and non-marked area of SVG, 

the parameters of the NB distribution were: 𝑚𝑢&5& = 0.005, 𝑠𝑖𝑧𝑒&5& = 2.5, resulting in 

99.5% zeros. For the gene expression of marked area of SVG, the parameters of the NB 

distribution were: 𝑚𝑢&5& = 0.015, 𝑠𝑖𝑧𝑒&5& = 2.5，resulting in 98.5% zeros. This means that 

the genes of non-marked area of SVG and marked area of SVG had very high zero 

proportions (>98.5%), and very small non-zero expression values. We think that, when the 

expression of the marked area of SVG is almost zero, it is hard to determine whether a gene 

is a biologically meaningful SVG, so we also referred to the criteria in the SPA-GCN paper4. 
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3. Application to colorectal cancer data by 10X Visium 

 
Figure S11 scGCO missed SVGs (RPS29, ARPC3, GAS5) with clear spatial expression 

patterns comparing with other methods. a, Visualizations of spatial expressions of gene 

RPS20, RPS29, ARPC3, and GAS5. b, Venn diagrams of SVGs in the colorectal cancer data 

identified by HEARTSVG, SpatialDE, SPARK, SPARK-X, scGCO, and Squidpy. c, 

Marginal expression plots of gene RPS20, and GAS5 by HEARTSVG. Source data are 

provided with this paper. d, Visualizations of graph cuts by scGCO with different initial 

smooth factor of gene RPS20, and GAS5 by HEARTSVG.  
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Figure S12 Top 10 SVGs identified by each method. The top 10 genes identified by 

HEARTSVG, scGCO SPARK-X and Squidpy showed stronger spatial expression patterns 

compared to SpatialDE and SPARK (Fig.S10-17). SpatialDE's top 10 selected SVGs 

exhibited minimal spatial patterns, whereas SPARK performed better than SpatialDE to a 

certain extent. 
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Figure S13 a, HEARTSVG predicts spatial domains 5 and 6 based on SVGs and graphs the 

average expression of SVGs in each spatial domain. b, Representative SVGs correspond to 

spatial domains 5 and 6. c, Enrichment analysis of spatial domains 5 and 6. d, The heatmap 

shows the comparison of recall values among four genesets on three colorectal cancer ST 

datasets and three corresponding liver metastasis ST datasets. Set 1 represents the true SVGs 

set, derived by selecting the top 500 overlaps from the results of all six methods. Set 4 

corresponds to the non-SVGs set, obtained by randomly rearranging the gene expressions 

within Set 1. Set 2 and Set 3 are generated by introducing noise to the true SVGs set and 

non-SVGs set, respectively. e, ROC curves were used to assess the true positive rate (TPR) 
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and false positive rate (FPR) of six different methods, using common gene modules of tumor 

microenvironments as gold standards for true spatially variable genes (SVGs). The figures 

consisted of six sub-figures representing three colorectal cancer ST datasets and three 

corresponding liver metastasis ST datasets. Each method was represented by a different 

colored line, and the area under the ROC curve (AUC) was calculated. f, ROC curves were 

used to evaluate the TPR and FPR of six different methods, using consensus molecular 

markers of colorectal cancer subtypes as gold standards for true SVGs. The figures 

comprised three sub-figures corresponding to three colorectal cancer ST datasets. Source 

data are provided with this paper. 

 
Figure S14 Enrichment results of Spatial domain 1.  

 

 
Figure S15 Enrichment results of Spatial domain 2.  
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Figure S16 Enrichment results of Spatial domain 3.  

 
Figure S17 Enrichment results of Spatial domain 4.  

 
Figure S18 Enrichment results of Spatial domain 5.  
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Figure S19 Enrichment results of Spatial domain 6.  
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Figure S20  Mitochondrial-encoded (MT-) genes in primary colorectal cancer tissue and 

liver metastasis cancer tissue. 
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4. Application to mouse cerebellum data by Slide-seqV2 

Table S2 Tissue-specificity enrichment analysis results of each method. The p-values 

were obtained through one-sided tests. 

 
Table S3 Rectum and endometrium specific pathways. 

Method HPA: ID tissue p_value 
Intersection 

size 
term_size TPR 

SPARK HPA:0400242 rectum 1.22E-10 28 192 0.146 

SPARK HPA:0400241 rectum 8.01E-09 30 260 0.115 

SPARK HPA:0400243 rectum 8.46E-09 20 113 0.177 

SPARK-X HPA:0400242 rectum 1.25E-06 25 192 0.13 

SPARK-X HPA:0400241 rectum 2.61E-06 29 260 0.112 

SPARK-X HPA:0400243 rectum 8.50E-06 18 113 0.159 

SpatialDE HPA:0400241 rectum 0.001901336 34 260 0.131 

Squidpy HPA:0641531 endometrium 0.006927202 14 49 0.286 

 

Method 
caudat

e 

cerebellu

m 

cerebral 

cortex 

endometri

um 

hippocam

pus 
rectum skin SUM 

HEARTS

VG 
0 

87.5% 

(35) 
10% (4) 0 2.5% (1) 0 0 

100% 

(40) 

scGCO 0 
92.31% 

(24) 
7.69% (2) 0 0 0 0 

100% 

(26) 

SPARK 
5.15% 

(5) 

43.3% 

(42) 
7.22% (7) 0 4.12% (4) 

3.09% 

(3) 

37.11

% 

(36) 

100% 

(97) 

SPARK-X 2% (1) 76% (38) 8% (4) 0 4% (2) 6% (3) 
4% 

(2) 

100% 

(50) 

SpatialDE 0 
86.27% 

(44) 
7.84% (4) 0 3.92% (2) 

1.96% 

(1) 
0 

100% 

(51) 

Squidpy 
1.79% 

(1) 

87.5% 

(49) 
7.14% (4) 1.79% (1) 1.79% (1) 0 0 

100% 

(56) 



 30 

Table S4 Some SVGs results of each method. The p-values were obtained through 

two-sided tests and adjusted using Holm’s method 

gene method rank p_adj  

Calm1  

HEARTSVG 6 0 *** 
scGCO 1044 0.5013  

SPARK 25 4.64E-15 *** 
SPARK-X 49 4.33E-10 *** 
SpatialDE 204 0 *** 
Squidpy 337 3.96E-12 *** 

Calm2  

HEARTSVG 8 0 *** 
scGCO 1031 0.501  

SPARK 26 4.64E-15 *** 
SPARK-X 63 1.68E-08 *** 
SpatialDE 292 8.35E-14 *** 
Squidpy 113 0 *** 

Car8  

HEARTSVG 66 0 *** 
scGCO 2 4.46E-28 *** 
SPARK 3 4.64E-15 *** 
SPARK-X 585 0.050  

SpatialDE 37 0 *** 
Squidpy 4 0 *** 

Itm2b  

HEARTSVG 11 0 *** 
scGCO 1269 0.501  

SPARK 75 4.64E-15 *** 
SPARK-X 322 0.006 * 
SpatialDE 116 0 *** 
Squidpy 148 0 *** 

Pcp2  

HEARTSVG 38 0 *** 
scGCO 5 4.46E-28 *** 
SPARK 110 4.64E-15 *** 
SPARK-X 804 0.139  

SpatialDE 145 0 *** 
Squidpy 13 0 *** 

Pcp4  

HEARTSVG 27 0 *** 
scGCO 4 4.46E-28 *** 
SPARK 5 4.64E-15 *** 
SPARK-X 2485 1  

SpatialDE 48 0 *** 
Squidpy 3 0 *** 

 



 31 

 

Figure S21 a, Visualization of unsupervised spatial clustering results. b, Venn diagrams of 

SVGs in the mouse cerebellum data identified by HEARTSVG, SpatialDE, SPARK, 

SPARK-X, scGCO and Squidpy. Source data are provided with this paper. c, Visualizations 

of marker genes of Purkinje cells in the mouse cerebellum data by Slide-seqV2. Source data 

are provided with this paper. 
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Figure S22 scGCO missed SVGs (Calm1, Calm2) with clear spatial expression patterns 

comparing with other methods. a, Visualizations of spatial expressions of Calm1 and 

Calm2 in the in the Slide-seqV2 cerebellum data. b, Visualizations of graph cuts by scGCO 

with default initial smooth factor of Calm1 and Calm2. c, Visualizations of graph cuts by 

scGCO with smaller initial smooth factor of Calm1 and Calm2.  

 
 

default initial smooth factor smaller initial smooth factor
b ca

Calm2 (asjusted p=0）

Calm1 (asjusted p=0)
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5. Application to mouse preoptic hypothalamus data by 

MERFISH  

 
Figure S22 a, Visualizations of marker genes and cell type of the MERFISH data 1. b, 

Visualizations of marker genes and cell type of the MERFISH data 2. 
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6. Application to mouse olfactory bulb data by HDST 

a 

 
b 

 
Figure S23 a, Cell annotations of HDST data. b, Representative svgs identified by 

HEARTSVG. 
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7. Application to primary liver cancer data by 10X Visium  

 

Figure S24 a, Original hematoxylin and eosin stained (H&E) tissue image. b, Unsupervised 

spatial clustering results. c, SVGs cluster patterns. d, Representative genes of six SVG 

clusters.  
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8. Application to prenal clear cell cancer brain metastasis data by 

10X Visium  

 
Figure S25 a, Original hematoxylin and eosin stained (H&E) tissue image. b, Unsupervised 

spatial clustering results. c, SVGs cluster patterns. d, Representative genes of six SVG 

clusters.  
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9. Additional analysis 

We applied HEARTSVG to analyze three datasets used in the scGCO study, Mouse 

olfactory bulb data (MOB data) amd Breast cancer data (BC data) generated by Spatial 

Transcriptomics technology, and Mouse neuron tissue data generated by LCM technology 

(LCM data). 

11.1. Mouse olfactory bulb data (MOB data) 

HEARTSVG identified 1610 SVGs in the MOB data. We reproduced scGCO's identification 

and detected 830 SVGs (in the original paper, it was reported as 796 SVGs). 

 

 
Figure S26 Venn diagrams of SVGs in the MOB data identified by HEARTSVG, and 

scGCO. 

 

 

Figure S27 HEARTSVG predicts spatial domains based on SVGs of the MOB data and 

graphed the average expression of SVGs in each spatial domain. 

Spatial domain 1 Spatial domain 2 Spatial domain 3 Spatial domain 4 Spatial domain 5 Spatial domain 6
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Figure S28 Top 150 SVGs in the HEARTSVG-only SVG list of the MOB data. 

Actb Calm1 Cst3 Fth1 Hspa8 Ptgds Rtn4 Slc25a3 Tuba1a Mdh1

Ubb Ddx5 Ywhae Slc1a2 Cox4i1 Ywhab Hnrnpa2b1 Eif4g2 Ctnnb1 Psap

Ywhag Hsp90ab1 Cltc Rpl41 Sptbn1 Atp5g3 Klc1 Atp2a2 Cox6a1 Nptn

Chchd2 Qk Actg1 Ttc3 Ptma Tuba1b Gnas Slc6a1 Prkar1a Rpl4

Celf2 Cd81 Cox6c Cox8a Atp5j Eif4a2 Ubc Gria2 Pkm Ywhah

Slc25a4 Atp6v1a H3f3b Meg3 Syt11 Prnp Calr Cox7b Cdc42 App

Pfn2 Tpt1 Atp5d H3f3a Ppp1cc Slc25a5 Itm2c Gdi1 Canx Rpl13

Gnb1 Rac1 Ppp2ca Ghitm Aplp1 Skp1a Hnrnpa0 Ndrg2 Cox7a2 Pea15a

Ddx17 Dnaja1 Cox7c Matr3 Ntrk2 Aplp2 Pja2 Pebp1 Hint1 Pafah1b1

Stmn1 Rps9 Vdac1 Mdh2 Rpl14 Dynll2 Nme1 Clu Gm5148 Serbp1

Zfr Ubl3 Cadps Cox5b Basp1 Spag9 Cnbp Gm13826 Rbfox1 Rbm39

Tubb3 Ndufb5 Rab6a Clip3 Ptms Cdk14 Pcsk1n Gabarapl1 Gm10012 Cox5a

Morf4l1 Celf4 Gad2 Uqcrh Uba52 Ppm1e Uqcrq Sptan1 Dner Rpl8

Mef2c Eif4h Hnrnpa3 Ctbp1 Rps3 Nsg1 Ndufs2 Bin1 Epb4.1l3 Ube2e3

Hnrnpu Hsph1 D4Wsu53e Srrm2 Rpl15 Zfand5 Cxx1a Hnrnpl Prkce Sptbn2
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Figure S29 Top 150 SVGs in the scGCO-only SVG list of the MOB data. 
 

Aqp4 Phldb2 Edil3 Kif5b Scd1 Timp3 Sorbs1 Igfbp5 Rab3b Prrg3

Sash1 Rcn1 Ccnd1 Egfl8 Cebpd Beta.s Ahnak Gbp7 Trak2 Zfp282

Tmem132b Msi2 Mcf2l Epas1 Bgn Kcna2 Fndc5 Tspan15 Phgdh Ahcyl2

Ubash3b Tax1bp3 Kcnj10 Atp1a2 Bmpr1a Eomes Fmnl2 Cldn5 Rhobtb3 Clca1

Igfbp7 Rcn2 Gfod1 Bcan Frzb Zdhhc2 Slc7a2 Col1a1 Arhgap29 Metrn

Gpt2 Rpp25 Aspa Sept9 X2310022B05RikRnf8 Rhoc Sphkap Lifr Ptn

Trnp1 Nudt4 S100a6 Tmem47 Cyp2j6 Heyl Syne2 Mpp5 Psat1 Dab2ip

Npy Sft2d2 Klf16 Slc17a7 Tshz2 Gja1 Tomm40 Serpinh1 Fyco1 Slc35f1

Reln Mdk Tmeff2 Ms4a15 Slc16a1 Bcas2 Mboat2 Usp54 Fads1 Zfp36l2

Sfxn5 Matn4 Igfbp2 Lhfpl3 Dtx4 Srebf1 Prex1 Gstm1 Adipor1 Sv2b

Ppfia1 Bcar3 Lamc1 Neurl1b Zfp36l1 Shisa2 Cd97 Aldh1a1 Caskin2 Angptl4

Vstm4 Vim Pmepa1 Tmbim6 Col18a1 Cabp1 Elovl5 Fam149a Ctsd Zfhx3

Rcan2 Dld Hey2 Cry1 Rasd2 Fam213b Cnot4 Nr3c1 Dap Prickle1

Cep170b Hba.a2 Mest Tmem229a X9530068E07RikPvrl1 Wls Trps1 Tmem50b Mt2

Cenpt Slc13a4 Mvb12a Kcnb2 Slc2a1 S100a16 Prkd3 Plp1 Ctnnal1 Zfp804a
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11.2. Breast cancer data (BC data) 

HEARTSVG identified 287 SVGs in the BC data. We reproduced scGCO's identification 

and detected 330 SVGs (in the original paper, it was reported as 309 SVGs). 

 

 

Figure S30 Venn diagrams of SVGs in the BC data identified by HEARTSVG, and scGCO 

 

 

Figure S31 HEARTSVG predicts spatial domains based on SVGs of the BC data and 

graphed the average expression of SVGs in each spatial domain. 

 

Spatial domain 1 Spatial domain 2 Spatial domain 3 Spatial domain 4 Spatial domain 5 Spatial domain 6
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Figure S32 Top 150 SVGs in the HEARTSVG-only SVG list of the BC data. 

 

CP C14orf28 PNKP PRDM6 IL2RA SNAP25 TGFA RPL19 LMBR1L GGT2

TPST1 ACTB SUV420H2 GGTLC1 PPP1R3B MLLT11 CXCL9 EFR3B INADL UGT2B28

FAM13A IRF4 CLEC3A ZNF880 RAD23A PAQR8 GEMIN6 DAPP1 RP11.722G7.1RNASE6

ST6GAL2 MST1 TCEAL8 C1QB SNX30 AL589743.1 PYHIN1 IL12RB1 PDPN TAF5

SPP1 DHX32 ZNF566 SGTA RASGRF2 BACH1 IER5 NPIPB7 TMEM176B TIMM10B

PCGF1 RPL23 KIF26B ARSJ ICA1L RBMX2 POLR3D TMEM45A C2orf40 TLCD1

SLCO2B1 RPS15 BMS1 GAPDH ADORA1 MME PI15 OXSM ZNF808 ADAM19

ADAMTS2 RPLP1 GART RPS16 RNF34 PYGL RPL8 CD99L2 ZNF432 CXCL10

IFI35 FBXO7 FBXO31 MYH14 PROSER3 TIMM9 TMEM173 OTUD6B PPFIA2 ACADSB

C19orf33 KIAA1462 PGAP2 OSTM1 KIF12 NIPAL2 HOXA2 CCDC97 HEYL FASN

RPS6KA5 SEC16B SETMAR TFF1 CH507.9B2.3LTBP2 ADGRL1 NOLC1 TOMM70A PAK6

ITIH2 THBS4 C21orf33 ARNT2 NIPAL3 ABCC1 LYPD3 TMEM200A PGD PDDC1

NUBPL RPL9 TGIF2 CGGBP1 TMEM220 LDHB IRF1 KIAA2018 WDR5 HSPA12B

WFIKKN1 MAMDC2 ZNF324B PDZK1 RGS1 CDKN1A MTIF3 ATG5 TMSB10 SMUG1

RIN3 CABYR HDHD2 TOM1L2 C4A TMEM144 PSMD7 ACTR1B MRPS35 NLGN4X
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Figure S33 Top 150 SVGs in the scGCO-only SVG list of the BC data. 

COL3A1 COL1A2 COL1A1 POSTN LUM B2M GOLM1 PTGES3 TAX1BP1 SCAND1

IGFBP5 SCGB2A2 RPL3 SPARC TFF3 COL5A1 LOX PALLD MAFB ENSA

FNBP1L RPS14 HLA.B LEO1 COX6B1 GPC3 ROMO1 XBP1 SERPINA3 RAB1B

ANTXR1 DPYSL3 TMEM147 HLA.DRA LDHA PFDN5 MGP TOR1AIP2 STARD10 SELT

PPP1R1B CXCL12 MLLT6 CYB5A HNRNPA2B1 LITAF CD44 VCAN HNRNPK CD46

LGMN RPS19 SEC31A WIPF1 TPM3 APOC1 THBS2 HLA.C UBC HSP90AA1

FAM214A F11R HPN MCL1 CDH1 GPX1 COPB2 TPM4 YWHAZ HSP90B1

MRC2 ARPC5 LPGAT1 GGCT RPS7 H3F3B HSPE1 CST4 RPS27 IFNGR1

HLA.DRB1 RPL7 RPL30 CTNNA1 RAB11A SPNS1 IFI6 TIMP2 FADS2 LRRC26

ESRP1 AGR3 SAT1 RPN2 ITGB1 RPL21 SLC25A5 UBE3A KLF6 CD164

ADGRG1 ANXA5 RBM3 TMEM165 BLVRB NFIA PLK2 MMP11 CALD1 FTL

SPCS1 SPTSSA CERS2 ACACA NACA MT2A EIF1AX LGALS3 C3 PPIC

GSPT1 YWHAQ TXNDC17 NBPF14 PLD3 DBI PMEPA1 CD24 EEF1B2 RPS4X

GAS1 GADD45GIP1ZFP36 H2AFJ KRT17 DCN ATP5G3 JTB CANX VIM

TMED10 PPDPF COPA TMA7 RPL37 EPCAM RPL12 MOB1A BZW1 DAZAP2
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11.3. Mouse neuron tissue data with LCM technology (LCM data) 

HEARTSVG identified 420 SVGs in the LCM data. We reproduced scGCO's identification 

and detected 754 SVGs (in the original paper, it was reported as 3867 SVGs). In our analysis, 

HEARTSVG and scGCO did not report spike genes as false positives. 

 

Figure S34 Venn diagrams of SVGs in the LCM data identified by HEARTSVG, and 

scGCO 

 

 

Figure S35 HEARTSVG predicts spatial domains based on SVGs of the LCM data and 

graphed the average expression of SVGs in each spatial domain. 

Spatial domain 1 Spatial domain 2 Spatial domain 3 Spatial domain 4

Spatial domain 5 Spatial domain 6 Spatial domain 7 Spatial domain 8
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Figure S36 Top 100 SVGs in the HEARTSVG-only SVG list of the LCM data. 

Ascl1 2610017I09RikHist2h2aa2_loc1Hist2h2aa2_loc2Tmem130 Celf5 Sept4 Tmem8b A930011O12RikRnft1

Hmgb2 Hist1h2bm Nek6 Sh3rf3 Sox6 Id4 Elmo1 Pou3f4 Maf Aplp1

Zcchc12 Cacna2d2 Bcl11a Dlx5 Hsd17b4 Gria2 Higd1a Kcnn1 Camta2 Scrt2

Snhg11 Tfdp1 Pcyt1b Trim2 Tmem163 Dnaic2 Rab5a Rnpc3 Cux1 A030009H04Rik

Rgs9 Cnih2 Rac3 2700094K13RikCkap2 Hist1h1b Gpm6a Wwtr1 Mfng Gmnn

Inpp5f St18 Gm10865 Mnt Incenp Agpat6 Mdc1 Pold1 Nsg2 Zfp362

Pot1a Wwp2 Thra Abca1 Atad2 Camk2n1 Cdk19 Mll1 Prdx4 Acpl2

Cd200 Dbi Igfbpl1 Hbb−b2 Polh Snora28 Chd8 Zfp536 Hmga1−rs1 Nde1

Ccdc59 Zmat2 Vstm2l Tacc3 Mrpl35 Pycr2 Pcid2 Tcf4 Igsf8 Stradb

Bcl2l15 Hnrnpd Gm3435 Atp2b2 Senp7 Poldip3 Gpr173 Smc4 Unc79 Zfp322a

Syngr3 Lpin1 4632427E13RikH1f0 Mir1982 Ubl5 Brsk2 Exosc5 Pldn Sp9

Kcnq2 Rpl22 Gabarapl1 Csmd3 Mum1l1 Hist2h2ac Eri2 Mef2c Mt2 Gtpbp10

Gm14435_loc2Nr2f2 Zdhhc24 Pip5k1b Ccnb1 Cyth4 2810013P06RikRasa4 Hist3h2ba C1galt1c1

Dbndd1 Kif24 Dscam Ptgs1 Tnks1bp1 Ect2 Wipf2 Sfrp1 Hspe1 Tanc2

Ext2 Gm6289 Tle6 Kcna2 Ddx1 Slc25a42 Casc5 Lum Ptprz1 Isg20l2
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Figure S37 Top 100 SVGs in the scGCO-only SVG list of the LCM data. 
 

Hmga2 Tm2d2 Taldo1 Brd8 App Lrp1 Psme3 Pggt1b Cadm4 Rrp1

Sqstm1 Dlgap5 Afap1 Dhx15 Khsrp Hmgcr Pnmal2 Paf1 Idh3b Gdap1

Prdx6 Tbpl1 Pddc1 Ubn2 Rab11b Rprd2 Atp6v1g1 Tet3 D14Abb1e Meaf6

Mtap7d1 Pcf11 Zfp428 Dchs1 Vash1 Camsap1 Epn1 Capza1 Stk11 Dpf1

Shkbp1 Supt6h Ap3d1 Oaz2−ps Pak3 Rbm28 Ppp1cb Atf7ip Cnot4 Gm13498

Fxyd6 Pcdhgb4 Hbxip Abat Atp6v1h Jun Prc1 Sumo3 Mtap1a Nras

Lsm10 Arpc5 Prkcb Ylpm1 Haghl 0610037P05RikCcnd2 2700081O15RikRbmx D8Ertd738e

Cetn3 Rab5b Psmc5 Osgep Zfp358 Eef1d Eid1 Dcps Fbxo22 Ak2

Rnf2 Chd3 Ghitm Zfp664 Mrpl14 Golga7 Myl6 Bcl2l1 Zfp781_loc2 2700060E02Rik

Fam160b2 Cpsf6 Ppp5c Tubb4b Snrpb Lars2 Spna2 Crabp2 Cdc20 Ulk1

Brd2 Usf1 Supt5h Arf1 Ddx6 Dazap1 Mdh1 Rab28 Nes Ccnk

Tardbp BC005764 Myl12b Ano6 Tnrc6b Tax1bp1 Iws1 Rpl38 Atp6v1a St8sia4

Prelid1 Cdk1 Sgta Zkscan1 Gnl3l Ergic1 Clpp Baz2b Arxes2 Nme6

Ldhb Stag2 Zfp706 Pcnp Psmc3 BC039771 D430019H16RikRps23 Timm44 2400003C14Rik

Gtf2a1 Fam103a1 Zswim5 Mzt1 Ubap2 Dpysl5 Mir706 mt−Nd4l Ik Ranbp1
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10. Simulation with noise 

Figures and Tables 

Table S5 Spatial patterns and corresponding proportions of marked area for SVGs(%) 
Pattern Proportion of  

marked area of the SVGs (%) 
Hotspot 5 
Streak 5 

Gradient 15 
Ring 15 

Nested rings 15 
Streaks 10 
Curve 7.5 

Rectangles 5 
Big triangles 15 
Big circles 15 
Big squares 15 

Small triangles 7.5 
Small circles 7.5 
Small squares 7.5 
Big circles II 15 

Small triangles II 15 
Pattern I 20 
Pattern II 20 
Pattern III 20 
Irreg pat I 10 
Irreg pat II 5 
Irreg pat III 5 
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10.1 Results of simulations with mixture noise 

For simulated data with mixture noise, we generated 1000 simulated SVGs and randomly 

rearranged the gene expressions to generate non-SVGs. Then, we mix their expression to 

create non-SVGs, SVGs with noise, and non-SVGs with noise. 

 

Figure S38 The schematic of simulated data with mixture noise. Set 1 represents the true 

SVGs set, derived by selecting the top 500 overlaps from the results of all six methods. Set 3 

is the non-SVGs set, created by randomly rearranging gene expressions within Set 1. Set 2 

and Set 4 are generated by using a mixture of SVGs and non-SVGs to simulate data with 

noise. 
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Figure S39 Simulation results of SVGs identification using simulated data with mixture 

noise. a, Visualization of Pattern: Hotspot with mixture noise. b-e, Simulation results of six 

different methods (HEARTSVG, scGCO, SPARK, SPARK-X, Squidpy) on simulated data 

generated by four distinct distributions (ZINB, ZIP, NB, Poisson). The bar diagram 

(sub-panel (1)) shows F1 scores, TPRs, precisions, and FPRs. The heatmap (sub-panel (2)) 

depicts the comparison of TPR values among six genesets. Source data are provided with this 

paper.  
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Figure S40 Simulation results of SVGs identification using simulated data with mixture 

noise. a, Visualization of Pattern: Streak with mixture noise. b-e, Simulation results of six 

different methods (HEARTSVG, scGCO, SPARK, SPARK-X, Squidpy) on simulated data 

generated by four distinct distributions (ZINB, ZIP, NB, Poisson). The bar diagram 

(sub-panel (1)) shows F1 scores, TPRs, precisions, and FPRs. The heatmap (sub-panel (2)) 

depicts the comparison of TPR values among six genesets. Source data are provided with this 

paper. 
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Figure S41 Simulation results of SVGs identification using simulated data with mixture 

noise. a, Visualization of Pattern: Gradient with mixture noise. b-e, Simulation results of six 

different methods (HEARTSVG, scGCO, SPARK, SPARK-X, Squidpy) on simulated data 

generated by four distinct distributions (ZINB, ZIP, NB, Poisson). The bar diagram 

(sub-panel (1)) shows F1 scores, TPRs, precisions, and FPRs. The heatmap (sub-panel (2)) 

depicts the comparison of TPR values among six genesets. Source data are provided with this 

paper. 
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Figure S42 Simulation results of SVGs identification using simulated data with mixture 

noise. a, Visualization of Pattern: Ring with mixture noise. b-e, Simulation results of six 

different methods (HEARTSVG, scGCO, SPARK, SPARK-X, Squidpy) on simulated data 

generated by four distinct distributions (ZINB, ZIP, NB, Poisson). The bar diagram 

(sub-panel (1)) shows F1 scores, TPRs, precisions, and FPRs. The heatmap (sub-panel (2)) 

depicts the comparison of TPR values among six genesets. Source data are provided with this 

paper.     
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Figure S43 Simulation results of SVGs identification using simulated data with mixture 

noise. a, Visualization of Pattern: Nested rings with mixture noise. b-e, Simulation results of 

six different methods (HEARTSVG, scGCO, SPARK, SPARK-X, Squidpy) on simulated 

data generated by four distinct distributions (ZINB, ZIP, NB, Poisson). The bar diagram 

(sub-panel (1)) shows F1 scores, TPRs, precisions, and FPRs. The heatmap (sub-panel (2)) 

depicts the comparison of TPR values among six genesets. Source data are provided with this 

paper. 
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Figure S44 Simulation results of SVGs identification using simulated data with mixture 

noise. a, Visualization of Pattern: Streaks with mixture noise. b-e, Simulation results of six 

different methods (HEARTSVG, scGCO, SPARK, SPARK-X, Squidpy) on simulated data 

generated by four distinct distributions (ZINB, ZIP, NB, Poisson). The bar diagram 

(sub-panel (1)) shows F1 scores, TPRs, precisions, and FPRs. The heatmap (sub-panel (2)) 

depicts the comparison of TPR values among six genesets. Source data are provided with this 

paper. 
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Figure S45 Simulation results of SVGs identification using simulated data with mixture 

noise. a, Visualization of Pattern: Curve with mixture noise. b-e, Simulation results of six 

different methods (HEARTSVG, scGCO, SPARK, SPARK-X, Squidpy) on simulated data 

generated by four distinct distributions (ZINB, ZIP, NB, Poisson). The bar diagram 

(sub-panel (1)) shows F1 scores, TPRs, precisions, and FPRs. The heatmap (sub-panel (2)) 

depicts the comparison of TPR values among six genesets. Source data are provided with this 

paper. 
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Figure S46 Simulation results of SVGs identification using simulated data with mixture 

noise. a, Visualization of Pattern: Rectangles with mixture noise. b-e, Simulation results of 

six different methods (HEARTSVG, scGCO, SPARK, SPARK-X, Squidpy) on simulated 

data generated by four distinct distributions (ZINB, ZIP, NB, Poisson). The bar diagram 

(sub-panel (1)) shows F1 scores, TPRs, precisions, and FPRs. The heatmap (sub-panel (2)) 

depicts the comparison of TPR values among six genesets. Source data are provided with this 

paper. 
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Figure S47 Simulation results of SVGs identification using simulated data with mixture 

noise. a, Visualization of Pattern: Big triangles with mixture noise. b-e, Simulation results of 

six different methods (HEARTSVG, scGCO, SPARK, SPARK-X, Squidpy) on simulated 

data generated by four distinct distributions (ZINB, ZIP, NB, Poisson). The bar diagram 

(sub-panel (1)) shows F1 scores, TPRs, precisions, and FPRs. The heatmap (sub-panel (2)) 

depicts the comparison of TPR values among six genesets. Source data are provided with this 

paper. 
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Figure S48 Simulation results of SVGs identification using simulated data with mixture 

noise. a, Visualization of Pattern: Big circles with mixture noise. b-e, Simulation results of 

six different methods (HEARTSVG, scGCO, SPARK, SPARK-X, Squidpy) on simulated 

data generated by four distinct distributions (ZINB, ZIP, NB, Poisson). The bar diagram 

(sub-panel (1)) shows F1 scores, TPRs, precisions, and FPRs. The heatmap (sub-panel (2)) 

depicts the comparison of TPR values among six genesets. Source data are provided with this 

paper. 
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Figure S49 Simulation results of SVGs identification using simulated data with mixture 

noise. a, Visualization of Pattern: Big squares with mixture noise. b-e, Simulation results of 

six different methods (HEARTSVG, scGCO, SPARK, SPARK-X, Squidpy) on simulated 

data generated by four distinct distributions (ZINB, ZIP, NB, Poisson). The bar diagram 

(sub-panel (1)) shows F1 scores, TPRs, precisions, and FPRs. The heatmap (sub-panel (2)) 

depicts the comparison of TPR values among six genesets. Source data are provided with this 

paper.
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Figure S50 Simulation results of SVGs identification using simulated data with mixture 

noise. a, Visualization of Pattern: Small triangles with mixture noise. b-e, Simulation results 

of six different methods (HEARTSVG, scGCO, SPARK, SPARK-X, Squidpy) on simulated 

data generated by four distinct distributions (ZINB, ZIP, NB, Poisson). The bar diagram 

(sub-panel (1)) shows F1 scores, TPRs, precisions, and FPRs. The heatmap (sub-panel (2)) 

depicts the comparison of TPR values among six genesets. Source data are provided with this 

paper. 
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Figure S51 Simulation results of SVGs identification using simulated data with mixture 

noise. a, Visualization of Pattern: Small circles with mixture noise. b-e, Simulation results of 

six different methods (HEARTSVG, scGCO, SPARK, SPARK-X, Squidpy) on simulated 

data generated by four distinct distributions (ZINB, ZIP, NB, Poisson). The bar diagram 

(sub-panel (1)) shows F1 scores, TPRs, precisions, and FPRs. The heatmap (sub-panel (2)) 

depicts the comparison of TPR values among six genesets. Source data are provided with this 

paper. 
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Figure S52 Simulation results of SVGs identification using simulated data with mixture 

noise. a, Visualization of Pattern: Small squares with mixture noise. b-e, Simulation results 

of six different methods (HEARTSVG, scGCO, SPARK, SPARK-X, Squidpy) on simulated 

data generated by four distinct distributions (ZINB, ZIP, NB, Poisson). The bar diagram 

(sub-panel (1)) shows F1 scores, TPRs, precisions, and FPRs. The heatmap (sub-panel (2)) 

depicts the comparison of TPR values among six genesets. Source data are provided with this 

paper. 
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Figure S53 Simulation results of SVGs identification using simulated data with mixture 

noise. a, Visualization of Pattern: Big circles II with mixture noise. b-e, Simulation results of 

six different methods (HEARTSVG, scGCO, SPARK, SPARK-X, Squidpy) on simulated 

data generated by four distinct distributions (ZINB, ZIP, NB, Poisson). The bar diagram 

(sub-panel (1)) shows F1 scores, TPRs, precisions, and FPRs. The heatmap (sub-panel (2)) 

depicts the comparison of TPR values among six genesets. Source data are provided with this 

paper. 
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Figure S54 Simulation results of SVGs identification using simulated data with mixture 

noise. a, Visualization of Pattern: Small triangles II with mixture noise. b-e, Simulation 

results of six different methods (HEARTSVG, scGCO, SPARK, SPARK-X, Squidpy) on 

simulated data generated by four distinct distributions (ZINB, ZIP, NB, Poisson). The bar 

diagram (sub-panel (1)) shows F1 scores, TPRs, precisions, and FPRs. The heatmap 

(sub-panel (2)) depicts the comparison of TPR values among six genesets. Source data are 

provided with this paper. 
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Figure S55 Simulation results of SVGs identification using simulated data with mixture 

noise. a, Visualization of Pattern: Pattern I with mixture noise. b-e, Simulation results of six 

different methods (HEARTSVG, scGCO, SPARK, SPARK-X, Squidpy) on simulated data 

generated by four distinct distributions (ZINB, ZIP, NB, Poisson). The bar diagram 

(sub-panel (1)) shows F1 scores, TPRs, precisions, and FPRs. The heatmap (sub-panel (2)) 

depicts the comparison of TPR values among six genesets. Source data are provided with this 

paper. 
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Figure S56 Simulation results of SVGs identification using simulated data with mixture 

noise. a, Visualization of Pattern: Pattern II with mixture noise. b-e, Simulation results of six 

different methods (HEARTSVG, scGCO, SPARK, SPARK-X, Squidpy) on simulated data 

generated by four distinct distributions (ZINB, ZIP, NB, Poisson). The bar diagram 

(sub-panel (1)) shows F1 scores, TPRs, precisions, and FPRs. The heatmap (sub-panel (2)) 

depicts the comparison of TPR values among six genesets. Source data are provided with this 

paper. 
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Figure S57 Simulation results of SVGs identification using simulated data with mixture 

noise. a, Visualization of Pattern: Pattern III with mixture noise. b-e, Simulation results of 

six different methods (HEARTSVG, scGCO, SPARK, SPARK-X, Squidpy) on simulated 

data generated by four distinct distributions (ZINB, ZIP, NB, Poisson). The bar diagram 

(sub-panel (1)) shows F1 scores, TPRs, precisions, and FPRs. The heatmap (sub-panel (2)) 

depicts the comparison of TPR values among six genesets. Source data are provided with this 

paper. 
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Figure S58 Simulation results of SVGs identification using simulated data with mixture 

noise. a, Visualization of Pattern: Irreg pat I with mixture noise. b-e, Simulation results of six 

different methods (HEARTSVG, scGCO, SPARK, SPARK-X, Squidpy) on simulated data 

generated by four distinct distributions (ZINB, ZIP, NB, Poisson). The bar diagram 

(sub-panel (1)) shows F1 scores, TPRs, precisions, and FPRs. The heatmap (sub-panel (2)) 

depicts the comparison of TPR values among six genesets. Source data are provided with this 

paper. 
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Figure S59 Simulation results of SVGs identification using simulated data with mixture 

noise. a, Visualization of Pattern: Irreg pat II with mixture noise. b-e, Simulation results of 

six different methods (HEARTSVG, scGCO, SPARK, SPARK-X, Squidpy) on simulated 

data generated by four distinct distributions (ZINB, ZIP, NB, Poisson). The bar diagram 

(sub-panel (1)) shows F1 scores, TPRs, precisions, and FPRs. The heatmap (sub-panel (2)) 

depicts the comparison of TPR values among six genesets. Source data are provided with this 

paper. 
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Figure S60 Simulation results of SVGs identification using simulated data with mixture 

noise. a, Visualization of Pattern: Irreg pat III with mixture noise. b-e, Simulation results of 

six different methods (HEARTSVG, scGCO, SPARK, SPARK-X, Squidpy) on simulated 

data generated by four distinct distributions (ZINB, ZIP, NB, Poisson). The bar diagram 

(sub-panel (1)) shows F1 scores, TPRs, precisions, and FPRs. The heatmap (sub-panel (2)) 

depicts the comparison of TPR values among six genesets. Source data are provided with this 

paper. 
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Figure S61 Simulation results of SVGs identification using simulated data with mixture 

noise. a, Visualization of Pattern: Irreg pat IV with mixture noise. b-e, Simulation results of 

six different methods (HEARTSVG, scGCO, SPARK, SPARK-X, Squidpy) on simulated 

data generated by four distinct distributions (ZINB, ZIP, NB, Poisson). The bar diagram 

(sub-panel (1)) shows F1 scores, TPRs, precisions, and FPRs. The heatmap (sub-panel (2)) 

depicts the comparison of TPR values among six genesets. Source data are provided with this 

paper.      
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10.2 Results of noise-free simulations 
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Figure S62 a, Visualization of 22 representative spatial expression patterns: Hotspot, Streak, 
Gradient, Ring, Nested rings, Streaks, Curve, Rectangles, Big triangles, Big circles, Big 
squares, Small triangles, Small circles, Small squares, Big circles II, Small triangles II, 
Pattern I, Pattern II, Pattern III, Irreg pat I, Irreg pat II, Irreg pat III. b-e, F1 score plots, TPR 
plots, Precision plots, and FPR plots compare the index values (y-axis) of HEARTSVG (red), 
scGCO (orange), SpatialDE (yellow), SPARK (blue), SPARK-X (green), and Squidpy 
(purple) in simulation data. The comparison is based on varying sample sizes (x-axis) at an 
adjusted p-value cutoff of 0.05. Each plot corresponds to the left spatial patterns in sub-figure 
a. Source data are provided with this paper.  
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10.3 Results of simulations with Gaussian noise 

Gaussian noise is commonly used in the field of computer vision. Consequently, we referred 

to articles in the field of computer vision and modified the approach for adding Gaussian 

noise. To ensure a consistent impact across all images, Min-Max normalization is performed 

before noise addition. We simulated 3000 cells with 10,000 genes (1000 SVGs and 9000 

non-SVGs) in each scenario. We added varying levels (ranging from 0 to 0.4) of noises to 

noise-free data to create simulated datasets with different degrees of noise. The parameters of 

the four distributions we used were shown in Tables S1. 

New adding Gaussian noise: 
1. Min-Max normalization: 

We first normalized the expression data, scaling gene expression values to a uniform 
range between 0 and 1. This helps maintain consistency in expression levels across 
different distributions. 

2. Generating and adding noise: 
We generated noise from a Gaussian distribution 𝑁(0, σ) and added it to the 
normalized data, ensuring that the post-noise addition pixel values remained within the 
valid range. 

3. Reverse normalization: 
After noise addition, we reverted the expression values from their normalized state back 
to their original scale. 

4. We applied methods to identify SVGs. 

Following this modified Gaussian noise addition approach, we found that adding the same 
level of Gaussian noise consistently impacted different data features. The variation 
in𝐹!	𝑠𝑐𝑜𝑟𝑒𝑠  for all methods was also consistent across the different distributions of 
simulated data with Gaussian noise (Fig. S63-S65). 
ZIP: Patterns became blurred when noise exceeded 0.3, and three methods' 𝐹!	𝑠𝑐𝑜𝑟𝑒𝑠 
decreased from 0.3 noise. 
Pois: Patterns became blurred when noise exceeded 0.2, leading to a noticeable decline in 
performance across methods. 
NB: Similar to Poisson, patterns blurred when noise exceeded 0.1, three methods' 𝐹!	𝑠𝑐𝑜𝑟𝑒 
declined significantly. 
ZINB: Given its inherent sparsity and dispersion, initial patterns were already somewhat 
blurred. Adding 0.05 noise resulted in blurred spatial pattern, and three methods' 𝐹!	𝑠𝑐𝑜𝑟𝑒 
declined significantly from 0.05 noise onward. 
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Similar to our observations in the sensitivity analysis, we found that the performance of 
scGCO declines with increased Gaussian noise, leading to unreliable outcomes and 
fluctuations. We hypothesize that this is due to the fixed hyperparameter, the initial factor, 
but the influence of the initial factor on the direction of result variations remains unclear. 

 

Figure S63 Hotspot Pattern. a, Visualizations of simulated data from various distributions, 

incorporating noise using the modified Gaussian noise addition approach. b, Comparison of 

𝐹!	𝑠𝑐𝑜𝑟𝑒𝑠 on the new Gaussian noise simulated data. Source data are provided with this 

paper. 

 

 

 



 76 

 

Figure S64 Ring Pattern. a, Visualizations of simulated data from various distributions, 

incorporating noise using the modified Gaussian noise addition approach. b, Comparison of 

𝐹!	𝑠𝑐𝑜𝑟𝑒𝑠 on the new Gaussian noise simulated data. Source data are provided with this 

paper. 
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Figure S65 Streaks Pattern. a, Visualizations of simulated data from various distributions, 

incorporating noise using the modified Gaussian noise addition approach. b, Comparison of 

𝐹!	𝑠𝑐𝑜𝑟𝑒𝑠 on the new Gaussian noise simulated data. Source data are provided with this 

paper. 
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10.4 Results of simulations with noise of 'Randomly Exchanging Expression Values of 

Selected Nodes' 

Due to the different ways of generating noise,we created new simulation data (both 

expression and coordinates) with noise, instead of transforming the noise-free data. We used 

the same parameter settings as in Section 1-3 to generate the spatial patterns and simulated 

3000 cells with 10,000 genes (1000 SVGs and 9000 non-SVGs) in each scenario. The 

parameters of the four distributions we used are shown in Tables S1 and S5. 

 
Figure S66 Simulation results for identifying SVGs using simulated data with noise of 

'Randomly Exchanging Expression Values of Selected Nodes.' a, Visualization of Pattern: 

Hotspot with different percentage of cells random exchanges (%). b-e, Simulation results of 

four different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data 

generated by four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots, 
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Precision plots, and FPR plots compare the index values (y-axis) of HEARTSVG (red), 

scGCO (orange), SPARK-X (green), and Squidpy (purple) across different percentage of 

cells random exchanges (x-axis). Index values were calculated at the adjusted p-value cutoff 

of 0.05. Source data are provided with this paper. 

 
Figure S67 Simulation results for identifying SVGs using simulated data with noise of 

'Randomly Exchanging Expression Values of Selected Nodes.' a, Visualization of Pattern: 

Streak with different percentage of cells random exchanges (%). b-e, Simulation results of 

four different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data 

generated by four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots, 

Precision plots, and FPR plots compare the index values (y-axis) of HEARTSVG (red), 

scGCO (orange), SPARK-X (green), and Squidpy (purple) across different percentage of 

cells random exchanges (x-axis). Index values were calculated at the adjusted p-value cutoff 

of 0.05. Source data are provided with this paper. 
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Figure S68 Simulation results for identifying SVGs using simulated data with noise of 

'Randomly Exchanging Expression Values of Selected Nodes.' a, Visualization of Pattern: 

Ring with different percentage of cells random exchanges (%). b-e, Simulation results of 

four different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data 

generated by four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots, 

Precision plots, and FPR plots compare the index values (y-axis) of HEARTSVG (red), 

scGCO (orange), SPARK-X (green), and Squidpy (purple) across different percentage of 

cells random exchanges (x-axis). Index values were calculated at the adjusted p-value cutoff 

of 0.05. Source data are provided with this paper. 
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Figure S69 Simulation results for identifying SVGs using simulated data with noise of 

'Randomly Exchanging Expression Values of Selected Nodes.' a, Visualization of Pattern: 

Nested rings with different percentage of cells random exchanges (%). b-e, Simulation 

results of four different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on 

simulated data generated by four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score 

plots, TPR plots, Precision plots, and FPR plots compare the index values (y-axis) of 

HEARTSVG (red), scGCO (orange), SPARK-X (green), and Squidpy (purple) across 

different percentage of cells random exchanges (x-axis). Index values were calculated at the 

adjusted p-value cutoff of 0.05. Source data are provided with this paper. 
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Figure S70 Simulation results for identifying SVGs using simulated data with noise of 

'Randomly Exchanging Expression Values of Selected Nodes.' a, Visualization of Pattern: 

Streaks with different percentage of cells random exchanges (%). b-e, Simulation results of 

four different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data 

generated by four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots, 

Precision plots, and FPR plots compare the index values (y-axis) of HEARTSVG (red), 

scGCO (orange), SPARK-X (green), and Squidpy (purple) across different percentage of 

cells random exchanges (x-axis). Index values were calculated at the adjusted p-value cutoff 

of 0.05. Source data are provided with this paper. 
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Figure S71 Simulation results for identifying SVGs using simulated data with noise of 

'Randomly Exchanging Expression Values of Selected Nodes.' a, Visualization of Pattern: 

Curve with different percentage of cells random exchanges (%). b-e, Simulation results of 

four different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data 

generated by four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots, 

Precision plots, and FPR plots compare the index values (y-axis) of HEARTSVG (red), 

scGCO (orange), SPARK-X (green), and Squidpy (purple) across different percentage of 

cells random exchanges (x-axis). Index values were calculated at the adjusted p-value cutoff 

of 0.05. Source data are provided with this paper. 
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Figure S72 Simulation results for identifying SVGs using simulated data with noise of 

'Randomly Exchanging Expression Values of Selected Nodes.' a, Visualization of Pattern: 

Rectangles with different percentage of cells random exchanges (%). b-e, Simulation results 

of four different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data 

generated by four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots, 

Precision plots, and FPR plots compare the index values (y-axis) of HEARTSVG (red), 

scGCO (orange), SPARK-X (green), and Squidpy (purple) across different percentage of 

cells random exchanges (x-axis). Index values were calculated at the adjusted p-value cutoff 

of 0.05. Source data are provided with this paper. 
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Figure S73 Simulation results for identifying SVGs using simulated data with noise of 

'Randomly Exchanging Expression Values of Selected Nodes.' a, Visualization of Pattern: 

Big triangles with different percentage of cells random exchanges (%). b-e, Simulation 

results of four different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on 

simulated data generated by four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score 

plots, TPR plots, Precision plots, and FPR plots compare the index values (y-axis) of 

HEARTSVG (red), scGCO (orange), SPARK-X (green), and Squidpy (purple) across 

different percentage of cells random exchanges (x-axis). Index values were calculated at the 

adjusted p-value cutoff of 0.05. Source data are provided with this paper. 
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Figure S74 Simulation results for identifying SVGs using simulated data with noise of 

'Randomly Exchanging Expression Values of Selected Nodes.' a, Visualization of Pattern: 

Big circles with different percentage of cells random exchanges (%). b-e, Simulation results 

of four different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data 

generated by four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots, 

Precision plots, and FPR plots compare the index values (y-axis) of HEARTSVG (red), 

scGCO (orange), SPARK-X (green), and Squidpy (purple) across different percentage of 

cells random exchanges (x-axis). Index values were calculated at the adjusted p-value cutoff 

of 0.05. Source data are provided with this paper. 
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Figure S75 Simulation results for identifying SVGs using simulated data with noise of 

'Randomly Exchanging Expression Values of Selected Nodes.' a, Visualization of Pattern: 

Big squares with different percentage of cells random exchanges (%). b-e, Simulation results 

of four different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data 

generated by four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots, 

Precision plots, and FPR plots compare the index values (y-axis) of HEARTSVG (red), 

scGCO (orange), SPARK-X (green), and Squidpy (purple) across different percentage of 

cells random exchanges (x-axis). Index values were calculated at the adjusted p-value cutoff 

of 0.05. Source data are provided with this paper.  
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Figure S76 Simulation results for identifying SVGs using simulated data with noise of 

'Randomly Exchanging Expression Values of Selected Nodes.' a, Visualization of Pattern: 

Small triangles with different percentage of cells random exchanges (%). b-e, Simulation 

results of four different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on 

simulated data generated by four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score 

plots, TPR plots, Precision plots, and FPR plots compare the index values (y-axis) of 

HEARTSVG (red), scGCO (orange), SPARK-X (green), and Squidpy (purple) across 

different percentage of cells random exchanges (x-axis). Index values were calculated at the 

adjusted p-value cutoff of 0.05. Source data are provided with this paper. 
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Figure S77 Simulation results for identifying SVGs using simulated data with noise of 

'Randomly Exchanging Expression Values of Selected Nodes.' a, Visualization of Pattern: 

Small circles with different percentage of cells random exchanges (%). b-e, Simulation 

results of four different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on 

simulated data generated by four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score 

plots, TPR plots, Precision plots, and FPR plots compare the index values (y-axis) of 

HEARTSVG (red), scGCO (orange), SPARK-X (green), and Squidpy (purple) across 

different percentage of cells random exchanges (x-axis). Index values were calculated at the 

adjusted p-value cutoff of 0.05. Source data are provided with this paper. 
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Figure S78 Simulation results for identifying SVGs using simulated data with noise of 

'Randomly Exchanging Expression Values of Selected Nodes.' a, Visualization of Pattern: 

Small squares with different percentage of cells random exchanges (%). b-e, Simulation 

results of four different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on 

simulated data generated by four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score 

plots, TPR plots, Precision plots, and FPR plots compare the index values (y-axis) of 

HEARTSVG (red), scGCO (orange), SPARK-X (green), and Squidpy (purple) across 

different percentage of cells random exchanges (x-axis). Index values were calculated at the 

adjusted p-value cutoff of 0.05. Source data are provided with this paper. 
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Figure S79 Simulation results for identifying SVGs using simulated data with noise of 

'Randomly Exchanging Expression Values of Selected Nodes.' a, Visualization of Pattern: 

Big circles II with different percentage of cells random exchanges (%). b-e, Simulation 

results of four different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on 

simulated data generated by four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score 

plots, TPR plots, Precision plots, and FPR plots compare the index values (y-axis) of 

HEARTSVG (red), scGCO (orange), SPARK-X (green), and Squidpy (purple) across 

different percentage of cells random exchanges (x-axis). Index values were calculated at the 

adjusted p-value cutoff of 0.05. Source data are provided with this paper. 
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Figure S80 Simulation results for identifying SVGs using simulated data with noise of 

'Randomly Exchanging Expression Values of Selected Nodes.' a, Visualization of Pattern: 

Small triangles II with different percentage of cells random exchanges (%). b-e, Simulation 

results of four different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on 

simulated data generated by four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score 

plots, TPR plots, Precision plots, and FPR plots compare the index values (y-axis) of 

HEARTSVG (red), scGCO (orange), SPARK-X (green), and Squidpy (purple) across 

different percentage of cells random exchanges (x-axis). Index values were calculated at the 

adjusted p-value cutoff of 0.05. Source data are provided with this paper. 
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Figure S81 Simulation results for identifying SVGs using simulated data with noise of 

'Randomly Exchanging Expression Values of Selected Nodes.' a, Visualization of Pattern: 

Pattern I with different percentage of cells random exchanges (%). b-e, Simulation results of 

four different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data 

generated by four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots, 

Precision plots, and FPR plots compare the index values (y-axis) of HEARTSVG (red), 

scGCO (orange), SPARK-X (green), and Squidpy (purple) across different percentage of 

cells random exchanges (x-axis). Index values were calculated at the adjusted p-value cutoff 

of 0.05. Source data are provided with this paper. 
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Figure S82 Simulation results for identifying SVGs using simulated data with noise of 

'Randomly Exchanging Expression Values of Selected Nodes.' a, Visualization of Pattern: 

Pattern II with different percentage of cells random exchanges (%). b-e, Simulation results of 

four different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data 

generated by four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots, 

Precision plots, and FPR plots compare the index values (y-axis) of HEARTSVG (red), 

scGCO (orange), SPARK-X (green), and Squidpy (purple) across different percentage of 

cells random exchanges (x-axis). Index values were calculated at the adjusted p-value cutoff 

of 0.05. Source data are provided with this paper. 
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Figure S83 Simulation results for identifying SVGs using simulated data with noise of 

'Randomly Exchanging Expression Values of Selected Nodes.' a, Visualization of Pattern: 

Pattern III with different percentage of cells random exchanges (%). b-e, Simulation results 

of four different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data 

generated by four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots, 

Precision plots, and FPR plots compare the index values (y-axis) of HEARTSVG (red), 

scGCO (orange), SPARK-X (green), and Squidpy (purple) across different percentage of 

cells random exchanges (x-axis). Index values were calculated at the adjusted p-value cutoff 

of 0.05. Source data are provided with this paper. 
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Figure S84 Simulation results for identifying SVGs using simulated data with noise of 

'Randomly Exchanging Expression Values of Selected Nodes.' a, Visualization of Pattern: 

Irreg pat I with different percentage of cells random exchanges (%). b-e, Simulation results 

of four different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data 

generated by four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots, 

Precision plots, and FPR plots compare the index values (y-axis) of HEARTSVG (red), 

scGCO (orange), SPARK-X (green), and Squidpy (purple) across different percentage of 

cells random exchanges (x-axis). Index values were calculated at the adjusted p-value cutoff 

of 0.05. Source data are provided with this paper. 
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Figure S85 Simulation results for identifying SVGs using simulated data with noise of 

'Randomly Exchanging Expression Values of Selected Nodes.' a, Visualization of Pattern: 

Irreg pat II with different percentage of cells random exchanges (%). b-e, Simulation results 

of four different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data 

generated by four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots, 

Precision plots, and FPR plots compare the index values (y-axis) of HEARTSVG (red), 

scGCO (orange), SPARK-X (green), and Squidpy (purple) across different percentage of 

cells random exchanges (x-axis). Index values were calculated at the adjusted p-value cutoff 

of 0.05. Source data are provided with this paper. 
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Figure S86 Simulation results for identifying SVGs using simulated data with noise of 

'Randomly Exchanging Expression Values of Selected Nodes.' a, Visualization of Pattern: 

Irreg pat III with different percentage of cells random exchanges (%). b-e, Simulation results 

of four different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data 

generated by four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots, 

Precision plots, and FPR plots compare the index values (y-axis) of HEARTSVG (red), 

scGCO (orange), SPARK-X (green), and Squidpy (purple) across different percentage of 

cells random exchanges (x-axis). Index values were calculated at the adjusted p-value cutoff 

of 0.05. Source data are provided with this paper. 
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10.5 The normalization procedures by spatialDE and SPARK distorts the data 

characteristics, negatively affecting SVG detection.  

In our simulations, SPARK and SpatialDE perform noticeably weaker compared to other 
methods. Both SPARK and SpatialDE use the Gaussian process regression as the 
underlying data model. It is well-known that spatial transcriptomics data do not follow a 
normal distribution. SPARK and SpatialDE employ additional normalization mechanisms to 
approximate the spatial transcriptomics data to a normal distribution before modeling and 
identifying SVGs1. However, the normalization mechanism of SPARK and SpatialDE 
removes excessive heterogeneity, including signals from SVGs, which limits their ability to 
identify SVGs. Fig. S9 displays SVGs' visualizations before and after SPARK normalization. 
These visualizations showed the effect of normalization mechanism on spatial gene 
expression data. The normalization mechanisms of SPARK and SpatialDE overcorrected the 
signals of SVGs. Nevertheless, to facilitate a comprehensive comparison of various methods, 
we still created a new simulation with higher heterogeneity. This simulated data possesses 
increased heterogeneity in order to mitigate the impact of normalization mechanisms. We 
maintained the expression distribution and parameters constant, while incorporating 
variations such as higher expression in the central circle for some SVG genes, and similar 
expression across three circles for others, as shown in Figure S10. Upon increasing the 
heterogeneity in the simulated data, SPARK and SpatialDE’s performance improved, albeit 
still not on par with other methods. This was particularly evident in datasets with higher 
sparsity and dispersion (NB and ZINB), aligning with the findings reported for SPARK-X2 
in the literature. Notably, enhancing the heterogeneity did not significantly alter the 
performance of the other methods compared to results from the previous revision. 
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Figure S87 a, SVGs' visualization of Big squares in the simulated data. b, SVG in the 

MERFISH data. The left plot shows the original spatial expression for SVGs. The right plot 

shows the spatial expression for SVGs after SPARK normalization. Source data are provided 

with this paper. 
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Figure S88 Simulation results for identifying SVGs using simulated data with higher 

heterogeneity a, Visualization of SVGs and non-SVG. b-e, Simulation results of six different 

methods (HEARTSVG, scGCO, SPARK, SPARK-X, SpatialDE and Squidpy) on simulated 

data generated by four distinct distributions (ZINB, ZIP, NB, Poisson). The bar diagram 

shows F1 scores, TPRs, precisions, and FPRs. Index values were calculated at the adjusted 

p-value cutoff of 0.05. Source data are provided with this paper. 
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11. Sensitivity analyses of data characteristics 

The data characteristics of different distributions (expression levels, degree of dispersion, 

and sparsity) significantly affect the performance of various methods in identifying SVGs. 

We conducted sensitivity analyses to pinpoint which steps in the analysis are particularly 

sensitive to variations in data characteristics. 

11.1. Data characteristics similar, performance similar 

Our analysis shows that when the data characteristics are aligned, each method's performance 

is relatively stable across different simulated datasets, regardless of the underlying 

distribution (Fig. S89-S91). We have added two new simulations in which we adjusted the 

parameters of all distributions (ZINB, ZIP, NB, Pois) to ensure the data characteristics (mean, 

dispersion, and sparsity levels) produced are similar. It is important to note that, due to the 

inherent properties of the distributions, ZIP and ZINB will inherently exhibit greater 

dispersion than Pois and NB under similar mean and variability levels. In simulated datasets 

with higher dispersion (𝑍𝐼𝑃, 𝑍𝐼𝑁𝐵), scGCO showed lower 𝐹!	𝑠𝑐𝑜𝑟𝑒𝑠. Furthermore, in 

simulated datasets with higher sparsity and lower expression levels (mean level 0.25), the 

SVG identification capabilities of all methods diminished. 

 
Figure S89 a, Visualization of Ring Pattern for different distributions that share similar data 

characteristics (mean, dispersion, and sparsity level). b, Each method has similar 𝐹!	𝑠𝑐𝑜𝑟𝑒 

across different simulated datasets. scGCO has lower 𝐹!	𝑠𝑐𝑜𝑟𝑒 on datasets characterized by 

higher dispersion, such as those from 𝑍𝐼𝑃  and 𝑍𝐼𝑁𝐵  distributions. Source data are 

provided with this paper. 
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Figure S90 a, Visualization of Ring Pattern for different distributions that share similar data 

characteristics (mean, dispersion, and sparsity level). b. Each method has similar 𝐹!	𝑠𝑐𝑜𝑟𝑒 

across different simulated dataset. Source data are provided with this paper. 

 
Figure S91  Each method has similar 𝐹!	𝑠𝑐𝑜𝑟𝑒 across different simulated dataset of Big 

circles Pattern. These datasets generated by different distributions sharing similar data 

characteristics (mean, dispersion, and sparsity level). Source data are provided with this 

paper. 

The parameter settings for the two new simulations are as follows. 

1) Simulations with medium sparsity and high expression levels. 
For non-SVGs and the non-marked area of SVGs, the data characteristics (mean, dispersion, 
and sparsity level) generated by different distributions were adjusted to be close to a 
𝑚𝑒𝑎𝑛 = 𝑣𝑎𝑟 = 0.5, 𝑃(𝑋 = 0) = 0.6 (approximating 𝑃𝑜𝑖𝑠(λ = 0.5)). For the marked area 
of SVGs, the data characteristics were made to approximate a 𝑚𝑒𝑎𝑛 = 𝑣𝑎𝑟 = 1.5, 𝑃(𝑋 =
0) = 0.3 (approximating 𝑃𝑜𝑖𝑠(𝜆 = 1.5)). The specific parameters are as follows. 
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Table S6 Parameters of different distributions close to a 𝒎𝒆𝒂𝒏 = 𝒗𝒂𝒓 = 𝟎. 𝟓, 𝑷(𝑿 =

𝟎) = 𝟎. 𝟔 and 𝒎𝒆𝒂𝒏 = 𝒗𝒂𝒓 = 𝟏. 𝟓, 𝑷(𝑿 = 𝟎) = 𝟎. 𝟑. 

 non-SVG and non-marked area of 
SVGs 

marked area of SVGs 

probability 
of extra 
zeros 

non-zero part probability 
of extra 
zeros 

non-zero part 
mu/lambda size mu/lambda size 

Pois - 0.5 - - 1.5  
NB - 0.5 30 - 1.5 30 
ZIP 0.4 0.833 - 0.2 1.8 - 

ZINB 0.5 1 30 0.25 2 30 

2) Simulations with high sparsity and low expression levels 
For non-SVGs and the non-marked area of SVGs, the data characteristics (mean, dispersion, 
and sparsity level) generated by different distributions were adjusted to be close to a 
mean=var=0.25, P(X=0)=0.8 (approximating 𝑃𝑜𝑖𝑠(𝜆 = 0.25)). For the marked area of 
SVGs, the data characteristics were made to approximate a mean=var=0.75, P(X=0)=0.5 
(approximating 𝑃𝑜𝑖𝑠(𝜆 = 0.75)). The specific parameters are as follows. 

Table S7 Parameters of different distributions close to a mean=var=0.5, P(X=0)=0.6 and 

mean=var=1.5, P(X=0)=0.3. 

 non-SVG and non-marked area of 
SVGs 

marked area of SVGs 

probability 
of extra 
zeros 

non-zero part probability 
of extra 
zeros 

non-zero part 
mu/lambda size mu/lambda size 

Pois - 0.25 - - 0.75  
NB - 0.25 30 - 0.75 30 
ZIP 0.5 0.5 - 0.2 0.95 - 

ZINB 0.5 0.5 30 0.2 0.95 30 
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11.2. Effect of Data Dispersion on Method Performance 

We found that scGCO is significantly impacted by increased data dispersion, whereas 
HEARTSVG, SPARK-X, and Squidpy are robust under these conditions. 

In simulations of our manuscript, using 𝑁𝐵  and 𝑃𝑜𝑖𝑠  distributions, HEARTSVG, 
SPARK-X, and Squidpy showed similar performances across both sets of simulated data. 
However, scGCO showed notable differences, performing significantly worse on the NB 
distribution than on the Pois distribution. The simulations with 𝑁𝐵(1.5,0.5) and 𝑃𝑜𝑖𝑠(0.5) 
distributions had similar spatial expression patterns (Fig. S4a), equal means (Non-SVG: both 
𝑁𝐵 and 𝑃𝑜𝑖𝑠 with 𝜇 = 0.5; SVG: both 𝑁𝐵 and 𝑃𝑜𝑖𝑠 with 𝜇 = 1.5) and similar sparsity 
levels (Fig. S4b). Yet, the 𝑁𝐵	(𝑠𝑖𝑧𝑒 = 1.5)	distribution is more right-skewed, indicating 
stronger overdispersion (Fig. S92b).  
As we know, with the '𝑠𝑖𝑧𝑒' parameter in the 𝑁𝐵	distribution increases, the data dispersion 
decreases. When '𝑠𝑖𝑧𝑒 ' approaches infinity, the 𝑁𝐵(𝑠𝑖𝑧𝑒, µ)  converges to a Poisson 
distribution 𝑃𝑜𝑖𝑠(λ) with λ=μ. Fig-S1c demonstrated that, the 𝑁𝐵(𝑠𝑖𝑧𝑒 = 30) and Pois 
distributions' shapes are almost identical (	𝜆 = 𝜇) (Fig. S92c). Therefore, we generated two 
sets of 𝑁𝐵  simulation data with 𝑠𝑖𝑧𝑒 = 30  and 𝑠𝑖𝑧𝑒 = 5  (the 𝜇  parameter same as 
before) to compare with the previous 𝑁𝐵(1.5,0.5) and 𝑃𝑜𝑖𝑠(0.5) distribution results. The 
simulation results  (Fig. S93) showed that with 𝑁𝐵(𝑠𝑖𝑧𝑒 = 30), as dispersion decreases, 
scGCO’s 𝐹₁	𝑠𝑐𝑜𝑟𝑒 significantly improves (Fig. S5b), aligning with the 𝐹₁	𝑠𝑐𝑜𝑟𝑒 seen with 
the Poisson distribution (Fig. S93c). We conducted similar simulations on the 'Big squares' 
pattern and obtained consistent results (Fig. S94). Compared to 𝑁𝐵(𝑠𝑖𝑧𝑒 = 30) ,	
𝑁𝐵(𝑠𝑖𝑧𝑒 = 5) ,	 𝑁𝐵(𝑠𝑖𝑧𝑒 = 1.5) , with a reduced '𝑠𝑖𝑧𝑒 ' leads to increased dispersion, 
significantly diminishing scGCO’s ability to identify SVGs, while HEARTSVG, SPARK-X, 
and Squidpy showed no significant change, demonstrating greater robustness. 
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Figure S92 a,Visualizations of the 'Ring pattern' SVGs. Gene expression distributions 

correspond to 𝑁𝐵(𝑠𝑖𝑧𝑒 = 1.5), 𝑁𝐵(𝑠𝑖𝑧𝑒 = 30), and Poisson distribution, with same 'mean' 

parameter. Their visual appearances are fundamentally similar. b, Density comparision of 

Pois and 𝑁𝐵(𝑠𝑖𝑧𝑒 = 1.5). 𝑁𝐵	(𝑠𝑖𝑧𝑒 = 1.5)	distribution is more right-skewed, indicating 

stronger overdispersion. c, Density comparision of Pois and 𝑁𝐵(𝑠𝑖𝑧𝑒 = 30). 𝑁𝐵(𝑠𝑖𝑧𝑒 =

30) and Pois distributions’ shapes are almost identical. 
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Figure S93 a,Visualizations of the 'Ring pattern' SVGs. Gene expression distributions 

correspond to 𝑁𝐵(𝑠𝑖𝑧𝑒 = 1.5), 𝑁𝐵(𝑠𝑖𝑧𝑒 = 5), 𝑁𝐵(𝑠𝑖𝑧𝑒 = 30), and Poisson distribution, 

with same 'mean' parameter. Their visual appearances are similar. b, 𝐹!𝑠co𝑟𝑒 comparision 

of all methods on simulations using 𝑁𝐵(𝑠𝑖𝑧𝑒 = 5)  and 𝑁𝐵(𝑠𝑖𝑧𝑒 = 30) . c, 𝐹!𝑠co𝑟𝑒 

comparision of all methods on simulations  of previous manuscript. The SVG identification 

capability of scGCO diminished with high dispersion (small 'size' parameter). Source data 

are provided with this paper. 
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Figure S94 Big circles Pattern. a, 𝐹!𝑠co𝑟𝑒 comparision of all methods on simulations 

using 𝑁𝐵(𝑠𝑖𝑧𝑒 = 5)  and 𝑁𝐵(𝑠𝑖𝑧𝑒 = 30) . b, 𝐹!𝑠co𝑟𝑒  comparision of all methods on 

simulations of previous manuscript. The SVG identification capability of scGCO diminished 

with high dispersion (small '𝑠𝑖𝑧𝑒' parameter). Source data are provided with this paper. 

11.3. Impact of Data Sparsity and Expression Levels on SVG Identification 

An increase in data sparsity and a decrease in overall expression levels generally 
diminishes all methods' capacities to identify SVGs. 

High sparsity often coexists with low expression levels in single-cell and spatial 
transcriptomics data. In simulations of our previous manuscript, we generated simulated 
scenarios with high sparsity and low expression levels using the 𝑍𝐼𝑁𝐵 distribution. In these 
simulations, the non-SVGs had over 94% zeros, while the SVGs had over 60% zeros. High 
sparsity is common in data generated by techniques like Slide-seqV2, HDST, Visium HD 
and Stereo-seq at single-cell or subcellular resolution. 
To further investigate this, we introduced a new 𝑁𝐵  distribution with parameters 
(SVG: 𝑁𝐵(𝑠𝑖𝑧𝑒 = 0.5, 𝜇 = 0.73) , non-SVG: 𝑁𝐵(𝑠𝑖𝑧𝑒 = 0.065, 𝜇 = 0.1) ), aiming to 
approximate the original 𝑍𝐼𝑁𝐵  distribution (Fig. S95a). We generated simulated data 
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following this new 𝑁𝐵 distribution and compared it with the previous 𝑍𝐼𝑁𝐵 simulation 
results. The results (Fig. S95b) show that all methods performed on the new 𝑁𝐵 simulated 
data that were generally consistent with the original 𝑍𝐼𝑁𝐵 results. The comparison of the 
new 𝑁𝐵 simulation with the original 𝑁𝐵 results demonstrated that all methods' SVG 
identification capabilities decreased on the more sparsely distributed new 𝑁𝐵 data. 
Additionally, we conducted another simulation (Tab.S3). Using Poisson distributions with 
decreasing 𝜆 values: (𝑃𝑜𝑖𝑠(𝜆 = 0.5), 𝑃𝑜𝑖𝑠(𝜆 = 0.25), 𝑃𝑜𝑖𝑠(𝜆 = 0.1). As we know, for 
Poisson distribution, as the parameter 𝜆 decreased, the data sparsity increased, and overall 
expression levels decreased. Similar to the previous simulation, all methods exhibited 
decreased SVG identification capabilities as λ decreased. HEARTSVG and Squidpy showed 
greater robustness to changes in sparsity than others. 
 

Table S8 new Poisson distributions parameters. 

  non-SVG and 
non-marked area of 

SVGs 

marked area of SVGs 

Pois 
(lambda) 

𝑃𝑜𝑖𝑠(𝜆 = 0.1) 0.1 0.3 
𝑃𝑜𝑖𝑠(𝜆 = 0.25) 0.25 0.75 
𝑃𝑜𝑖𝑠(𝜆 = 0.5) 0.5 1.5 
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Figure S95 a, Density comparision of new 𝑁𝐵 and original 𝑍𝐼𝑁𝐵. Their distributions’ 

shapes are almost identical. b, 𝐹!𝑠co𝑟𝑒 comparision of all methods on simulated data from 

new 𝑁𝐵 distributions. c, 𝐹!𝑠co𝑟𝑒 comparision of all methods on simulations of previous 

manuscript.  
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Figure S96 a, Visualizations of the 'Ring pattern' SVGs. Gene expression distributions 

correspond to (𝑃𝑜𝑖𝑠(𝜆 = 0.5) , 𝑃𝑜𝑖𝑠(𝜆 = 0.25) , 𝑃𝑜𝑖𝑠(𝜆 = 0.1) . As the paraneter 𝜆 

decreased, the data sparsity increased, overall expression levels decreased, and visual clarity 

diminished. The color pattern distribution across the plots gets progressively sparser from 

left to right, illustrating the effect of decreasing the lambda parameter on the sparsity of the 

generated data. b, Ring Pattern, comparing the 𝐹!	𝑠𝑐𝑜𝑟𝑒𝑠 of four different methods across 

three simulated scenarios with varying 𝜆 for Poisson distributions: 0.5, 0.25, and 0.1. c, Big 

circles Pattern, comparing the 𝐹!	𝑠𝑐𝑜𝑟𝑒𝑠 of four different methods across three simulated 

scenarios with varying 𝜆 for Poisson distributions: 0.5, 0.25, and 0.1. The bar chart clearly 

visualizes the decreasing 𝐹!	𝑠𝑐𝑜𝑟𝑒𝑠  of four methods as data sparsity increases with 

decreasing 𝜆 values. Source data are provided with this paper. 
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11.4. Uniform Hindrance: Low Cell/Spot Counts 

A low count of cells or spots uniformly hinders all methods' abilities to identify SVGs 
effectively. Although unrelated to the data distribution and data characteristics, our research 
indeed found that the capability of all methods to identify SVGs diminishes when the dataset 
contains a smaller number of cells/spots. We generated a new simulations with the same 
Poisson distribution parameters as the previous simulation in the manuscript, but with the 
number of cells set to 500. Compared to the previous simulation results, the new simulation 
showed a marked decrease in the 𝐹!	𝑠𝑐𝑜𝑟𝑒𝑠 for all methods (Fig. S97). 

 

Figure S97  a, New simulation results with the number of cells set to 500. b, Previous 

simulation results with the number of cells set to 3000. Source data are provided with this 

paper. 
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12. Comparison of average false discovery proportion (FDP) 

We evaluated the average False Discovery Proportion (FDP) against the nominal False 

Discovery Rate (FDR) using noise-free simulated data at mean levels of 0.5 and 0.25 (Page 

105，Table S6-S7 of this file for detailed simulation settings). We examined the average FDP 

of various methods at nominal FDR settings of 0.01, 0.05, and 0.1. Our findings (Fig. S98) 

indicate that Squidpy's average FDP consistently exceeded the nominal FDR. In contrast, 

HEARTSVG and SPARK-X maintained an average FDP below the nominal FDR 

consistently. For scGCO, the average FDP surpassed the nominal FDR at the mean level of 

0.5 simulated data with moderate data sparsity. However, at the lower expression level with 

higher sparsity (mean level of 0.25), scGCO's average FDP fell below the nominal FDR, 

albeit with a concurrently low TPR. These results highlight the superior performance of 

HEARTSVG and SPARK-X in controlling false positives. 

We noted that the literature5 suggests "Simulation experiments relying on parametric models 

may offer an overly optimistic assessment of a method's efficacy". Given the inability to 

generate spatial transcriptomics simulated data for SVGs using the SimSeq algorithm, we 

embarked on an alternative intriguing endeavor. We analyzed the changes of average FDP as 

the capacity to identify SVGs deteriorated (reflected by a decrease in 𝐹!	𝑠𝑐𝑜𝑟𝑒). Specifically, 

we modified the approach of adding Gaussian noise as Reviewer 3's comment. With this 

modified approach to Gaussian noise incorporation, we observed that as the level of noise 

increased, all patterns became increasingly difficult to detect (Fig. S99a), causing a decline 

in the 𝐹!	𝑠𝑐𝑜𝑟𝑒𝑠 of all methods towards zero (Fig. S99b). At a nominal FDR of 0.05, we 

analyzed how the average FDP of various methods altered with increasing noise. Our results 

(Fig. S99b) indicated that Squidpy’s average FDP consistently exceeded the nominal FDR. 

In contrast, HEARTSVG and SPARK-X’s average FDP remained below the nominal FDR. 

For scGCO, the average FDP began to rise with increasing noise levels and ultimately 

surpassed the nominal FDR. 

In summary, HEARTSVG stands out in controlling false positives, indicating that its 

identified SVGs are highly credible. However, this may also suggest that HEARTSVG’s 

selection is relatively conservative.  
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Figure S98 a, Plot of average FDP at different nominal FDR. The solid gray line represents 

an average FDP that is exactly equal to nominal FDR. b, Plot of average 𝐹!	𝑠𝑐𝑜𝑟𝑒 at 

different nominal FDR. c, Plot of average TPR at different nominal FDR. Source data are 

provided with this paper. 
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Figure S99 a, Visualizations of spatial patterns, incorporating noise using the modified 

Gaussian noise addition approach. b, Plot of average FDP, 𝐹!	𝑠𝑐𝑜𝑟𝑒 and TPR at nominal 

FDR=0.05. The solid gray line represents nominal FDR=0.05. Source data are provided with 

this paper. 
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