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Reviewer #1 (Remarks to the Author):

1. One of the key advantage claimed by the authors is scalability. However, their evaluation
stopped at 50,000 cells. In comparison, the authors of scGCO evaluated performance up to 1
million cells. Thus additional evaluation is necessary. I would suggest the authors to evaluate both
simulated data up to 1 million cells and real biological sample with millions of cells. Furthermore,
in addition to running time, it is essential to profile the memory footprint of different methods to
gain a holistic picture of these methods’ scalability.

2. I am strong concerned about how the authors calculated performance metrics (such as AUC, F1
etc) on real biological samples. Unlike fields such as image classification in computer vision, where
the class label of each image in the data set is authentic and known, our current understanding of
SV genes is rather limited and for each biological sample, the true set of SV genes are unknown.
The authors selected the top 500 overlaps between HEARTSVG and SPARK-X to form a set of true
SVGs. This is a very biased approach and will strongly favor HEARTSVG and SPARK-X. Using genes
selected by HEARTSVG to evaluate the performance of HEARTSVG is the same as evaluate a
method’s performance using the training data, it is fundamentally flawed.

3. Given that the true set of SV genes are generally unknown in real biological samples, the
evaluation based on simulated data is critical. Unfortunately the authors only simulate three simple
patterns. Additional patterns are necessary to gain an unbiased picture. The authors should
demonstrate that the patterns are comprehensive enough to capture major SV trends.
Furthermore, because all methods will perform extremely well on noise-free simulated data,
varying level of noises should be added to evaluate the robustness of different methods.

Reviewer #2 (Remarks to the Author):

The manuscript entitled, "HEARTSVG: a fast and accurate method for spatially variable gene
identification in large-scale spatial transcriptomic data” by Yuan et al. presents an interesting new
methodology to identify spatial variable genes (SVGs). This work aims to identify SVGs without
using pre-determined assumptions about gene expression spatial distribution. The authors focus
on identifying non-SVGs genes to define a background spatial expression and then infer SVGs
using both semi-pooling and autocorrelation. The authors have analyzed a significant number of
datasets (n=12) across different sequencing technologies and investigated data sparsity, distinct
spatial patterns, number of spots, SVGs abundance and ZINB parameters on simulated data.
Additionally, in the revised version the authors include a comparison with other SVGs detection
methods such as scGCO, spatialDE, SPARK and SPARK-X. The authors show that HEARTSVG
provides a considerable improvement of their methodology in their capability to accurately identify
SVGs and provide scalability of the tool. To be accepted the authors will need to thoroughly revise
the manuscript and edit figures to increase their quality.

Major Comments.

Which parameters (steps) were used for the different semi-pooling schema? This information is not
clearly available in the manuscript. What is the reasoning behind choosing a Stouffer’'s method to
derive a combined p-value? Showing the distribution of p-values across a set of samples would be
beneficial. Also, the authors should describe which spatial autocorrelation measure is used in the
HEARTSVG and explain how distinct is for example from Moran’l autocorrelation measure or other.
What autocorrelation threshold was used for genes to be considered an SVG (high autocorrelation)
versus a non-SVG (low autocorrelation)?

Also, how is the proposed method distinct from Squidpy by Palla et al. Nature Methods, 19, 171-
178 (2022)?

Major Comments.
Please, consider revising Figure 1 and clearly illustrate inputs (used resources) and the outputs,
metrics as it fails to show all the analysis steps to accurately quantify the final ST profiles.

The description of the auto-clustering method used in the manuscript is rather limited. I
recommend adding additional details in the Supplementary Method section.



On Figure 2, the x-axis label should be labeled Percentage of SVGs. Additionally, the authors
mentioned sample size, but it seems more like they are refereeing to the number of spots.

On Figure 3 panel C, revise the scale in which p-values are shown (-log10(p-value)).

Consider revising manuscript and figures to consistently use FPR (false positive rate) and TPR (true
positive rate).

On line 136: “Spot coordinates of each spot were generated using a Poisson random point process
and gene expression counts were generated from the zero-inflated negative binomial distribution
(ZINB)". In the revised version of the manuscript the authors used negative binomial (NB), zero-
inflated negative binomial (ZINB), Poisson, and zero-inflated Poisson (ZIP) and this information is
not clearly included in the result section.

On lines 322-325 and Figure 4. It seems quite odd the identification of “Rectum specific pathways”
in cerebellum data. Please, confirm this is correct and share the GO ID and associated p-value.
Additionally have the authors selected an expression threshold above which genes are considered
to be expressed? And what is the minimum number of genes to be considered for a pathway to be
enriched?

On Figure S10, 1236 genes were identified as common SVGs between different methods
HEARTSVG, scGCO and SPARK-X, etc. It would be of interest to show the expression patterns of
other genes that overlap across the different methods.

Minor Comments.

I recommend improving the quality of panels shown in Figure S10 and increase the font size. The
same applies to Figure 4B labels.

On Figure S7 legend is not clear to what: “large pattern size” refers too. “Figure S7 Simulation
results of hotspot pattern with low sparsity and large pattern size, (@) F1 score, (b) recall, (c)
precision.”

On Figure S19 legend what are: "MT” genes? “Figure S19 ‘MT' genes in primary colorectal cancer
tissue and liver metastasis cancer tissue.”

On Figures S23-524 add which scale is being used to display the expression values.

Comments on the Quality of English Language

The paper is easy to follow and understand, but I would recommend editing by an English-
speaking editor, in particular the Result section, to remove sentence duplications, and select the
appropriate plural form, prepositions and articles and any other orthographic typos.

Consider uniformly using GO (vs Go) for Gene Ontology terms and uppercase gene symbols
throughout the manuscript.

Line 140: Consider correcting this sentence: The F1 score was used to assess the performances of
identification SVGs of HEARTSVG and three other SVG detection methods in identifying SVGs.”

Line 144: Consider reframing this sentence: “SpatialDE, SPARK struggled to identify SVGs in
sparse data possibly due to their adoption of the Gaussian data-generative model, which is not
well-suited for gene spatial expression distribution.” Why is it not well suited?

Line 147: Consider reframing this sentence: “"scGCO exhibited many false negatives in due to its
difficulty in accurately identifying candidate regions for SVGs in highly sparse datasets.”

Lines 147-8: Remove the repetition from sentence: “On the low sparsity simulated data, scGCO
showed improved F1 scores on simulated data with lower sparsity (F1 score=0.333).



Line 149: Consider re-writing this sentence to clarify what it means: “Identification performance
was influenced by the pattern sizes of SVGs and sample sizes (Fig.2b, S1-3). What sample sizes
were used? and what are pattern size? Described in Methods?

Figure 1 legend: Edit inflaation to inflation



Dear Reviewers:

Thank you for the reviewers’ comments concerning our manuscript entitled "HEARTSVG: a fast
and accurate method for spatially variable gene identification in large-scale spatial
transcriptomic data"(ID: NCOMMS-23-29155). Those comments are all valuable and very helpful
for revising and improving our paper, as well as the important guiding significance to our
research. We have carefully addressed your comments and made corrections. The detailed
responses and the corresponding changes in the manuscript are shown in the following pages.
Representative results have been highlighted in our response, and comprehensive tables and
figures presenting all results are attached at the end of this reply. The contents are outlined

below for your convenience.

We hope these revisions align with your expectations and improve the overall quality of the

manuscript.
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Response to Reviewer #1.:

1. One of the key advantages claimed by the authors is scalability. However, their
evaluation stopped at 50,000 cells. In comparison, the authors of scGCO evaluated the
performance up to 1 million cells. Thus, additional evaluation is necessary. | would suggest
the authors to evaluate both simulated data up to 1 million cells and real biological samples
with millions of cells. Furthermore, in addition to running time, it is essential to profile the
memory footprint of different methods to gain a holistic picture of these methods’

scalability.

Thank you for your valuable comment on scalability. We appreciate the insights and understand
the importance of extending our evaluation to larger datasets, both in simulated and real
biological scenarios. We optimized the code using the ‘dplyr’ package for data manipulation
and achieved reductions in runtime and memory usage. The updated version is available on
GitHub. HEARTSVG computes faster in large-scale datasets than all other methods (13.45 mins
for 1 million cells). Taking into consideration the comment from Reviewer 2, we have included
Squidpy' for comparison. Squidpy' is a tool for the analysis and visualization of spatial molecular

data and uses Moran's | statistics to detect spatially variable genes.).

Specifically, we expanded the assessment of simulated data (with 10,000 simulated genes) to
scenarios with up to one million cells (Figure 2 in the revised manuscript, Page 10). In terms
of runtime, HEARTSVG and SPARK-X outperformed other methods noticeably. For datasets with
500,000 and 1,000,000 cells, HEARTSVG demonstrated the fastest performance (6.83 mins and
13.45 mins), while SPARK-X required 8.82 mins and 16.43 mins. In contrast, scGCO demanded
7.58 hours and 21.83 hours, and Squidpy necessitated 2.47 days and 4.93 days. Regarding
memory requirements, HEARTSVG, SPARK-X, and Squidpy exhibited similar memory needs, with
values of 196.87 GB, 219.12 GB, and 182.17 GB for datasets of 500,000 cells, and 416 GB, 344
GB, and 367 GB for datasets of 1 million cells, respectively. Notably, scGCO had the highest
memory demand, requiring 480.42 GB and 924.4 GB for the respective datasets of 500,000 and

1,000,000 cells.



Additionally, we have evaluated time consumption and memory requirements of four methods
(HEARTSVG, SPARK-X, scGCO, and Squidpy) on real biological samples from mouse
hypothalamus, comprising 1027,848 cells and 161 genes as show in the Figure S1 in this reply
(Figure S7, Page 14 in Supplementary). HEARTSVG required 1.43 mins and 7.31 GB, scGCO
needed a runtime of 112 mins and 14.72 GB, SPARK-X took 0.62 mins and 5.78 GB, and Squidpy
took 3.73 mins, and 7.78 GB. We attempted to compare the performance of HEARTSVG, scGCO,
SPARK-X and Squidpy on simulated data with 2 million cells (1000 simulated genes). HEARTSVG
completed the computation in 4 to .5 minutes and 82.70 GB, Squidpy took 188.5 minutes and
343.7 GB, while SPARK-X and scGCO failed to scale to the dataset with 2 million cells. The new
results are presented below and depicted in both the revised manuscript and the supplementary

materials.

Figure 2e in the revised manuscript Plot shows the time consumption in log10(minutes)) (y-
axis) for each method analyzing on simulated data (10,000 simulated genes) with different
sample sizes (x-axis). Figure 2e Plot shows memory requirements in GB (y-axis) for each method
analyzing on simulated data (10,000 simulated genes) with different sample sizes (x-axis).
Considering the limitation of scalability, we did not apply SpatialDE to datasets with samples
exceeding 30,000 and did not apply SPARK to datasets with sample sizes exceeding 20,000.
Considering the limitation of scalability, we did not apply SpatialDE to datasets with samples

exceeding 30,000 and did not apply SPARK to datasets with sample sizes exceeding 20,000.



Figure S1  (Figure S7 in the supplementary) a, Bar diagram shows time consumption (y-axis)
of four methods on mouse hypothalamus data (1027,848 cells and 161 genes) by MERFISH

technology. b, Bar diagram shows memory requirements (y-axis) of four methods.

2. |l am strong concerned about how the authors calculated performance metrics (such
as AUC, F1 etc) on real biological samples. Unlike fields such as image classification in
computer vision, where the class label of each image in the data set is authentic and
known, our current understanding of SV genes is rather limited and for each biological
sample, the true set of SV genes are unknown. The authors selected the top 500 overlaps
between HEARTSVG and SPARK-X to form a set of true SVGs. This is a very biased
approach and will strongly favor HEARTSVG and SPARK-X. Using genes selected by
HEARTSVG to evaluate the performance of HEARTSVG is the same as evaluate a method’s

performance using the training data, it is fundamentally flawed.

Thank you for your comment. You are right. It is unfair to form a set of true SVGs by selecting
the top 500 overlaps between HEARTSVG and SPARK-X. To avoid bias, we now selected the top
500 overlaps from the results of all six methods as the set of true SVGs and generated mixture
simulations (The schematic of simulated data with mixture noise is shown in Figure S2 in this
reply). Based on the top 500 overlaps from the results of all six methods, we constructed four
artificial genesets as benchmarks to assess the accuracy and robustness of all methods. Among
these four genesets, HEARTSVG exhibited the highest TPRs (average TPR = 0.987) (Figure S3-
S6,listed below). The other five methods exhibited lower TPRs on the genesets with noise,
especially in non-SVGs with noise. In addition, we generated 1000 noise-free simulated SVGs
and employed the same approach to create non-SVGs, SVGs with noise, and non-SVGs with
noise. According to our simulation results, HEARTSVG performed the highest F1 scores (average

4



F1 score = 0.931) and TPRs of each gene set (average TPR = 0.901) than the other methods
across datasets with different spatial patterns (Figure S23, Page23 in this reply) In contrast,
scGCO, SpatialDE, SPARK, and SPARK-X had lower precision values, with both false negatives in
the SVGs with noise and false positives in the non-SVGs with noise. These findings suggest that

HEARTSVG is a robust and effective method for detecting SVGs in noisy datasets.

Regarding the calculation of the indices (AUC, F1, etc.) in the section of “Application to 10X
Visium colorectal cancer data”, we chose two widely used genesets, single-cell level common
gene modules linked with tumor microenvironments® and consensus molecular markers of
colorectal cancer subtypes”’, as reference standards for true SVGs. The first geneset, single-cell
level common gene modules linked with tumor microenvironments has been widely applied in
pan-cancer studies of tumor microenvironments® . Zhang.et.al’ used these gene modules to
study the tumor micro-environment of liver cancer. The second geneset, consensus molecular
markers of colorectal cancer subtypes, has found broad applications CRC patient classification"

12,15

* and has been validated by various studies

The representative results (Figure S3-S6) are listed below, and all the results are attached at the
end of this response (Figure S23 in this reply). We have also updated the manuscript and the
Supplementary accordingly (Figure 3 , Page 15 the manuscript, Figure S13, S39-S61, Page

24,48-70 on Supplementary).



Figure S2  The schematic of simulated data with mixture noise. Set 1 represents the true SVGs
set, derived by selecting the top 500 overlaps from the results of all six methods. Set 3 is the
non-SVGs set, created by randomly rearranging gene expressions within Set 1. Set 2 and Set 4

are generated by using a mixture of SVGs and non-SVGs to simulate data with noise.



Figure S3  a, Visualization of SVG, SVG with noise, non-SVG, non-SVG with noise. b, The
heatmap shows the comparison of TPR values among four gene sets on three colorectal cancer
ST datasets and three corresponding liver metastasis ST datasets. Setl: SVGs. Set2: SVGs with

noise. Set3: non-SVGs. Set4: non-SVGs with noise.



Figure S4  Simulation results of SVGs identification using simulated data with mixture noise.
a, Visualization of Pattern: Hotspot with mixture noise. b-e, Simulation results of six different
methods (HEARTSVG, scGCO, SPARK, SPARK-X, Squidpy) on simulated data generated by four
distinct distributions (ZINB, ZIP, NB, Poisson). The bar diagram (sub-panel (1)) shows F1 scores,
TPRs, precisions, and FPRs. The heatmap (sub-panel (2)) depicts the comparison of TPR values

among six genesets.



Figure S5  Simulation results of SVGs identification using simulated data with mixture noise.
a,Visualization of Pattern: Streak with mixture noise. b-e, Simulation results of six different
methods (HEARTSVG, scGCO, SPARK, SPARK-X, Squidpy) on simulated data generated by four
distinct distributions (ZINB, ZIP, NB, Poisson). The bar diagram (sub-panel (1)) shows F1 scores,
TPRs, precisions, and FPRs. The heatmap (sub-panel (2)) depicts the comparison of TPR values

among six genesets.



Figure S6  Simulation results of SVGs identification using simulated data with mixture noise.
a, Visualization of Pattern: Big triangles with mixture noise. b-e, Simulation results of six different
methods (HEARTSVG, scGCO, SPARK, SPARK-X, Squidpy) on simulated data generated by four
distinct distributions (ZINB, ZIP, NB, Poisson). The bar diagram (sub-panel (1)) shows F1 scores,
TPRs, precisions, and FPRs. The heatmap (sub-panel (2)) depicts the comparison of TPR values

among six genesets.
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3. Given that the true set of SV genes are generally unknown in real biological samples, the
evaluation based on simulated data is critical. Unfortunately, the authors only simulate
three simple patterns. Additional patterns are necessary to gain an unbiased picture. The
authors should demonstrate that the patterns are comprehensive enough to capture major
SV trends. Furthermore, because all methods will perform extremely well on noise-free
simulated data, varying levels of noise should be added to evaluate the robustness of
different methods.

Thank you very much for your comments. Following your comments, we have extended our
simulations with 19 additional spatial patterns that cover various scenarios of gene expression
changes We have also assessed the robustness of different methods in the presence of varying
levels of noise.

In noise-free simulated data, HEARTSVG showed higher F1 scores (average F1 score=0.948) than
other methods across 22 different spatial patterns and varying numbers of cells (Figure S7).
Regarding the simulations with noises, we generated simulated data with three different noise
generation approaches:

a) Gaussian noise

b) The noise of 'Randomly Exchanging Expression Values of Selected Nodes

c) Mixture noise

We added Gaussian noise to simulated data with four different distributions and 22 spatial
patterns, following a similar approach as scGCO. We applied six different levels of noise to 10,000
simulated genes (both SVGs and non-SVGs) and created six datasets with noises. HEARTSVG
showed the best performance (average F1 score = 0.849 at Gaussian noise strength of 0.3)
among the four methods (HEARTSVG, scGCO, SPARK-X and Squidpy), and was the most robust
to increasing Gaussian noise strength. SPARK-X was the second-best method in terms of these
indices. Squidpy had a significant drop in Precision and F1 scores when the Gaussian noise
strength was higher than 0.2, indicating that it had many false positives in noisy data. For
simulated data with noise of ‘Randomly Exchanging Expression Values of Selected Nodes’,
we followed the procedures described by scGCO to generate noisy datasets. We randomly
selected some spots of the SVG’s marked area and non-marked area and then exchanged their

expression values. All methods had a substantial decline in F1 score when the percentage of
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randomly exchanged cells increased. HEARTSVG still had the highest accuracy (average F1 score
= 0.618 at percentages of exchanging cells of 30%) and the lowest false positive rates (average
FPR < 0.001 at percentages of exchanging cells of 30%) among the methods. For simulations
with mixture noise, we have described the noise data generation methods and simulation
results in detail in our reply to comment 2. The representative results (Figure S3-S6) are listed
below, and all the results are attached at the end of this response (Figure S24-S66, Page83 to
Pagel22 in this reply). We have also updated the manuscript and the Supplementary
accordingly (Figure 2, Page 10 on the manuscript, Figure S62-S105, Page 71-117 on the

Supplementary).
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Figure S7 a, Visualization of 23 representative spatial expression patterns: Hotspot, Streak,
Gradient, Ring, Nested rings, Streaks, Curve, Rectangles, Big triangles, Big circles, Big squares,
Small triangles, Small circles, Small squares, Big circles I, Small triangles I, Pattern I, Pattern II,
Pattern lll, Irreg pat |, Irreg pat Il, Irreg pat lll. b-e, F1 score plots, TPR plots, Precision plots, and
FPR plots compare the index values (y-axis) of HEARTSVG (red), scGCO (orange), SpatialDE
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(yellow), SPARK (blue), SPARK-X (green), and Squidpy (purple) in simulation data. The
comparison is based on varying sample sizes (x-axis) at an adjusted p-value cutoff of 0.05. Each

plot corresponds to the left spatial patterns in sub-figure a.

Figure S8  Simulation results for identifying SVGs using simulated data with Gaussian noise.
a, Visualization of Pattern: Hotspot with varying level of Gaussian noise. b-e, Simulation results
of four different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data

generated by four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots,
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Precision plots, and FPR plots compare the index values (y-axis) of HEARTSVG (red), scGCO
(orange), SPARK-X (green), and Squidpy (purple) across varying levels of Gaussian noise strength

(x-axis). Index values were calculated at the adjusted p-value cutoff of 0.05.

Figure S9  Simulation results for identifying SVGs using simulated data with Gaussian noise.
a, Visualization of Pattern: Streaks with varying level of Gaussian noise. b-e, Simulation results
of four different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data
generated by four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots,

Precision plots, and FPR plots compare the index values (y-axis) of HEARTSVG (red), scGCO
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(orange), SPARK-X (green), and Squidpy (purple) across varying levels of Gaussian noise strength

(x-axis). Index values were calculated at the adjusted p-value cutoff of 0.05.

Figure S10 Simulation results for identifying SVGs using simulated data with Gaussian noise.
a, Visualization of Pattern: Big circles with varying level of Gaussian noise. b-e, Simulation results
of four different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data
generated by four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots,

Precision plots, and FPR plots compare the index values (y-axis) of HEARTSVG (red), scGCO
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(orange), SPARK-X (green), and Squidpy (purple) across varying levels of Gaussian noise strength

(x-axis). Index values were calculated at the adjusted p-value cutoff of 0.05.

Figure S11 Simulation results for identifying SVGs using simulated data with noise of
'Randomly Exchanging Expression Values of Selected Nodes." a, isualization of Pattern: Streaks
with different percentage of cells random exchanges (%). b-e, Simulation results of four different
methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data generated by four
distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots, Precision plots, and FPR
plots compare the index values (y-axis) of HEARTSVG (red), scGCO (orange), SPARK-X (green),
and Squidpy (purple) across different percentage of cells random exchanges (x-axis). Index

values were calculated at the adjusted p-value cutoff of 0.05.
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Figure S12 Simulation results for identifying SVGs using simulated data with noise of
'Randomly Exchanging Expression Values of Selected Nodes.' a, Visualization of Pattern: Big
circles with different percentage of cells random exchanges (%). b-e, Simulation results of four
different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data generated by
four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots, Precision plots, and
FPR plots compare the index values (y-axis) of HEARTSVG (red), scGCO (orange), SPARK-X
(green), and Squidpy (purple) across different percentage of cells random exchanges (x-axis).

Index values were calculated at the adjusted p-value cutoff of 0.05.
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Response to Reviewer #2

The manuscript entitled, “HEARTSVG: a fast and accurate method for spatially variable
gene identification in large-scale spatial transcriptomic data” by Yuan et al. presents an
interesting new methodology to identify spatial variable genes (SVGs). This work aims to
identify SVGs without using pre-determined assumptions about gene expression spatial
distribution. The authors focus on identifying non-SVGs genes to define a background
spatial expression and then infer SVGs using both semi-pooling and autocorrelation. The
authors have analyzed a significant number of datasets (n=12) across different sequencing
technologies and investigated data sparsity, distinct spatial patterns, number of spots,
SVGs abundance and ZINB parameters on simulated data. Additionally, in the revised
version the authors include a comparison with other SVGs detection methods such as
scGCO, spatialDE, SPARK and SPARK-X. The authors show that HEARTSVG provides a
considerable improvement of their methodology in their capability to accurately identify
SVGs and provide scalability of the tool. To be accepted the authors will need to thoroughly

revise the manuscript and edit figures to increase their quality.
Thank you very much for the valuable feedback. We will thoroughly revise the manuscript and

improve the quality of the figures to better meet your requirements and enhance the overall

quality of the paper. Your suggestions are greatly appreciated.
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Major Comments.

1. Which parameters (steps) were used for the different semi-pooling schema? This
information is not clearly available in the manuscript.

Thank you very much for comments. Follow your comments, we added more information about
the semi-pooling process to the Supplementary (Figure S10, Page 19 in the Supplementary)
and presented below.

The semi-pooling process needs two parameters: direction parameter and feature map
parameter. For each gene, the spatial expression data was averaged according to the given
direction and step parameters, and the mean value was used as the new marginal expression
value (Figure S13 in this reply). HEARTSVG used four sets of different semi-pooling parameters,
which are:

1) Direction: row direction, feature map: 1 X ny gy ;

2) Direction: row direction, step: feature map: 1 X [In (1:ou)];

3) Direction: column direction, feature map: 1 X ngyy;

4)  Direction: column direction, step: feature map: 1 X [In (n¢y)]

where 1,4, is the number of rows in the spatial transcriptome data, 1.y is the number of

columns in the spatial transcriptome data, and [-] means rounding to the nearest integer.
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Figure S13 (Figure S10 in the Supplementary) lllustration of the semi-pooling process. a,
Spatial expression data schematic diagram. We assume the expression value of the gene in each
cell is the order value of the column it belongs to. c-f, The new marginal expression series based

on four sets of parameters.
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2. What is the reasoning behind choosing a Stouffer’s method to derive a combined
p-value? Showing the distribution of p-values across a set of samples would be

beneficial.

Thank you for your comment. We chose Stouffer's method because it is a classic p-value
combination method that tends to pick up consistent effects and is more robust in the presence
of rare outliers®. We also demonstrated the rationality of choosing Stouffer's method through
the following simulation. In the 10X Visium colorectal cancer data, we selected the top 500
overlaps from the results of all six methods as SVGs and created non-SVGs by randomly
rearranging gene expressions of SVGs. Then, we investigated the distributions of p-values
obtained from the autocorrelation test applied to the marginal expression time series (Figure

S14 a-d). Moreover, we compared two common combination methods: Fisher's combination

method and Stouffer's method. Fisher's method (Zpisher = —2 2ieq In(p;) ~ ¥2(df = 8))

directly ~ processed  the  p-values, while  Stouffer's method  (  Zstousfer =

—11_n.
il% ~ N(0,1)) first transformed the p-values into Z-scores, and then combined

them. We calculated the combined p-value statistics of the two methods, plotted the density
histograms (Figure S14e, S14f in this reply), and compared them with their theoretical
distribution density curves (the black solid lines in the figure), as shown in Figure S14 (in this
reply). It can be seen that the distribution of Stouffer’s statistic was closer to the theoretical
distribution, indicating that choosing Stouffer's method was reasonable. We added more
information about the Stouffer's method to the Supplementary (Figure S9, Page 18 in the

Supplementary) and presented below.
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Figure S14 a-d, (Figure S9 in the Supplementary)The density distributions of p-values
obtained from the autocorrelation test applied to the marginal expression time series. e, The
density distributions of Stouffer’s statistic. The black solid line shows the theoretical distribution
(N(0,1)) of the Stouffer’s statistic. f, The density distributions of Fisher’s statistic. The black solid

line shows the theoretical distribution (x?(df = 8) of the Fisher's statistic.
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3. Also, the authors should describe which spatial autocorrelation measure is used in the
HEARTSVG and explain how distinct is for example from Moran’l autocorrelation measure
or other. What autocorrelation threshold was used for genes to be considered an SVG (high
autocorrelation) versus a non-SVG (low autocorrelation)?

Also, how is the proposed method distinct from Squidpy by Palla et al. Nature Methods,
19,171-178 (2022)?

Thank you for your comments. Because Squidpy uses Moran’s | to identify SVGs, we will respond
to these two comments together. Both HEARTSVG and Moran's | measure the spatial correlation
between gene expression values and their neighboring values, but they differ significantly in

their specific approaches.
1) How to measure the spatial correlation?

Moran's | is a statistical measure of spatial autocorrelation, assessing whether gene expression

at spatial locations correlates with that at neighboring locations. The formula for Moran's | is as

N YL, S wij (%) (x-%)
WZi\Izl(xi—f)z

follows: Moran's I = Wwhere, N is the number of cells/spatial spots,

xi,x; are the gene expressions of the cell ¢ and j, and X is the mean expression of all cells,
W = Y Yw;j is the sum of all w;;, w;; is the spatial weight of between the cell /and the cell ;.

The calculation of Moran’s | depends on a predefined spatial weight matrix (if w;; = 0, thus
wi; (x; — f)(xj - 32) = 0, 0 suggests spatial randomness). Thus, the reliability of the predefined

spatial weight matrix is questionable due to the diversity and complexity of real biological

samples.

HEARTSVG uses the autocorrelation of the marginal expressions as a measure of the spatial
correlation, rather than directly calculating the spatial correlation of gene expressions. We
measures the spatial correlation of gene expression levels and neighboring expressions by

Prf =) (resk—T)
Zz=1(rt_f)2

calculating autocorrelations of the marginal expression series (r): pr = . kis the

interval between two marginal expressions. If  p, = 0, it means no correlation between gene
expression and neighboring expressions; otherwise, there is a correlation. HEARTSVG assumes

that the two-dimensional distribution of non-SVGs is random, which is a weak assumption. If a
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gene is random in two dimensions, its marginal distribution should also be random (The

derivation process is in the Section of Methods in the Supplementary).
2) How to identify SVGs?

The values of Moran’s | range from -1 to 1. Positive values indicate positive spatial
autocorrelation (similarity in expressions at adjacent cells). Negative values indicate negative
spatial autocorrelation (dissimilarity in expressions at neighboring cells). O suggests spatial
randomness. However, there is no fixed threshold for Moran’s | to determine whether there is
spatial correlation. To determine whether the calculated Moran’s | statistic is significant, the
Monte Carlo simulation is used to test whether there is spatial autocorrelation in the data. It
shuffles the gene expression values randomly or generates new random gene expression values,
and recalculates the Moran’s | statistic multiple times, thus establishing a significance level based
on the random distribution. The p-value is computed by comparing the originally calculated

Moran'’s | statistic with the Monte Carlo simulation results. The formula for the test statistic is:

_ 1-E(D)
- Vvar(n

~N(0,1). If the p-value is very small, it indicates that there is significant spatial

autocorrelation in the data. If the p-value is very large, it indicates that there is no significant
spatial autocorrelation in the data. The more times you shuffle, the higher the reliability of the

results, but the more time-consuming it is.

HEARTSVG does not use a fixed autocorrelation threshold to determine SVGs. It tests whether
multiple autocorrelations of multiple marginal expressions against zero then uses the p-values
of the statistic as the threshold to determine whether a gene is an SVG. For each marginal

expression series, HEARTSVG tests whether multiple autocorrelations are zero (Hg: p; = - =

~

Pm = 0), the statisticis  Qm = T Yp4 P2, T is the length of the marginal expression series, m

is the max interval of the between two marginal expressions. m is an empirical parameter and
is usually set to: m =1In (T). Finally, Stouffer's method was used to test whether multiple
marginal expressions are random. This procedure makes our method more robust and can

capture a wider range of patterns.

HEARTSVG and Squidpy use different measures of spatial autocorrelations. HEARTSVG uses the

autocorrelation of the marginal expression series as a measure of the spatial correlations. The
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Squidpy uses Moran’s | and calculates p-value based on standard normal approximation from
100 random permutations, which is very time-consuming. Therefore, Squidpy only evaluates the
subset of highly variable genes. We added the Squidpy as a comparison in our revised
manuscript. In the noise-free simulations, Squidpy can effectively identify SVGs, but in the noisy
simulations, Squidpy's ability to identify SVGs will decline significantly (Figure S24-S66, Page83
in this reply). Figure S15 shows some genes that were not identified by HEARTSVG, but not by

Squidpy in the 10X Visium colorectal cancer data”

Figure S15 SVGs selected by HEARTSVG, but not by Squidpy.
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4. Please, consider revising Figure 1 and clearly illustrate inputs (used resources) and the
outputs, metrics as it fails to show all the analysis steps to accurately quantify the final ST

profiles.

Thank you for your comments. We have modified the Figure 1 in the manuscript to show all

analysis steps. The revised figure is shown below.

Figure 1 (in the manuscript) Schematic representation of the HEARTSVG. a, HEARTSVG
utilizes the semi-pooling process to convert the spatial gene expression into marginal
expressions (r) and calculates autocorrelations (p) of marginal expressions. HEARTSVG calculates

the sum of the squared autocorrelations (@, = T X%, p?) for each marginal expression series
and obtains a p-value by testing Qp,. All these p-values are combined into a final p-value
through the Stouffer combination (zs = ?:1% ~N(0,1), final p—value = 2(1 — ®(|z4])).
HEARTSVG distinguishes between SVGs and non-SVGs by the final p-value. b, The
autocorrelations (p) of marginal expressions (r) for the SVG and non-SVG exhibit di fferent

level scales. Representative autocorrelation estimator plots are plotted below the corresponding

marginal expression plots for the SVG and non-SVG. The color depth represents the magnitude

of autocorrelation.
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5. The description of the auto-clustering method used in the manuscript is rather limited.

| recommend adding additional details in the Supplementary Method section.

Thank you for the comment. We have added details of the auto-clustering method in the
Supplementary Method section (Page 20 in the Supplementary). The auto-clustering module
uses the hierarchical clustering algorithm to cluster SVGs into different spatial expression
patterns based on their expression and location similarity. The steps of the auto-clustering

module are as follows:

Step 1: Calculate the similarity between each pair of genes based on spatial expression and

generation of the distance matrix.

We calculated the Euclidean distance between each pair of SVGs based on their expression and

positions, serving as a measure of similarity among SVGs.

Step 2: Construct a clustering tree based on the distance matrix using the complete linkage

criterion. The resulting hierarchy of clusters can be visualized as a dendrogram.

Initially, each gene is assigned to its own cluster. Then, in each iteration, the two closest clusters
are merged into a new cluster using the complete linkage method, which is a method that
determines the distance between two clusters by the maximum distance between any two data
points from different clusters, to ensure significant dissimilarity between clusters. This process

repeats until all data points are eventually merged into a single cluster (a clustering tree).

Step 3: Determination of the final clustering results by cutting the dendrogram at a certain
height or distance threshold. The cutting height is chosen using the maximum breakpoint of all

breakpoints selected by the Yamamoto test.

After forming the hierarchical structure, we arrange the heights in ascending order and utilize
the Yamamoto test to identify breakpoints at different height thresholds. The maximum
breakpoint value is employed as the cutting height to determine the final number of clusters.

The Yamamoto test employs the rolling window method to calculate the difference of heights
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before and after each point. If the difference exceeds the threshold, the i-th point is considered

a breakpoint. The details were listed below.

We had a serial: hy, ... hy, ..., hy, set window width: 2 * n,eri0q. Then we calculated the difference

|mean(Hi—before)_mean(Hi—after)|
Sd(Hi—before)+5d(Hi—after)

of heights before and after the i-th point: D(h;) = . where,

Hi—pefore = (hi-1, ---rhi—npen-od): Hi—after = (hi+1, ---rhi+nperiod): mean(-) and sd(:) are the

mean and standard error function, the threshold = ti-a-(4/ "perioa=1) . D(h;) > threshold,

v Mperiod

the i-th point is a breakpoint. We identified all breakpoints of the serial and chose the max

breakpoint as the cutting height of the cluster tree.

The rationale behind the Yamamoto test lies in the characteristics of hierarchical clustering. SVG
clusters with similar spatial expression patterns have smaller distances and form clusters at lower
heights in the tree structure, while SVG clusters with different patterns have larger distances and
form clusters at higher heights in the tree structure. Thus, when merging clusters of SVGs with

different patterns, there is a noticeable jump in height.

6. On Figure 2, the x-axis label should be labeled Percentage of SVGs. Additionally, the
authors mentioned sample size, but it seems more like they are referring to the number of

spots.

Thank you for your comments. Following your comment, we have updated the x-axis label to

"Percentage of SVGs" to better align with the content of Figure 2d (Page 10 in the manuscript).

You are right, it is more accurate to refer to the number of spots. We have changed the x-axis
label to "Number of Cells (with 10,000 simulated genes) " of Figure 2a, 2e (Page 10 in the

manuscript). The revised figure is shown below.
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Figure 2 (in the manuscript) Simulation results show that HEARTSVG has high accuracy
and good scalability and computational efficiency. a, Visualization of seven representative
spatial expression patterns: hotspot, streak, gradient, rind, streaks, pattern Il , and irregular
pattern Il. F; score plots compare the accuracy (y-axis) of HEARTSVG (red), SpatialDE (yellow),
SPARK (blue), SPARK-X (green), scGCO (orange) and Squidpy(purple) in simulation data with
varying numbers of cells (x-axis) at an adjusted p-value cutoff of 0.05. Each plot corresponds to
the upper spatial patterns . Simulations were conducted under high sparsity (zero —

inflaation parameter = 0.941, size = 0.5,mu = 0.5) and a moderate percentage of SVGs
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(10%, 1,000 SVGs). The F; score for each method in each simulation scenario represents the
average of fifty replications. For easy computation, we did not apply SpatialDE and SPARK to
datasets with sample sizes of more than 10,000 in these simulations. b, Representative simulation
results with Gaussian noise. F; score plots compare four different methods (HEARTSVG, scGCO,
SPARK-X and Squidpy) across varying levels of Gaussian noise strength (x-axis). Index values
were calculated at the adjusted p-value cutoff of 0.05. Simulations were conducted 3000 cells
(with 10,000 simulated genes) under high sparsity (zero — inflaation parameter = 0.941,
size = 0.5,mu = 0.5). ¢, Representative simulation results with increasing percentage of
randomly exchanged cells. F; score plots compare four different methods (HEARTSVG, scGCO,
SPARK-X and Squidpy) across varying percentage of randomly exchanged expression values of
cells (x-axis). Index values were calculated at the adjusted p-value cutoff of 0.05. Simulations
were conducted 3000 cells (with 10,000 simulated genes) under high sparsity (zero —
inflaation parameter = 0.941, size = 0.5,mu = 0.5). d, False positive rate (FPR, y-axis)
boxplots of HEARTSVG (red) and SPARK-X (green) in simulation data of hotspot pattern with
different percentages of SVGs(x-axis) at an adjusted p-value cutoff of 0.05. Each scenario has
10,000 simulated genes, including both SVGs and non-SVGs. Simulations were conducted under
high sparsity (zero — inflaation parameter = 0.941, size = 0.5,mu = 0.5) and moderate
number of cells(n=5,000). In each boxplot, the lower hinge, upper hinge, and center line
represent the 25th percentile (first quartile), 75th percentile (third quartile), and 50th percentile
(median value), respectively. Whiskers extend no further than 1.5 times the inter-quartile range.
Data beyond the end of the whiskers are considered outliers and are plotted individually. e, Plot
shows time consumption in log;o(minutes) (y-axis) and memory usage in GB (y-axis) of each
method for analyzing 10,000 genes with different numbers of cells (x-axis). Considering the
limitation of scalability, we did not apply SpatialDE to datasets with sample sizes exceeding
30,000 and did not apply SPARK to datasets with sample sizes exceeding 20,000. Fig.2b and

Fig.2d have the common figure legend.
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7. On Figure 3 panel C, revise the scale in which p-values are shown (-log10(p-value)).

8. Consider revising manuscript and figures to consistently use FPR (false positive rate)

and TPR (true positive rate).

Thank you for the comment. Following your comments 7-8, we changed the Figure 3. The

new figure is presented below and shown in the revised manuscript.

Figure 3 (in the manuscript) HEARTSVG identifies tumor related SVGs and predicts spatial
functional domains with distinct biological functions in the 10X Visium colorectal cancer
data. a, Original hematoxylin and eosin stained (H&E) tissue image (left) and results of

unsupervised spatial clustering (right). The red-circled areas in the HE image represent the tumor
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regions. b, The heatmap depicts the comparison of recall values among four genesets. Set 1
represents the true SVGs set, derived by selecting the top 500 overlaps from the results of all six
methods. Set 4 corresponds to the non-SVGs set, obtained by randomly rearranging the gene
expressions within Set 1. Set 2 and Set 3 are generated by introducing noise to the true SVGs
set and non-SVGs set, respectively. (More details of four genesets in Supplementary ). ¢, The
bubble plot illustrates the results of KEGG pathway enrichment analysis for 19 tumor-related
pathways (x-axis) across different methods. Each bubble represents a pathway, and its size
corresponds to the overlap gene size of the pathway and SVGs detected by each method. The
x-axis and y-axis of the plot represent different methods and the significance (-log10(p-value)).
d, The ROC curves illustrate the TPR and FPR of six different methods when using common gene
modules of tumor microenvironments (left) and consensus molecular markers of colorectal
cancer subtypes (right) and as gold standards for true SVGs. AUC is the area under the ROC
curve. e, f, HEARTSVG predicts four spatial domains based on SVGs and graphed the average
expression of SVGs in each spatial domain. Three tumor-related spatial domains (spatial
domains 1, 2, and 3) exhibit different spatial average expression patterns. f, Representative SVGs
correspond to the four predicted spatial domains in Fig. 3e, 3g, Enrichment analysis corresponds
to the four predicted spatial domains in Fig.3e. The length of bars represents the enrichment

using -log10(p-value).

9. On line 136: “Spot coordinates of each spot were generated using a Poisson random
point process and gene expression counts were generated from the zero-inflated negative
binomial distribution (ZINB)”. In the revised version of the manuscript the authors used
negative binomial (NB), zero-inflated negative binomial (ZINB), Poisson, and zero-inflated
Poisson (ZIP) and this information is not clearly included in the result section.

Thank you for the comment. Following your comment, we added more simulated data
generating by negative binomial (NB), zero-inflated negative binomial (ZINB), Poisson, and
zero-inflated Poisson (ZIP). The new results show that HEARTSVG can effectively identify SVGs
(average F1 scores =0.958 in noise-free data with 3000 simulated cells) under different

distributions and spatial patterns. These results demonstrate the robustness and flexibility of
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HEARTSVG in dealing with different types of spatial transcriptomic data. The new results are
presented below and shown in the revised manuscript and supplementary (Figure 2, Page 10
on the manuscript, Figure S62-5S105, Page 71-117 on the Supplementary). More details
about the distribution parameters are attached at the end of this response (Table S2, Page 52

on this reply).
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Figure S16 a, Visualization of 22 spatial expression patterns: Hotspot, Streak, Gradient, Ring,
Nested rings, Streaks, Curve, Rectangles, Big triangles, Big circles, Big squares, Small triangles,
Small circles, Small squares, Big circles I, Small triangles Il, Pattern |, Pattern I, Pattern Ill, Irreg
pat |, Irreg pat Il, Irreg pat Ill. b, F1 scores (y-axis) of HEARTSVG (red), scGCO (orange), SpatialDE
(yellow), SPARK (blue), SPARK-X (green), and Squidpy (purple) in simulation data from four
different distributions.

10. Onlines 322-325 and Figure 4. It seems quite odd the identification of “Rectum specific
pathways” in cerebellum data. Please, confirm this is correct and share the GO ID and
associated p-value. Additionally have the authors selected an expression threshold above
which genes are considered to be expressed? And what is the minimum number of genes
to be considered for a pathway to be enriched?

Thank you for your comments. We have verified our results again. We used g:Profiler2' to do
the enrichment analysis for Figure 4, and compared it with HPA (Human Protein Atlas) database.
The HPA database is often used for enrichment analysis of tissue-specificity. Table 1 lists the
HPA ID, tissue, p-value, intersection size, and TPR for the “Rectum specific pathways”. We did
not use an expression threshold. We enriched the SVGs chosen by each method (i.e., the genes
with adjusted p-value <= 0.05 in each method). We required at least 5 genes for a pathway to
be enriched and used an adjusted p-value < 0.01 as the significance threshold.

Table 1 Rectum and endometrium specific pathways

Intersection
Method HPA: ID tissue p_value _ term_size TPR
size

SPARK HPA:0400242 rectum 1.22E-10 28 192 0.146

SPARK HPA:0400241 rectum 8.01E-09 30 260 0.115

SPARK HPA:0400243 rectum 8.46E-09 20 113 0.177
SPARK-X | HPA:0400242 rectum 1.25E-06 25 192 0.13
SPARK-X | HPA:0400241 rectum 2.61E-06 29 260 0.112
SPARK-X | HPA:0400243 rectum 8.50E-06 18 113 0.159
SpatialDE | HPA:0400241 rectum 0.001901336 34 260 0.131
Squidpy | HPA:0641531 endometrium 0.006927202 14 49 0.286
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11. On Figure S10, 1236 genes were identified as common SVGs between different
methods HEARTSVG, scGCO and SPARK-X, etc. It would be of interest to show the
expression patterns of other genes that overlap across the different methods.

Thank you for your valuable and useful comments. We have performed exploratory analysis and
visualization on this part of the data. Since many genes were identified as SVGs in this dataset,
we focused on the Top 5000 SVG identified by any of the methods (except scGCO). We found
that some SVGs shared by HEARTSVG, Squidpy, and SPARK-X (excluding commend SVGs) were
not significant or had large adjusted p-values in the SPARK and SpatialDE results (Figure S17).
Overlaps between SPARK-X and Squidpy (excluding commend SVG) exhibited patterns like the
gradient spatial expression pattern (Figure S19). This is consistent with our simulation results,
where SPARK-X and Squidpy had high F1 scores on simulation data with gradient patterns
(Figure S23, Page 79 in this response). However, some SVGs shared by SPARK and SpatialDE
(excluding commend SVGs) do not have clear spatial expression patterns (Figure S18). The new

results are presented below.
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Figure S17 SVGs selected by HEARTSVG, Squidpy, and SPARK-X, but not by SPARK, SpatialDE,

and scGCO.
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Figure S18 SVGs selected by SPARK and SpatialDE, but not by the other 4 methods.
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Figure S19 SVGs selected by Squidpy, and SPARK-X, but not by other 4 methods.
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Minor Comments.

12. | recommend improving the quality of panels shown in Figure S10 and increase the
font size. The same applies to Figure 4B labels.

Thank you for your comments. We have improved the quality of the panels in original Figure
S10 (Figure S11 in the Supplementary) and increased the font size. We have also enlarged

the labels in Figure 4b. The revised figures are shown below.

Original Figure S10 (Figure S11 in the Supplementary) scGCO missed SVGs (RPS29, ARPC3,
GAS5) with clear spatial expression patterns comparing with other methods. a,
Visualizations of spatial expressions of gene RPS20, RPS29, ARPC3, and GASS. b, Venn diagrams
of SVGs in the colorectal cancer data identified by HEARTSVG, SpatialDE, SPARK, SPARK-X,
scGCO, and Squidpy. ¢, Marginal expression plots of gene RPS20, and GAS5 by HEARTSVG. d,
Visualizations of graph cuts by scGCO with different initial smooth factor of gene RPS20, and

GAS5 by HEARTSVG
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Figure4 (in the manuscript) HEARTSVG detects biologically meaningful SVGs in the Slide-
seqV2 cerebellum data. a, Visualization of unsupervised spatial clustering results. b,
Visualization of cerebellum layer annotations. ¢, Visualizations of spatial expressions and
adjusted p-values of representative SVGs of specified cell types detected by HEARTSVG. Car8
(adjusted p=1.21 e-10) in Purkinje cells, Clbn1(adjusted p=0) in granule cells and Mbp (adjusted
p=0) in oligodendrocytes. d, The tissue-specific enrichment analysis results for each method,

where the x-axis represents different tissues, and the y-axis represents the percentage of tissue-
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specific pathways. Each panel corresponds to each method. e, Heatmap of SVGs expressions in

Molecular layer, Purkinje layer, and Granule layer.

13. On Figure S7 legend is not clear to what: “large pattern size” refers too. “Figure S7
Simulation results of hotspot pattern with low sparsity and large pattern size, (a) F1 score,

(b) recall, (c) precision.”

Thank you for your comment. By “pattern size”, we mean the percentages of the marked area
of SVG. In Figure S7, the “large pattern size” refers to the gradient pattern. We realize that this
was not clear enough. In the revised manuscript and the appendix, we have specified the spatial
pattern name and the corresponding percentages of marked area of the SVGs (Table S1 in this
reply, Page 53) for each simulation. We have deleted original Figure S7 and instead performed
simulations with more spatial patterns and different distributions (Figure S1-S66 in this reply,

Page 56-125), representative simulation results are shown in the reply to Comment 10.

14. On Figure S19 legend what are: “MT” genes? “Figure S19 ‘MT’ genes in primary

colorectal cancer tissue and liver metastasis cancer tissue.”

Thank you for your comment. By “MT" genes, we mean the mitochondrial-encoded genes that
start with “MT". We have changed the legend of Figure S19 in the original Supplementary
(Figure 20 in the revised Supplementary, Page 28 )to “Mitochondrial-encoded (MT-) genes

in primary colorectal cancer tissue and liver metastasis cancer tissue.”
15. On Figures S23-S24 add which scale is being used to display the expression values.

Thank you for your comment. We have added the expression scale legend t o Figures S23-524
(Figures S23-S24 in the Supplementary, Page 34-35). The revised figures are shown

below.
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Figure S23 (in the Supplementary) (a) Cell annotations of HDST data. (b) Representative

svgs identified by HEARTSVG.
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Figure S24 (in the Supplementary) (a) Original hematoxylin and eosin stained (H&E) tissue
image. (b) Unsupervised spatial clustering results. (c) SVGs cluster patterns. (d) Representative

genes of six SVG clusters.
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Comments on the Quality of English Language

16. The paper is easy to follow and understand, but | would recommend editing by an
English-speaking editor, in particular the Result section, to remove sentence duplications,
and select the appropriate plural form, prepositions and articles and any other

orthographic typos.

Thank you for your comments on our paper. We have revised our paper according to your
comments, and we have also asked an English-speaking editor to proofread our paper. We hope

that our paper meets your expectations and standards now.

17. Consider uniformly using GO (vs Go) for Gene Ontology terms and uppercase gene

symbols throughout the manuscript.

Thank you for your comments. We have carefully revised the manuscript again to ensure
consistent use of 'GO' as the Gene Ontology term throughout the entire document. Moreover,
we capitalized the gene symbols fully in uppercase for human samples and used only the first

letter in uppercase for mouse samples.

18. Line 140: Consider correcting this sentence: The F1 score was used to assess the
performances of identification SVGs of HEARTSVG and three other SVG detection methods

in identifying SVGs.”

Thank you for your comment. We have modified this sentence to “We used the F_1 score to

assess the performance of HEARTSVG and the other methods in identifying SVGs.”

19. Line 144: Consider reframing this sentence: “SpatialDE, SPARK struggled to identify
SVGs in sparse data possibly due to their adoption of the Gaussian data-generative model,

which is not well-suited for gene spatial expression distribution.” Why is it not well suited?

Thank you for your comment. We have modified this sentence to “SpatialDE and SPARK
performed poorly on sparse spatial expression data, possibly because they used a Gaussian
data-generative model. The sparse and skewed spatial expression data do not satisfy the
assumptions of the Gaussian data-generative model, which requires the data to be continuous,

normally distributed, and independent.”
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20. Line 147: Consider reframing this sentence: “scGCO exhibited many false negatives in
due to its difficulty in accurately identifying candidate regions for SVGs in highly sparse

datasets.”

Thank you for your comment. We have modified this sentence to “scGCO failed to identify many
SVGs in highly sparse datasets because it could not detect the candidate regions for SVGs

accurately.”

21. Lines 147-8: Remove the repetition from sentence: “On the low sparsity simulated data,

scGCO showed improved F1 scores on simulated data with lower sparsity (F1 score=0.333).

Thank you for your comment. Due to the revision of the manuscript content, we deleted this

sentence in the revised manuscript.

22. Line 149: Consider re-writing this sentence to clarify what it means: “ldentification
performance was influenced by the pattern sizes of SVGs and sample sizes (Fig.2b, S1-3).

What sample sizes were used? and what are pattern size? Described in Methods?

Thank you for your comment. We have modified this sentence to “ldentification performance
was influenced by the percentage of the marked area of SVGs and the number of cells/spots
(Fig.S1-3).” By “pattern size”, we mean the percentage of the marked area of the SVGs. “Sample
size” means the number of the cells/spots. We realize that the previous sentence lacked clarity.
In the revised manuscript and the supplementary, we used “the percentage of the marked area

of SVGs” and added the information of percentages of marked area of SVGs in Table S1 in this

reply.
23. Figure 1 legend: Edit inflaation to inflation

Thank you for your comment. We have revised Figure 1 and its legend, as indicated in our

response to Comment 4.
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Figures and Tables

Table S1 Spatial patterns and corresponding percentages of marked area for SVGs(%)

Pattern Percentages of
marked area of the SVGs (%)
Hotspot 5
Streak 5
Gradient 15
Ring 15
Nested rings 15
Streaks 10
Curve 7.5
Rectangles 5
Big triangles 15
Big circles 15
Big squares 15
Small triangles 7.5
Small circles 7.5
Small squares 7.5
Big circles Il 15
Small triangles |l 15
Pattern | 20
Pattern Il 20
Pattern Il 20
Irreg pat | 10
Irreg pat |l
Irreg pat Il
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Table S2 Simulation settings of simulated data

Non-SVG and SVG of non-marked

SVG of marked cells/spots

cells/spots

zero mu (NB, ZINB) / mu (NB, ZINB) /
zero

proportio  lambda (Poisson, size lambda (Poisson, size
proportion

n ZIP) ZIP)

ZINB 0.941 0.5 0.5 0.5 1 1
ZIP 0.654 2 - 0.202 6 -
NB 05 05 15 0.364 15 1.5

Poisson 0.607 0.5 - 0.223 15 -
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1. Results of simulations with mixture noise

We simulated 3000 cells with 6000 genes (each set has 1000 genes) in each scenario. We
generated 1000 simulated SVGs and randomly rearranged the gene expressions to generate
non-SVGs. Then, we mix their expression in different proportions to create non-SVGs, SVGs with

noise, and non-SVGs with noise (Figure S2, Table S3 in this reply).

Table S3 Mix proportions.

percentage of SVGs’ percentage of SVGs’
expression (%) expression (%)
Set2: SVGs with low noise 90 10
Set3: SVGs with medium noise 80 20
Set5: non-SVGs with low noise 10 90
Set5: non-SVGs with medium noise 20 80
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Figure S1 Simulation results of SVGs identification using simulated data with mixture noise.

(a) Visualization of Pattern: Hotspot with mixture noise. (b-e) Simulation results of six different

methods (HEARTSVG, scGCO, SPARK, SPARK-X, Squidpy) on simulated data generated by four
distinct distributions (ZINB, ZIP, NB, Poisson). The bar diagram (sub-panel (1)) shows F1 scores,
TPRs, precisions, and FPRs. The heatmap (sub-panel (2)) depicts the comparison of TPR values

among six genesets.
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Figure S2 Simulation results of SVGs identification using simulated data with mixture noise.

(a) Visualization of Pattern: Streak with mixture noise. (b-e) Simulation results of six different

methods (HEARTSVG, scGCO, SPARK, SPARK-X, Squidpy) on simulated data generated by four
distinct distributions (ZINB, ZIP, NB, Poisson). The bar diagram (sub-panel (1)) shows F1 scores,
TPRs, precisions, and FPRs. The heatmap (sub-panel (2)) depicts the comparison of TPR values

among six genesets.
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Figure S3  Simulation results of SVGs identification using simulated data with mixture noise.

(a) Visualization of Pattern: Gradient with mixture noise. (b-€) Simulation results of six different
methods (HEARTSVG, scGCO, SPARK, SPARK-X, Squidpy) on simulated data generated by four
distinct distributions (ZINB, ZIP, NB, Poisson). The bar diagram (sub-panel (1)) shows F1 scores,
TPRs, precisions, and FPRs. The heatmap (sub-panel (2)) depicts the comparison of TPR values

among six genesets.
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Figure S4 Simulation results of SVGs identification using simulated data with mixture noise.

(a) Visualization of Pattern: Ring with mixture noise. (b-e) Simulation results of six different

methods (HEARTSVG, scGCO, SPARK, SPARK-X, Squidpy) on simulated data generated by four
distinct distributions (ZINB, ZIP, NB, Poisson). The bar diagram (sub-panel (1)) shows F1 scores,
TPRs, precisions, and FPRs. The heatmap (sub-panel (2)) depicts the comparison of TPR values

among six genesets.
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Figure S5 Simulation results of SVGs identification using simulated data with mixture noise.
(a) Visualization of Pattern: Nested rings with mixture noise. (b-e) Simulation results of six
different methods (HEARTSVG, scGCO, SPARK, SPARK-X, Squidpy) on simulated data
generated by four distinct distributions (ZINB, ZIP, NB, Poisson). The bar diagram (sub-panel
(1)) shows F1 scores, TPRs, precisions, and FPRs. The heatmap (sub-panel (2)) depicts the

comparison of TPR values among six genesets.
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Figure S6 Simulation results of SVGs identification using simulated data with mixture noise.

(a) Visualization of Pattern: Streaks with mixture noise. (b-¢e) Simulation results of six different

methods (HEARTSVG, scGCO, SPARK, SPARK-X, Squidpy) on simulated data generated by four
distinct distributions (ZINB, ZIP, NB, Poisson). The bar diagram (sub-panel (1)) shows F1 scores,
TPRs, precisions, and FPRs. The heatmap (sub-panel (2)) depicts the comparison of TPR values

among six genesets.
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Figure S7 Simulation results of SVGs identification using simulated data with mixture noise.

(a) Visualization of Pattern: Curve with mixture noise. (b-e) Simulation results of six different

methods (HEARTSVG, scGCO, SPARK, SPARK-X, Squidpy) on simulated data generated by four
distinct distributions (ZINB, ZIP, NB, Poisson). The bar diagram (sub-panel (1)) shows F1 scores,
TPRs, precisions, and FPRs. The heatmap (sub-panel (2)) depicts the comparison of TPR values

among six genesets.
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Figure S8 Simulation results of SVGs identification using simulated data with mixture noise.
(a) Visualization of Pattern: Rectangles with mixture noise. (b-¢e) Simulation results of six
different methods (HEARTSVG, scGCO, SPARK, SPARK-X, Squidpy) on simulated data
generated by four distinct distributions (ZINB, ZIP, NB, Poisson). The bar diagram (sub-panel
(1)) shows F1 scores, TPRs, precisions, and FPRs. The heatmap (sub-panel (2)) depicts the

comparison of TPR values among six genesets.
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Figure S9 Simulation results of SVGs identification using simulated data with mixture noise.
(a) Visualization of Pattern: Big triangles with mixture noise. (b-e) Simulation results of six
different methods (HEARTSVG, scGCO, SPARK, SPARK-X, Squidpy) on simulated data
generated by four distinct distributions (ZINB, ZIP, NB, Poisson). The bar diagram (sub-panel
(1)) shows F1 scores, TPRs, precisions, and FPRs. The heatmap (sub-panel (2)) depicts the

comparison of TPR values among six genesets.
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Figure S10 Simulation results of SVGs identification using simulated data with mixture noise.
(a) Visualization of Pattern: Big circles with mixture noise. (b-e) Simulation results of six
different methods (HEARTSVG, scGCO, SPARK, SPARK-X, Squidpy) on simulated data
generated by four distinct distributions (ZINB, ZIP, NB, Poisson). The bar diagram (sub-panel
(1)) shows F1 scores, TPRs, precisions, and FPRs. The heatmap (sub-panel (2)) depicts the

comparison of TPR values among six genesets.
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Figure S11 Simulation results of SVGs identification using simulated data with mixture noise.
(a) Visualization of Pattern: Big squares with mixture noise. (b-e) Simulation results of six
different methods (HEARTSVG, scGCO, SPARK, SPARK-X, Squidpy) on simulated data
generated by four distinct distributions (ZINB, ZIP, NB, Poisson). The bar diagram (sub-panel
(1)) shows F1 scores, TPRs, precisions, and FPRs. The heatmap (sub-panel (2)) depicts the

comparison of TPR values among six genesets.
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Figure S12 Simulation results of SVGs identification using simulated data with mixture noise.
(a) Visualization of Pattern: Small triangles with mixture noise. (b-¢e) Simulation results of six
different methods (HEARTSVG, scGCO, SPARK, SPARK-X, Squidpy) on simulated data
generated by four distinct distributions (ZINB, ZIP, NB, Poisson). The bar diagram (sub-panel
(1)) shows F1 scores, TPRs, precisions, and FPRs. The heatmap (sub-panel (2)) depicts the

comparison of TPR values among six genesets.
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Figure S13 Simulation results of SVGs identification using simulated data with mixture noise.
(a) Visualization of Pattern: Small circles with mixture noise. (b-e) Simulation results of six
different methods (HEARTSVG, scGCO, SPARK, SPARK-X, Squidpy) on simulated data
generated by four distinct distributions (ZINB, ZIP, NB, Poisson). The bar diagram (sub-panel
(1)) shows F1 scores, TPRs, precisions, and FPRs. The heatmap (sub-panel (2)) depicts the

comparison of TPR values among six genesets.
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Figure S14 Simulation results of SVGs identification using simulated data with mixture noise.
(a) Visualization of Pattern: Small squares with mixture noise. (b-¢e) Simulation results of six
different methods (HEARTSVG, scGCO, SPARK, SPARK-X, Squidpy) on simulated data
generated by four distinct distributions (ZINB, ZIP, NB, Poisson). The bar diagram (sub-panel
(1)) shows F1 scores, TPRs, precisions, and FPRs. The heatmap (sub-panel (2)) depicts the

comparison of TPR values among six genesets.
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Figure S15 Simulation results of SVGs identification using simulated data with mixture noise.
(a) Visualization of Pattern: Big circles Il with mixture noise. (b-e) Simulation results of six
different methods (HEARTSVG, scGCO, SPARK, SPARK-X, Squidpy) on simulated data
generated by four distinct distributions (ZINB, ZIP, NB, Poisson). The bar diagram (sub-panel
(1)) shows F1 scores, TPRs, precisions, and FPRs. The heatmap (sub-panel (2)) depicts the

comparison of TPR values among six genesets.
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Figure S16 Simulation results of SVGs identification using simulated data with mixture noise.
(a) Visualization of Pattern: Small triangles Il with mixture noise. (b-e) Simulation results of six
different methods (HEARTSVG, scGCO, SPARK, SPARK-X, Squidpy) on simulated data
generated by four distinct distributions (ZINB, ZIP, NB, Poisson). The bar diagram (sub-panel
(1)) shows F1 scores, TPRs, precisions, and FPRs. The heatmap (sub-panel (2)) depicts the

comparison of TPR values among six genesets.
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Figure S17 Simulation results of SVGs identification using simulated data with mixture noise.

(a) Visualization of Pattern: Pattern | with mixture noise. (b-¢e) Simulation results of six different
methods (HEARTSVG, scGCO, SPARK, SPARK-X, Squidpy) on simulated data generated by four
distinct distributions (ZINB, ZIP, NB, Poisson). The bar diagram (sub-panel (1)) shows F1 scores,
TPRs, precisions, and FPRs. The heatmap (sub-panel (2)) depicts the comparison of TPR values

among six genesets.
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Figure S18 Simulation results of SVGs identification using simulated data with mixture noise.

(a) Visualization of Pattern: Pattern Il with mixture noise. (b-e) Simulation results of six different
methods (HEARTSVG, scGCO, SPARK, SPARK-X, Squidpy) on simulated data generated by four
distinct distributions (ZINB, ZIP, NB, Poisson). The bar diagram (sub-panel (1)) shows F1 scores,
TPRs, precisions, and FPRs. The heatmap (sub-panel (2)) depicts the comparison of TPR values

among six genesets.
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Figure S19 Simulation results of SVGs identification using simulated data with mixture noise.
(a) Visualization of Pattern: Pattern Il with mixture noise. (b-e) Simulation results of six
different methods (HEARTSVG, scGCO, SPARK, SPARK-X, Squidpy) on simulated data
generated by four distinct distributions (ZINB, ZIP, NB, Poisson). The bar diagram (sub-panel
(1)) shows F1 scores, TPRs, precisions, and FPRs. The heatmap (sub-panel (2)) depicts the

comparison of TPR values among six genesets.
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Figure S20 Simulation results of SVGs identification using simulated data with mixture noise.
(a) Visualization of Pattern: Irreg pat | with mixture noise. (b-e) Simulation results of six
different methods (HEARTSVG, scGCO, SPARK, SPARK-X, Squidpy) on simulated data
generated by four distinct distributions (ZINB, ZIP, NB, Poisson). The bar diagram (sub-panel
(1)) shows F1 scores, TPRs, precisions, and FPRs. The heatmap (sub-panel (2)) depicts the

comparison of TPR values among six genesets.
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Figure S21 Simulation results of SVGs identification using simulated data with mixture noise.
(a) Visualization of Pattern: Irreg pat Il with mixture noise. (b-¢e) Simulation results of six
different methods (HEARTSVG, scGCO, SPARK, SPARK-X, Squidpy) on simulated data
generated by four distinct distributions (ZINB, ZIP, NB, Poisson). The bar diagram (sub-panel
(1)) shows F1 scores, TPRs, precisions, and FPRs. The heatmap (sub-panel (2)) depicts the

comparison of TPR values among six genesets.
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Figure S22 Simulation results of SVGs identification using simulated data with mixture noise.
(a) Visualization of Pattern: Irreg pat Il with mixture noise. (b-e) Simulation results of six
different methods (HEARTSVG, scGCO, SPARK, SPARK-X, Squidpy) on simulated data
generated by four distinct distributions (ZINB, ZIP, NB, Poisson). The bar diagram (sub-panel
(1)) shows F1 scores, TPRs, precisions, and FPRs. The heatmap (sub-panel (2)) depicts the

comparison of TPR values among six genesets.
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Figure S23 Simulation results of SVGs identification using simulated data with mixture noise.
(a) Visualization of Pattern: Irreg pat IV with mixture noise. (b-€e) Simulation results of six
different methods (HEARTSVG, scGCO, SPARK, SPARK-X, Squidpy) on simulated data
generated by four distinct distributions (ZINB, ZIP, NB, Poisson). The bar diagram (sub-panel
(1)) shows F1 scores, TPRs, precisions, and FPRs. The heatmap (sub-panel (2)) depicts the

comparison of TPR values among six genesets.
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2. Results of noise-free simulations
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Figure S23 a, Visualization of 23 representative spatial expression patterns: Hotspot, Streak,

Gradient, Ring, Nested rings, Streaks, Curve, Rectangles, Big triangles, Big circles, Big squares,
Small triangles, Small circles, Small squares, Big circles Il, Small triangles I, Pattern |, Pattern II,
Pattern lll, Irreg pat |, Irreg pat Il, Irreg pat lll. b-e, F1 score plots, TPR plots, Precision plots, and
FPR plots compare the index values (y-axis) of HEARTSVG (red), scGCO (orange), SpatialDE

(yellow), SPARK (blue), SPARK-X (green), and Squidpy (purple) in simulation data. The
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comparison is based on varying sample sizes (x-axis) at an adjusted p-value cutoff of 0.05. Each

plot corresponds to the left spatial patterns in sub-figure a.
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3. Results of simulations with Gaussian noise

We simulated 3000 cells with 10,000 genes (1000 SVGs and 9000 non-SVGs) in each scenario.
We added varying levels (ranging from 0 to 0.6) of noises to noise-free data to create simulated
datasets with different degrees of noise. The parameters of the four distributions we used were

shown in Tables S1 and S2.

Figure S24 Simulation results for identifying SVGs using simulated data with Gaussian noise. (a)
Visualization of Pattern: Hotspot with varying level of Gaussian noise. (b-€e) Simulation results of
four different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data generated
by four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots, Precision plots,
and FPR plots compare the index values (y-axis) of HEARTSVG (red), scGCO (orange), SPARK-X
(green), and Squidpy (purple) across varying levels of Gaussian noise strength (x-axis). Index
values were calculated at the adjusted p-value cutoff of 0.05.
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Figure S25 Simulation results for identifying SVGs using simulated data with Gaussian noise.

(a) Visualization of Pattern: Streak with varying level of Gaussian noise. (b-e) Simulation results
of four different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data
generated by four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots,
Precision plots, and FPR plots compare the index values (y-axis) of HEARTSVG (red), scGCO
(orange), SPARK-X (green), and Squidpy (purple) across varying levels of Gaussian noise

strength (x-axis). Index values were calculated at the adjusted p-value cutoff of 0.05.
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Figure S26 Simulation results for identifying SVGs using simulated data with Gaussian noise.

(a) Visualization of Pattern: Gradient with varying level of Gaussian noise. (b-¢e) Simulation
results of four different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated
data generated by four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots,
Precision plots, and FPR plots compare the index values (y-axis) of HEARTSVG (red), scGCO
(orange), SPARK-X (green), and Squidpy (purple) across varying levels of Gaussian noise

strength (x-axis). Index values were calculated at the adjusted p-value cutoff of 0.05.
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Figure S27 Simulation results for identifying SVGs using simulated data with Gaussian noise.

(a) Visualization of Pattern: Ring with varying level of Gaussian noise. (b-e) Simulation results
of four different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data
generated by four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots,
Precision plots, and FPR plots compare the index values (y-axis) of HEARTSVG (red), scGCO
(orange), SPARK-X (green), and Squidpy (purple) across varying levels of Gaussian noise

strength (x-axis). Index values were calculated at the adjusted p-value cutoff of 0.05.
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Figure S28 Simulation results for identifying SVGs using simulated data with Gaussian noise.

(a) Visualization of Pattern: Nested rings with varying level of Gaussian noise. (b-e) Simulation
results of four different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated
data generated by four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots,
Precision plots, and FPR plots compare the index values (y-axis) of HEARTSVG (red), scGCO
(orange), SPARK-X (green), and Squidpy (purple) across varying levels of Gaussian noise

strength (x-axis). Index values were calculated at the adjusted p-value cutoff of 0.05.
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Figure S29 Simulation results for identifying SVGs using simulated data with Gaussian noise.

(a) Visualization of Pattern: Streaks with varying level of Gaussian noise. (b-¢e) Simulation
results of four different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated
data generated by four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots,
Precision plots, and FPR plots compare the index values (y-axis) of HEARTSVG (red), scGCO
(orange), SPARK-X (green), and Squidpy (purple) across varying levels of Gaussian noise

strength (x-axis). Index values were calculated at the adjusted p-value cutoff of 0.05.
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Figure S30 Simulation results for identifying SVGs using simulated data with Gaussian noise.

(a) Visualization of Pattern: Curve with varying level of Gaussian noise. (b-e) Simulation results
of four different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data
generated by four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots,
Precision plots, and FPR plots compare the index values (y-axis) of HEARTSVG (red), scGCO
(orange), SPARK-X (green), and Squidpy (purple) across varying levels of Gaussian noise

strength (x-axis). Index values were calculated at the adjusted p-value cutoff of 0.05.
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Figure S31 Simulation results for identifying SVGs using simulated data with Gaussian noise.

(a) Visualization of Pattern: Rectangles with varying level of Gaussian noise. (b-e) Simulation
results of four different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated
data generated by four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots,
Precision plots, and FPR plots compare the index values (y-axis) of HEARTSVG (red), scGCO
(orange), SPARK-X (green), and Squidpy (purple) across varying levels of Gaussian noise

strength (x-axis). Index values were calculated at the adjusted p-value cutoff of 0.05.
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Figure S32 Simulation results for identifying SVGs using simulated data with Gaussian noise.

(a) Visualization of Pattern: Big triangles with varying level of Gaussian noise. (b-e) Simulation
results of four different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated
data generated by four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots,
Precision plots, and FPR plots compare the index values (y-axis) of HEARTSVG (red), scGCO
(orange), SPARK-X (green), and Squidpy (purple) across varying levels of Gaussian noise

strength (x-axis). Index values were calculated at the adjusted p-value cutoff of 0.05.
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Figure S33 Simulation results for identifying SVGs using simulated data with Gaussian noise.

(a) Visualization of Pattern: Big circles with varying level of Gaussian noise. (b-e) Simulation
results of four different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated
data generated by four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots,
Precision plots, and FPR plots compare the index values (y-axis) of HEARTSVG (red), scGCO
(orange), SPARK-X (green), and Squidpy (purple) across varying levels of Gaussian noise

strength (x-axis). Index values were calculated at the adjusted p-value cutoff of 0.05.
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Figure S34 Simulation results for identifying SVGs using simulated data with Gaussian noise.

(a) Visualization of Pattern: Big squares with varying level of Gaussian noise. (b-e) Simulation
results of four different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated
data generated by four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots,
Precision plots, and FPR plots compare the index values (y-axis) of HEARTSVG (red), scGCO
(orange), SPARK-X (green), and Squidpy (purple) across varying levels of Gaussian noise

strength (x-axis). Index values were calculated at the adjusted p-value cutoff of 0.05.
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Figure S35 Simulation results for identifying SVGs using simulated data with Gaussian noise.

(a) Visualization of Pattern: Small triangles with varying level of Gaussian noise. (b-e)
Simulation results of four different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on
simulated data generated by four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots,
TPR plots, Precision plots, and FPR plots compare the index values (y-axis) of HEARTSVG (red),
scGCO (orange), SPARK-X (green), and Squidpy (purple) across varying levels of Gaussian

noise strength (x-axis). Index values were calculated at the adjusted p-value cutoff of 0.05.
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Figure S36 Simulation results for identifying SVGs using simulated data with Gaussian noise.

(a) Visualization of Pattern: Small circles with varying level of Gaussian noise. (b-e) Simulation
results of four different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated
data generated by four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots,
Precision plots, and FPR plots compare the index values (y-axis) of HEARTSVG (red), scGCO
(orange), SPARK-X (green), and Squidpy (purple) across varying levels of Gaussian noise

strength (x-axis). Index values were calculated at the adjusted p-value cutoff of 0.05.
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Figure S37 Simulation results for identifying SVGs using simulated data with Gaussian noise.

(a) Visualization of Pattern: Small squares with varying level of Gaussian noise. (b-e) Simulation
results of four different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data
generated by four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots,
Precision plots, and FPR plots compare the index values (y-axis) of HEARTSVG (red), scGCO
(orange), SPARK-X (green), and Squidpy (purple) across varying levels of Gaussian noise strength

(x-axis). Index values were calculated at the adjusted p-value cutoff of 0.05.
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Figure S38 Simulation results for identifying SVGs using simulated data with Gaussian noise.

(a) Visualization of Pattern: Big circles Il with varying level of Gaussian noise. (b-e) Simulation
results of four different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data
generated by four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots,
Precision plots, and FPR plots compare the index values (y-axis) of HEARTSVG (red), scGCO
(orange), SPARK-X (green), and Squidpy (purple) across varying levels of Gaussian noise strength

(x-axis). Index values were calculated at the adjusted p-value cutoff of 0.05.
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Figure S39 Simulation results for identifying SVGs using simulated data with Gaussian noise.

(a) Visualization of Pattern: Small triangles Il with varying level of Gaussian noise. (b-e) Simulation
results of four different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data
generated by four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots,
Precision plots, and FPR plots compare the index values (y-axis) of HEARTSVG (red), scGCO
(orange), SPARK-X (green), and Squidpy (purple) across varying levels of Gaussian noise strength

(x-axis). Index values were calculated at the adjusted p-value cutoff of 0.05.

98



Figure S40 Simulation results for identifying SVGs using simulated data with Gaussian noise.

(a) Visualization of Pattern: Pattern | with varying level of Gaussian noise. (b-€) Simulation results
of four different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data
generated by four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots,
Precision plots, and FPR plots compare the index values (y-axis) of HEARTSVG (red), scGCO
(orange), SPARK-X (green), and Squidpy (purple) across varying levels of Gaussian noise strength

(x-axis). Index values were calculated at the adjusted p-value cutoff of 0.05.
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Figure S41 Simulation results for identifying SVGs using simulated data with Gaussian noise.

(a) Visualization of Pattern: Pattern Il with varying level of Gaussian noise. (b-e) Simulation results
of four different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data
generated by four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots,
Precision plots, and FPR plots compare the index values (y-axis) of HEARTSVG (red), scGCO
(orange), SPARK-X (green), and Squidpy (purple) across varying levels of Gaussian noise strength

(x-axis). Index values were calculated at the adjusted p-value cutoff of 0.05.
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Figure S42 Simulation results for identifying SVGs using simulated data with Gaussian noise.

(a) Visualization of Pattern: Pattern Il with varying level of Gaussian noise. (b-e) Simulation
results of four different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data
generated by four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots,
Precision plots, and FPR plots compare the index values (y-axis) of HEARTSVG (red), scGCO
(orange), SPARK-X (green), and Squidpy (purple) across varying levels of Gaussian noise strength

(x-axis). Index values were calculated at the adjusted p-value cutoff of 0.05.
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Figure S43 Simulation results for identifying SVGs using simulated data with Gaussian noise.

(a) Visualization of Pattern: Irreg pat | with varying level of Gaussian noise. (b-e) Simulation
results of four different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data
generated by four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots,
Precision plots, and FPR plots compare the index values (y-axis) of HEARTSVG (red), scGCO
(orange), SPARK-X (green), and Squidpy (purple) across varying levels of Gaussian noise strength

(x-axis). Index values were calculated at the adjusted p-value cutoff of 0.05.

102



Figure S44 Simulation results for identifying SVGs using simulated data with Gaussian noise.

(a) Visualization of Pattern: Irreg pat Il with varying level of Gaussian noise. (b-e) Simulation
results of four different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data
generated by four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots,
Precision plots, and FPR plots compare the index values (y-axis) of HEARTSVG (red), scGCO
(orange), SPARK-X (green), and Squidpy (purple) across varying levels of Gaussian noise strength

(x-axis). Index values were calculated at the adjusted p-value cutoff of 0.05.

103



Figure S45 Simulation results for identifying SVGs using simulated data with Gaussian noise.

(a) Visualization of Pattern: Irreg pat Ill with varying level of Gaussian noise. (b-e) Simulation
results of four different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data
generated by four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots,
Precision plots, and FPR plots compare the index values (y-axis) of HEARTSVG (red), scGCO
(orange), SPARK-X (green), and Squidpy (purple) across varying levels of Gaussian noise strength

(x-axis). Index values were calculated at the adjusted p-value cutoff of 0.05.
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4. Results of simulations with noise of '‘Randomly Exchanging

Expression Values of Selected Nodes'

Due to the different ways of generating noise,we created new simulation data (both expression
and coordinates) with noise, instead of transforming the noise-free data. We used the same
parameter settings as in Section 1-3 to generate the spatial patterns and simulated 3000 cells
with 10,000 genes (1000 SVGs and 9000 non-SVGs) in each scenario. The parameters of the four

distributions we used are shown in Tables S1 and S2.

Figure S46 Simulation results for identifying SVGs using simulated data with noise of

'Randomly Exchanging Expression Values of Selected Nodes.' (a) Visualization of Pattern:
Hotspot with different percentage of cells random exchanges (%). (b-e) Simulation results of four

different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data generated by
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four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots, Precision plots, and
FPR plots compare the index values (y-axis) of HEARTSVG (red), scGCO (orange), SPARK-X
(green), and Squidpy (purple) across different percentage of cells random exchanges (x-axis).

Index values were calculated at the adjusted p-value cutoff of 0.05.

Figure S47 Simulation results for identifying SVGs using simulated data with noise of

'Randomly Exchanging Expression Values of Selected Nodes.' (a) Visualization of Pattern: Streak
with different percentage of cells random exchanges (%). (b-e) Simulation results of four different
methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data generated by four
distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots, Precision plots, and FPR
plots compare the index values (y-axis) of HEARTSVG (red), scGCO (orange), SPARK-X (green),
and Squidpy (purple) across different percentage of cells random exchanges (x-axis). Index

values were calculated at the adjusted p-value cutoff of 0.05.
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Figure S48 Simulation results for identifying SVGs using simulated data with noise of

'Randomly Exchanging Expression Values of Selected Nodes." (a) Visualization of Pattern: Ring
with different percentage of cells random exchanges (%). (b-e) Simulation results of four different
methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data generated by four
distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots, Precision plots, and FPR
plots compare the index values (y-axis) of HEARTSVG (red), scGCO (orange), SPARK-X (green),
and Squidpy (purple) across different percentage of cells random exchanges (x-axis). Index

values were calculated at the adjusted p-value cutoff of 0.05.
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Figure S49 Simulation results for identifying SVGs using simulated data with noise of

'Randomly Exchanging Expression Values of Selected Nodes.' (a) Visualization of Pattern: Nested
rings with different percentage of cells random exchanges (%). (b-e) Simulation results of four
different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data generated by
four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots, Precision plots, and
FPR plots compare the index values (y-axis) of HEARTSVG (red), scGCO (orange), SPARK-X
(green), and Squidpy (purple) across different percentage of cells random exchanges (x-axis).

Index values were calculated at the adjusted p-value cutoff of 0.05.
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Figure S50 Simulation results for identifying SVGs using simulated data with noise of

'Randomly Exchanging Expression Values of Selected Nodes.' (a) Visualization of Pattern: Streaks
with different percentage of cells random exchanges (%). (b-e) Simulation results of four different
methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data generated by four
distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots, Precision plots, and FPR
plots compare the index values (y-axis) of HEARTSVG (red), scGCO (orange), SPARK-X (green),
and Squidpy (purple) across different percentage of cells random exchanges (x-axis). Index

values were calculated at the adjusted p-value cutoff of 0.05.
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Figure S51 Simulation results for identifying SVGs using simulated data with noise of

'Randomly Exchanging Expression Values of Selected Nodes.' (a) Visualization of Pattern: Curve
with different percentage of cells random exchanges (%). (b-e) Simulation results of four different
methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data generated by four
distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots, Precision plots, and FPR
plots compare the index values (y-axis) of HEARTSVG (red), scGCO (orange), SPARK-X (green),
and Squidpy (purple) across different percentage of cells random exchanges (x-axis). Index

values were calculated at the adjusted p-value cutoff of 0.05.
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Figure S52 Simulation results for identifying SVGs using simulated data with noise of

'Randomly Exchanging Expression Values of Selected Nodes." (a) Visualization of Pattern:
Rectangles with different percentage of cells random exchanges (%). (b-e) Simulation results of
four different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data generated
by four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots, Precision plots,
and FPR plots compare the index values (y-axis) of HEARTSVG (red), scGCO (orange), SPARK-X
(green), and Squidpy (purple) across different percentage of cells random exchanges (x-axis).

Index values were calculated at the adjusted p-value cutoff of 0.05.
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Figure S53 Simulation results for identifying SVGs using simulated data with noise of

'Randomly Exchanging Expression Values of Selected Nodes.' (a) Visualization of Pattern: Big
triangles with different percentage of cells random exchanges (%). (b-€) Simulation results of four
different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data generated by
four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots, Precision plots, and
FPR plots compare the index values (y-axis) of HEARTSVG (red), scGCO (orange), SPARK-X
(green), and Squidpy (purple) across different percentage of cells random exchanges (x-axis).

Index values were calculated at the adjusted p-value cutoff of 0.05.
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Figure S54 Simulation results for identifying SVGs using simulated data with noise of

'Randomly Exchanging Expression Values of Selected Nodes.' (a) Visualization of Pattern: Big
circles with different percentage of cells random exchanges (%). (b-¢e) Simulation results of four
different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data generated by
four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots, Precision plots, and
FPR plots compare the index values (y-axis) of HEARTSVG (red), scGCO (orange), SPARK-X
(green), and Squidpy (purple) across different percentage of cells random exchanges (x-axis).

Index values were calculated at the adjusted p-value cutoff of 0.05.
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Figure S55 Simulation results for identifying SVGs using simulated data with noise of

'Randomly Exchanging Expression Values of Selected Nodes.' (a) Visualization of Pattern: Big
squares with different percentage of cells random exchanges (%). (b-e) Simulation results of four
different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data generated by
four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots, Precision plots, and
FPR plots compare the index values (y-axis) of HEARTSVG (red), scGCO (orange), SPARK-X
(green), and Squidpy (purple) across different percentage of cells random exchanges (x-axis).

Index values were calculated at the adjusted p-value cutoff of 0.05.
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Figure S56 Simulation results for identifying SVGs using simulated data with noise of

'Randomly Exchanging Expression Values of Selected Nodes.' (a) Visualization of Pattern: Small
triangles with different percentage of cells random exchanges (%). (b-€) Simulation results of four
different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data generated by
four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots, Precision plots, and
FPR plots compare the index values (y-axis) of HEARTSVG (red), scGCO (orange), SPARK-X
(green), and Squidpy (purple) across different percentage of cells random exchanges (x-axis).

Index values were calculated at the adjusted p-value cutoff of 0.05.
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Figure S57 Simulation results for identifying SVGs using simulated data with noise of

'Randomly Exchanging Expression Values of Selected Nodes.' (a) Visualization of Pattern: Small
circles with different percentage of cells random exchanges (%). (b-¢e) Simulation results of four
different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data generated by
four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots, Precision plots, and
FPR plots compare the index values (y-axis) of HEARTSVG (red), scGCO (orange), SPARK-X
(green), and Squidpy (purple) across different percentage of cells random exchanges (x-axis).

Index values were calculated at the adjusted p-value cutoff of 0.05.
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Figure S58 Simulation results for identifying SVGs using simulated data with noise of

'Randomly Exchanging Expression Values of Selected Nodes.' (a) Visualization of Pattern: Small
squares with different percentage of cells random exchanges (%). (b-e) Simulation results of four
different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data generated by
four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots, Precision plots, and
FPR plots compare the index values (y-axis) of HEARTSVG (red), scGCO (orange), SPARK-X
(green), and Squidpy (purple) across different percentage of cells random exchanges (x-axis).

Index values were calculated at the adjusted p-value cutoff of 0.05.
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Figure S59 Simulation results for identifying SVGs using simulated data with noise of

'Randomly Exchanging Expression Values of Selected Nodes." (a) Visualization of Pattern: Big
circles Il with different percentage of cells random exchanges (%). (b-e) Simulation results of
four different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data
generated by four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots,
Precision plots, and FPR plots compare the index values (y-axis) of HEARTSVG (red), scGCO
(orange), SPARK-X (green), and Squidpy (purple) across different percentage of cells random

exchanges (x-axis). Index values were calculated at the adjusted p-value cutoff of 0.05.
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Figure S60 Simulation results for identifying SVGs using simulated data with noise of

'Randomly Exchanging Expression Values of Selected Nodes.' (a) Visualization of Pattern: Small
triangles Il with different percentage of cells random exchanges (%). (b-e) Simulation results of
four different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data generated
by four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots, Precision plots,
and FPR plots compare the index values (y-axis) of HEARTSVG (red), scGCO (orange), SPARK-X
(green), and Squidpy (purple) across different percentage of cells random exchanges (x-axis).

Index values were calculated at the adjusted p-value cutoff of 0.05.
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Figure S61 Simulation results for identifying SVGs using simulated data with noise of

'Randomly Exchanging Expression Values of Selected Nodes.' (a) Visualization of Pattern: Pattern
I with different percentage of cells random exchanges (%). (b-e) Simulation results of four
different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data generated by
four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots, Precision plots, and
FPR plots compare the index values (y-axis) of HEARTSVG (red), scGCO (orange), SPARK-X
(green), and Squidpy (purple) across different percentage of cells random exchanges (x-axis).

Index values were calculated at the adjusted p-value cutoff of 0.05.
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Figure S62 Simulation results for identifying SVGs using simulated data with noise of

'Randomly Exchanging Expression Values of Selected Nodes.' (a) Visualization of Pattern: Pattern
Il with different percentage of cells random exchanges (%). (b-e) Simulation results of four
different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data generated by
four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots, Precision plots, and
FPR plots compare the index values (y-axis) of HEARTSVG (red), scGCO (orange), SPARK-X
(green), and Squidpy (purple) across different percentage of cells random exchanges (x-axis).

Index values were calculated at the adjusted p-value cutoff of 0.05.
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Figure S63 Simulation results for identifying SVGs using simulated data with noise of

'Randomly Exchanging Expression Values of Selected Nodes.' (a) Visualization of Pattern: Pattern
Il with different percentage of cells random exchanges (%). (b-e) Simulation results of four
different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data generated by
four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots, Precision plots, and
FPR plots compare the index values (y-axis) of HEARTSVG (red), scGCO (orange), SPARK-X
(green), and Squidpy (purple) across different percentage of cells random exchanges (x-axis).

Index values were calculated at the adjusted p-value cutoff of 0.05.
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Figure S64 Simulation results for identifying SVGs using simulated data with noise of

'Randomly Exchanging Expression Values of Selected Nodes.' (a) Visualization of Pattern: Irreg
pat | with different percentage of cells random exchanges (%). (b-e) Simulation results of four
different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data generated by
four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots, Precision plots, and
FPR plots compare the index values (y-axis) of HEARTSVG (red), scGCO (orange), SPARK-X
(green), and Squidpy (purple) across different percentage of cells random exchanges (x-axis).

Index values were calculated at the adjusted p-value cutoff of 0.05.
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Figure S65 Simulation results for identifying SVGs using simulated data with noise of

'Randomly Exchanging Expression Values of Selected Nodes.' (a) Visualization of Pattern: Irreg
pat Il with different percentage of cells random exchanges (%). (b-e) Simulation results of four
different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data generated by
four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots, Precision plots, and
FPR plots compare the index values (y-axis) of HEARTSVG (red), scGCO (orange), SPARK-X
(green), and Squidpy (purple) across different percentage of cells random exchanges (x-axis).

Index values were calculated at the adjusted p-value cutoff of 0.05.
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Figure S66 Simulation results for identifying SVGs using simulated data with noise of

'Randomly Exchanging Expression Values of Selected Nodes.' (a) Visualization of Pattern: Irreg
pat Il with different percentage of cells random exchanges (%). (b-e) Simulation results of four
different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated data generated by
four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots, Precision plots, and
FPR plots compare the index values (y-axis) of HEARTSVG (red), scGCO (orange), SPARK-X
(green), and Squidpy (purple) across different percentage of cells random exchanges (x-axis).

Index values were calculated at the adjusted p-value cutoff of 0.05.
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Reviewer #1 (Remarks to the Author):
1. I am concerned with the validity of the simulation results. There are multiple discrepancies.

For example, in figure S11, after exchanged 100% of spots, which should destroy the pattern and
result in complete noise, squidpy, surprisingly, get FPR of 1 in 3 out of 4 tests. More surprisingly,
the TPR of squidpy is 0 for all cases even when 0% of spots were exchanged. This data indicates
that squidpy will identify all negative noise as SVGs while failed to identify any true SVGs. I think
these results contradicts with the reported performance of squidpy.

Furthermore, the result in S11 is a direct conflict with data in figure S9, where the same double
strip pattern is analysed with Gaussian noise. In S9, squidpy has a TPR of 1 for this pattern at
Gaussian noise 0, but squidpy has a TPR of 0 for the same pattern in figure S11 with 0% exchange
rate. How could squidpy identified the same pattern perfectly in one test, while completely failed in
another?

In Figure S4-S6, multiple methods have 0 TPR, which is of major concern. These simulated
patterns are presumedly with strong and clear spatial patterns. But multiple published methods
failed to identify such simulated SVGs, indicating that these methods lack the ability to identify
SVGs, which directly contradict with multiple published results.

Same concern goes with the simulation with Gaussian noises (Figure S8-S10). With a large
amount of Gaussian noises, which also should destroy the underlying spatial patterns. Some
method maintained 100% TPR up to Gaussian noise level 0.6. And some methods demonstrated
similar patters with these in S11, showing increased FPR as noises increase, suggesting that they
identified more SVGs from higher level of noises.

These discrepancies indicate that the data produced are of poor quality. The authors should clarify
the mechanisms behind these irregular observations.

I understand that the authors try to demonstrate that their method is superior to ALL available
ones in all scenarios. In my opinion this is not necessary as far as they demonstrate substantial
improvements, provided that the evaluation of existing methods is reliable and, at least, should
reproduce majority of published results.

2. The author should stop calculating metric such as FPR etc for real biological samples. They
updated the true positive set to intersection of all methods tested. But the same logic applies, we
simply don’t know the set of true SVGs genes. Using the intersection of all methods is flawed just
as using intersection of two methods.

3. The memory requirement of scGCO is very different from what was reported in the scGCO
paper, which should be further investigated.

Reviewer #2 (Remarks to the Author):

The authors have addressed all the previous questions by including new SVG tool comparisons,
new significant results and importantly including more detailed information on HEARTSVG method
procedures and its rationale. This information was shared in the rebuttal letter but also nicely
included in the revised manuscript. Thus, the authors show that HEARTSVG provides a
considerable improvement of their methodology in their capability to accurately identify SVGs and
provide scalability of the tool. Moreover, the manuscript was extensively revised, and it reads well.
This paper is suitable for publication.

Before publication the authors need to address a set of minor comments which will not require



reviewers’ re-evaluation.

Minor Comments

In Figure 2, substitute the top title from “Gaussion noise strength” by “Gaussian noise strength”.
The same applies to Supplemental Figures S63-S84. Additionally, fix the x-axis for Supplemental
Figure S64.

In Figure 3E, include the relative expression units in the slide bar.

In Figure 4 panels A include a tittle for the slide bar and substitute “low/high” expression by a
numeric scale.

Include the Yamamoto test reference in the manuscript.

In Supplemental Figures S1-S3, the x-axis is labelled with “"Sample size”. Would it be best to
replace by "Number of cells” as shown in Figure 1 and Supplemental Figures S62-5847



Dear Reviewers:

Thank you for the reviewers’ comments concerning our manuscript entitled "HEARTSVG: a
fast and accurate method for spatially variable gene identification in large-scale spatial
transcriptomic data" (ID: NCOMMS-23-29155C). Your insights and comments have been
invaluable in refining the quality and clarity of our work. We have carefully considered each
of your comments and have made the necessary revisions to address them. We provide a
detailed point-to-point response for each comment in the following document and make
corresponding changes in the manuscript.

We hope these revisions satisfy your comments and improve the quality of our manuscript.



Response to Reviewer #1

1)

2)

3)

4)

| am concerned with the validity of the simulation results. There are multiple discrepancies.
For example, in figure S11, after exchanged 100% of spots, which should destroy the pattern
and result in complete noise, squidpy, surprisingly, get FPR of 1 in 3 out of 4 tests. More
surprisingly, the TPR of squidpy is 0 for all cases even when 0% of spots were exchanged.
This data indicates that squidpy will identify all negative noise as SVGs while failed to
identify any true SVGs. | think these results contradicts with the reported performance of
squidpy.

Furthermore, the result in S11 is a direct conflict with data in figure S9, where the same
double strip pattern is analysed with Gaussian noise. In S9, squidpy has a TPR of 1 for this
pattern at Gaussian noise 0, but squidpy has a TPR of 0 for the same pattern in figure S11
with 0% exchange rate. How could squidpy identified the same pattern perfectly in one test,
while completely failed in another?

In Figure S4-S6, multiple methods have 0 TPR, which is of major concern. These simulated
patterns are presumedly with strong and clear spatial patterns. But multiple published
methods failed to identify such simulated SVGs, indicating that these methods lack the
ability to identify SVGs, which directly contradict with multiple published results.

Same concern goes with the simulation with Gaussian noises (Figure S8-S10). With a large
amount of Gaussian noises, which also should destroy the underlying spatial patterns. Some
method maintained 100% TPR up to Gaussian noise level 0.6. And some methods
demonstrated similar patters with these in S11, showing increased FPR as noises increase,

suggesting that they identified more SVGs from higher level of noises.

These discrepancies indicate that the data produced are of poor quality. The authors should

clarify the mechanisms behind these irregular observations.

| understand that the authors try to demonstrate that their method is superior to ALL available

ones in all scenarios. In my opinion this is not necessary as far as they demonstrate substantial

improvements, provided that the evaluation of existing methods is reliable and, at least, should

reproduce majority of published results.



Thank you very much for your comments. For the issues raised in Comment 1, we will address them

point by point.

For points 1), 2), and 4), we appreciate your feedback on the conflict between TPR and FPR of Figure
S8-S11 in the previous response, which helped us discover an error in our data processing of the
newly added simulation results in the revision. Since these three issues are caused by the same reason,
we will answer them together.

We noticed that the conflict between TPR and FPR occurred in the Squidpy method under relatively
high levels of Gaussian noise and exchanging nodes noise simulation scenarios, but not in mixture
noise and noise-free data. Then we carefully checked the code and the original results and found that
this was caused by an error in the data processing of the simulation results. Specifically, gene
expression values could become negative when adding Gaussian noise to the simulated data (We
followed the scGCO method, and added Gaussian noise to the exchanging nodes noise simulated
data). Squidpy computes Moran's | using log(1+counts), not raw counts. When Gaussian noise is
added to simulated data, there are cases where expression < —1, which results in -Inf or NaN for
log(1 + counts). This will result in NA (not available) values in the Moran’s | and the p-value in
the calculation by the Squidpy method. Once a p-value is NA, all the adjusted p-values become
NA as well (Figure S1). This led to our incorrect calculation of TP=FP=TN=0, and Precision=0,
TPR=0, and Specificity=0. We calculated FPR and F1 score based on Precision, TPR, and
Specificity, leading to the error where TPR=0, but FPR=1-Specificity=1.

We have now addressed this issue: if the gene expression value is less than 0 after adding noise, it is
considered as 0; otherwise, it is the original value. Then, we reran Squidpy on simulations under
Gaussian noise and exchanging nodes noise. The Figure S8-S12 in the previous Response have
been updated and listed below (Figure S2-S6 in this response), and other results have been updated

in the Supplementary.



For 1) “For example, in figure S11, after exchanged 100% of spots, which should destroy the
pattern and result in complete noise, squidpy, surprisingly, get FPR of 1 in 3 out of 4 tests.
More surprisingly, the TPR of squidpy is 0 for all cases even when 0% of spots were
exchanged. This data indicates that squidpy will identify all negative noise as SVGs while
failed to identify any true SVGs. | think these results contradicts with the reported

performance of squidpy.”

In previous Figure S11 (exchanging noise simulations in the previous response), we added Gaussian
noise to the exchanging noise-simulated data following the procedures described by scGCO.
Therefore, gene expressions would become negative and the Moran'l became NA. This caused
TPR=Specificity=0, resulting in a conflict between TPR and FPR (TPR=0, but FPR=1-
Specificity=1). After we corrected the simulation results, at 100 % exchanging rate, squidpy’s F1
score, TPR, and FPR were close to zero in the four distributions (Figure S5-S6, corresponding to
Figure S11-S12 in the previous response). The same problem also occurred in other simulations
with exchanging nodes noise, and we corrected them all. The new figures are listed below, and other

updated results are in the new Supplementary (Figure S85-5S105).

For 2) “Furthermore, the result in S11 is a direct conflict with data in figure S9, where the same
double strip pattern is analysed with Gaussian noise. In S9, squidpy has a TPR of 1 for
this pattern at Gaussian noise 0, but squidpy has a TPR of 0 for the same pattern in figure
S11 with 0% exchange rate. How could squidpy identified the same pattern perfectly in

one test, while completely failed in another?”

Due to the same reason as the previous question, the result in previous Figure S11 (with 0% exchange
rate) conflicted with the previous Figure S9 (at Gaussian noise 0). After rectifying this error, in Figure
S5 (corresponding to Figure S11 in the previous response) simulations for the four distributions
(ZINB, ZIP, NB, Pois) with a 0% exchange rate, squidpy's TPR was 0.79, 1, 0.99, and 0.98, respectively,

and squidpy's FPRs were close to 0.

For 4) Same concern goes with the simulation with Gaussian noises (Figure S8-S10). With a large
amount of Gaussian noises, which also should destroy the underlying spatial patterns.
Some method maintained 100% TPR up to Gaussian noise level 0.6. And some methods
demonstrated similar patters with these in S11, showing increased FPR as noises increase,

4



suggesting that they identified more SVGs from higher level of noises.

Gaussian noise caused negative expression values in the simulated data, resulting in all the squidpy's
adjusted p-values being NA and TPR=Specificity=0. This resulted in the squidpy's error (TPR=0,
but FPR=1-Specificity=1) in FigureS8-S10 in the previous response. Because we also added
Gaussian noise to the exchanging nodes noise simulated data, and the same problem also occurred
in other simulations with exchange node noise (FigureS11-S12 in the previous response). We

corrected them all.

In our latest simulation results (as shown in Figure S2-S4, corresponding to Figure S8-S10 in the
previous response), for the simulated data generated by ZIP and Pois distributions, SVG had higher
expression levels and stronger signals, so the noise of "Gaussian noise level 0.6" had little impact on
the data, and all methods maintained high TPRs and F1 scores, which was consistent with the
simulation results of scGCO". But for the simulated data generated by ZINB and NB distributions, SVG
had lower expression levels and weaker signals, so the noise of "Gaussian noise level 0.6" had a large

impact on the data. HEARTSVG, SPARK-X, squidpy’s TPRs and F1 scores dropped significantly.

The error (TPR=0, but FPR=1-Specificity=1) in previous Figure S11 was caused by the same reason.
After we corrected this error, squidpy’s FPR was close to 0, and TPR increased with noise (as shown in

Figure S5-S6, corresponding to Figure S11-S12 in the previous response),.

For 3) In Figure S4-S6, multiple methods have 0 TPR, which is of major concern. These
simulated patterns are presumedly with strong and clear spatial patterns. But multiple
published methods failed to identify such simulated SVGs, indicating that these
methods lack the ability to identify SVGs, which directly contradict with multiple

published results.

Thank you for your feedback. We appreciate your concern regarding the performance (TPR=0) of
multiple methods on simulated data in Figure S4-S6 in the previous Response.

We would like to clarify that the simulated datasets in Figure S4-S6 in the previous Response were
generated with mixture noise, which caused the performance of various methods to decrease. The
low TTPRs for scGCO, Squidpy, SPARK, and SpatialDE in previous Figure S4-S6 were due to the

following two reasons:



1) the low TPRs for scGCO and Squidpy were a result of the mixture noise introduced in the
simulations.

2) the use of approximate modeling of sparse count data by a Gaussian distribution in SpatialDE
and the Gaussian version of SPARK is not ideal and leads to power loss’ (Zhu, J., Sun, S. & Zhou,
X).

To demonstrate these, we added the following two parts of simulations to illustrate the impact of

mixture noise on the performance of scGCO and Squidpy, and the limitation of the inappropriate

underlying data model and normalization mechanism on the identification ability of SPARK and

SpatialDE, respectively.

Part I: How does the mixture noise impact the performance of scGCO and Squidpy?

We understand your concern about the noticeable decline in the performance (F1 score, TPR, etc. ) of
scGCO and Squidpy in this particular simulation (mixture noise), which contrasts with their
performance in other simulated data: noise-free, Gaussian noise, and exchanging nodes noise
simulated data. To further investigate the impact of mixture noise on the performance of scGCO and
Squidpy, we generated two additional simulation datasets using the same simulated data with mixture
noise (presented in Figure S6 in the previous response). The simulated data of Figure S6 in the
previous response, contained six classes of geneset (each set has 1000 genes):

Set 1: SVGs;

Set 2: SVGs with low noise;

Set 3: SVGs with medium noise;

Set 4: non-SVGs;

Set 5: non-SVGs with low noise;

Set 6: non-SVGs with medium noise.

Using this data, we generated two additional simulation datasets:

Dataset 1 (2000 genes): A noise-free simulated dataset consisting of Set 1: SVGs and Set 4: non-
SVGs;

Dataset 2 (4000 genes): A simulated dataset with weak noise, composed of Set 1: SVGs, Set 2: SVGs
with low noise, Set 4: non-SVGs, and Set 5: non-SVGs with low noise.

We found that Squidpy’s F1 score significantly decreased with the increase in noise (from 0.57 to 0.34
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in Poisson distribution, Figure S7). Additionally, we observed that the F1 scores of scGCO and Squidpy
in Dataset, a noisy-free dataset, were still lower than the previous noise-free simulation data,
especially scGCO. Therefore, we used Dataset 1's data to generate a new noise-free simulated
dataset with 10,000 simulated genes (consisting of 1000 SVGs of Set 1 and 9000 non-SVGs
resampled from Set 4), as same as the previous simulated data. In the new simulation dataset, scGCO
and Squidpy had higher F1 scores (Figure S7) than Dataset 1's data and performed similarly to the
noise-free data in the previous simulations. Overall, the mixture noise had a greater impact on the
performance of scGCO and Squidpy than expected, and the numbers of SVGs to non-SVGs also

influenced their results.

Part Il: The unsuitable underlying data model and normalization mechanism limit the

identification ability of SPARK and SpatialDE.

In our simulations, SPARK and SpatialDE perform noticeably weaker compared to other methods. Both
SPARK and SpatialDE use the Gaussian process regression as the underlying data model, and they
use normalization mechanisms to make spatial transcriptomics data approximate a normal
distribution. The heterogeneity in actual spatial transcriptomics data is stronger than simulated data
and the normalization applied by SPARK and SpatialDE is effective in some real ST datasets. However,
the normalization process of SPARK and SpatialDE removes excessive heterogeneity, including the
signals from SVGs, limiting their ability to identify SVGs'. This limitation is evident in the SVG
identification performance in our simulations. The normalization mechanisms of SPARK and SpatialDE
overcorrected the signals of SVGs. However, we also created a new simulation with higher
heterogeneity to compare various methods. Specifically, we kept the expression distribution and
parameters of the simulated data unchanged, but we considered that some SVG genes had higher
expression in the middle circle, while some SVG genes had similar expression in the three circles, as
shown in Figure S8. After increasing the heterogeneity of the simulated data, the performance
of SPARK and SpatialDE improved, but still lagged behind other methods, especially in datasets
with higher sparsity and dispersion (NB and ZINB, which was consistent with the literature
conclusion of SPARK-X’. Compared with simulation results in the previous revision, increasing
the heterogeneity of the simulated data did not significantly change the performance of other

methods.



Figure S1 When expression values were negative, Squidpy encounters NA in the Moran's | and p-

value calculation processes, and calculated all the adjusted p-values as NA .
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Figure S2 (corresponding to Figure S8 in the previous Response) Simulation results for identifying
SVGs using simulated data with Gaussian noise. a, Visualization of Pattern: Hotspot with varying level
of Gaussian noise. b-e, Simulation results of four different methods (HEARTSVG, scGCO, SPARK-X
and Squidpy) on simulated data generated by four distinct distributions (ZINB, ZIP, NB, Poisson). F1
score plots, TPR plots, Precision plots, and FPR plots compare the index values (y-axis) of HEARTSVG
(red), scGCO (orange), SPARK-X (green), and Squidpy (purple) across varying levels of Gaussian noise

strength (x-axis). Index values were calculated at the adjusted p-value cutoff of 0.05.
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Figure S3 (corresponding to Figure S9 in the previous Response) Simulation results for identifying
SVGs using simulated data with Gaussian noise. a, Visualization of Pattern: Streaks with varying level
of Gaussian noise. b-e, Simulation results of four different methods (HEARTSVG, scGCO, SPARK-X
and Squidpy) on simulated data generated by four distinct distributions (ZINB, ZIP, NB, Poisson). F1
score plots, TPR plots, Precision plots, and FPR plots compare the index values (y-axis) of HEARTSVG

(red), scGCO (orange), SPARK-X (green), and Squidpy (purple) across varying levels of Gaussian noise
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Figure S4 (corresponding to Figure S10 in the previous Response) Simulation results for identifying
SVGs using simulated data with Gaussian noise. a, Visualization of Pattern: Big Circles with varying
level of Gaussian noise. b-e, Simulation results of four different methods (HEARTSVG, scGCO, SPARK-
X and Squidpy) on simulated data generated by four distinct distributions (ZINB, ZIP, NB, Poisson). F1
score plots, TPR plots, Precision plots, and FPR plots compare the index values (y-axis) of HEARTSVG

(red), scGCO (orange), SPARK-X (green), and Squidpy (purple) across varying levels of Gaussian noise
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Figure S5 (corresponding to Figure S11 in the previous Response) Simulation results for identifying
SVGs using simulated data with noise of 'Randomly Exchanging Expression Values of Selected Nodes.'
a, Visualization of Pattern: Streaks with different percentage of cells random exchanges (%). b-e,
Simulation results of four different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated
data generated by four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots,
Precision plots, and FPR plots compare the index values (y-axis) of HEARTSVG (red), scGCO (orange),
SPARK-X (green), and Squidpy (purple) across different percentage of cells random exchanges (x-

axis). Index values were calculated at the adjusted p-value cutoff of 0.05.
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Figure S6 (corresponding to Figure S12 in the previous Response) Simulation results for identifying
SVGs using simulated data with noise of 'Randomly Exchanging Expression Values of Selected Nodes.'
a, Visualization of Pattern: Streaks with different percentage of cells random exchanges (%). b-e,
Simulation results of four different methods (HEARTSVG, scGCO, SPARK-X and Squidpy) on simulated
data generated by four distinct distributions (ZINB, ZIP, NB, Poisson). F1 score plots, TPR plots,
Precision plots, and FPR plots compare the index values (y-axis) of HEARTSVG (red), scGCO (orange),
SPARK-X (green), and Squidpy (purple) across different percentage of cells random exchanges (x-

axis). Index values were calculated at the adjusted p-value cutoff of 0.05.
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Figure S6 in the previous Response Simulation results of SVGs identification using simulated data
with mixture noise. a, Visualization of Pattern: Big triangles with mixture noise. b-e, Simulation results
of six different methods (HEARTSVG, scGCO, SPARK, SPARK-X, Squidpy) on simulated data generated
by four distinct distributions (ZINB, ZIP, NB, Poisson). The bar diagram (sub-panel (1)) shows F1 scores,
TPRs, precisions, and FPRs. The heatmap (sub-panel (2)) depicts the comparison of TPR values among

Six genesets.
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Figure S7 Simulation results of scGCO and Squidpy on simulated data with different levels of mixture
noise. Dataset 1 is a noise-free simulated dataset (consisting of 1000 SVGs of Set 1 and 1000 non-
SVGs of Set 4). Dataset 2 is a simulated dataset with weak noise. Previous Fig S6 is the simulated
data of Figure S6 in the previous response, with medium noise. New noise-free is a noise-free
simulated dataset with 10,000 simulated genes (consisting of 1000 SVGs of Set 1 and 9000 non-SVGs
resampled from Set 4), as same as the previous simulated data.The bar diagram shows F1 scores,

TPRs, precisions, and FPRs. Index values were calculated at the adjusted p-value cutoff of 0.05.
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Figure S8 Simulation results for identifying SVGs using simulated data with higher heterogeneity a,
Visualization of SVGs and non-SVG. b-e, Simulation results of six different methods (HEARTSVG,
scGCO, SPARK, SPARK-X, SpatialDE and Squidpy) on simulated data generated by four distinct
distributions (ZINB, ZIP, NB, Poisson). The bar diagram shows F1 scores, TPRs, precisions, and FPRs.

Index values were calculated at the adjusted p-value cutoff of 0.05.
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2. The author should stop calculating metric such as FPR etc for real biological samples. They
updated the true positive set to intersection of all methods tested. But the same logic applies,
we simply don’t know the set of true SVGs genes. Using the intersection of all methods is flawed

just as using intersection of two methods.

Thank you for your comments. We understand your concern and agree with your point of view, and
we have removed Figure 2b to the Supplementary. However, for the Figure 2d, it is quite common
to use the reference gene sets as the gold standard for evaluation in single-cell analysis and spatial
transcriptomics analysis *°. We think that the Figure 2d is helpful for showing the application and

effect of our method on real data and hope to keep it. However, if really necessary, we can remove it.

3. The memory requirement of scGCO is very different from what was reported in the scGCO

paper, which should be further investigated.

Thank you for your careful review and insightful comments. In the scGCO paper, it was indeed
reported that the memory requirement for 1 million cells with 100 genes is approximately 8GB. In our
simulation, which involved 1 million cells with 10,000 genes, we observed a memory consumption of
around 924GB (equivalent to approximately 9.24GB for 100 genes). Furthermore, we conducted tests
on mouse hypothalamus data obtained through MERFISH technology, consisting of 1027,848 cells
and 161 genes. In this case, the observed memory usage for scGCO was 14.72GB. In summary, while
the reported memory requirement in our simulation may seem significantly higher, it aligns with the
expected increase given the larger number of genes. The test on real data also supports the reliability

of scGCQO's performance in practical scenarios.

References

1. Zhang, K, Feng, W. & Wang, P. Identification of spatially variable genes with graph cuts. Nat.
Commun. 13, 5488 (2022).

2. Zhu, ], Sun, S. & Zhou, X. SPARK-X: non-parametric modeling enables scalable and robust
detection of spatial expression patterns for large spatial transcriptomic studies. Genome Biol. 22,
184 (2021).

3. Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional changes and
characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 16, 278 (2015).

4. Wu, Z, Zhang, Y., Stitzel, M. L. & Wu, H. Two-phase differential expression analysis for single
cell RNA-seq. Bioinformatics 34, 3340-3348 (2018).

5. Xue, R. et al Liver tumour immune microenvironment subtypes and neutrophil heterogeneity.
Nature 612, 141-147 (2022).

17



Response to Reviewer #2:

The authors have addressed all the previous questions by including new SVG tool comparisons, new
significant results and importantly including more detailed information on HEARTSVG method
procedures and its rationale. This information was shared in the rebuttal letter but also nicely included
in the revised manuscript. Thus, the authors show that HEARTSVG provides a considerable
improvement of their methodology in their capability to accurately identify SVGs and provide
scalability of the tool. Moreover, the manuscript was extensively revised, and it reads well. This paper
is suitable for publication.

Before publication the authors need to address a set of minor comments which will not require

reviewers' re-evaluation.

Minor Comments

1. In Figure 2, substitute the top title from “Gaussion noise strength” by “Gaussian noise
strength”. The same applies to Supplemental Figures S63-S84. Additionally, fix the x-axis for

Supplemental Figure S64.

Thank you for your comment. We appreciate your attention to the details. We have made the
modifications in Figure 2 in the manuscript (Page 10), and Supplemental Figures S63-S84 in the
Supplementary by substituting "Gaussion” with "Gaussian” in the top title. We have fixed the x-axis

for Supplemental Figure S64.
2. In Figure 3E, include the relative expression units in the slide bar.

Thank you for your comment. We have addressed your comment by including the relative expression

units in the slide bar for Figure 3e the manuscript (Page 15).

3. In Figure 4 panels A include a tittle for the slide bar and substitute “low/high” expression

by a numeric scale.

Thank you for your comment. We appreciate your attention to the details. We have addressed your
comment by including the relative expression units in the slide bar for Figure 4 in the manuscript

(Page 19).
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4. Include the Yamamoto test reference in the manuscript.

Thank you for your comment. We have cited the relevant information of the Yamamoto test in the

appropriate places in the manuscript (Page 28, Line 570).

5. In Supplemental Figures S1-S3, the x-axis is labelled with “Sample size”. Would it be best

to replace by “Number of cells” as shown in Figure 1 and Supplemental Figures S62-584?

Thank you for your comment. We have updated the x-axis labels in Supplemental Figures S1-S3 to

"Number of cells," consistent with Figure 1 and Supplemental Figures S62-584.
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Reviewer #1 (Remarks to the Author):
I appreciate the author’s efforts. But the simulation results still have obvious conflicts.

1. There is a dramatic discrepancy between performance of methods when different simulation
models are used. It appears that ZINB and NB are similar, and ZIP and Pois are similar. It is
intriguing that the same method can arrive at very different results when tested on different
models. For example, in S4, TPR at Gaussian noise 0.6 is zero for ZINB while TPRs are 1 under
ZIP. This observation suggested that model to generate simulation samples can dramatically
change performances for tested algorithms. The authors should address roots for this discrepancy,
and whether resulting performance measures are valid and fair, when models to simulate data
have a huge impact.

2. Gaussian noise level at 0.6 is quite strong as shown by the pictures provided by the authors,
then how can all methods maintain a TPR of 1 at Gaussian noise level 0.6 for the ZIP model (And
POIS) as shown in S3? This suggests that ZIP and POIS are not good models to evaluate SVG
identification because they are intrinsically biased.

3. ScGCO'’s performance is weird for ZINB and NB models. For example, in S2A, it seems scGCO
was unable to identify any genes as SVG, even when noise is zero. This is related to point 1. I
pointed out issues with squidpy previously, the author should carefully examine their code and
evaluate whether additional errors impacted scGCO.

4. In S2D, TPR becomes zero for all method except scGCO at Gaussian noise 0.6, but
corresponding precisions are not zero. The nominators for TPR and precision are the same, both
are TP. Then how could precisions be not zero while TPRs are zero? The same error was observed
in multiple other graphs as well.



Dear Reviewers:

Thank you for the reviewers’ comments concerning our manuscript entitled "HEARTSVG: a fast
and accurate method for spatially variable gene identification in large-scale spatial transcriptomic
data" (ID: NCOMMS-23-29155C). We sincerely appreciate your time and effort in reviewing our
manuscript. However, we respectfully disagree with the assessment provided by you. Detailed

responses addressing each of your comments can be found in the attached document.

Comment 1.There is a dramatic discrepancy between performance of methods when different
simulation models are used. It appears that ZINB and NB are similar, and ZIP and Pois are
similar. It is intriguing that the same method can arrive at very different results when tested
on different models. For example, in S4, TPR at Gaussian noise 0.6 is zero for ZINB while
TPRs are 1 under ZIP. This observation suggested that model to generate simulation samples
can dramatically change performances for tested algorithms. The authors should address
roots for this discrepancy, and whether resulting performance measures are valid and fair,

when models to simulate data have a huge impact.

Thank you for your comment. However, we disagree with the comment regarding the validity of
our simulation mechanism based on the difference in the performance of the method when using
different simulation models. We think that this doubt is not justified.

Firstly, in other studies on SVG identification, different methods usually use different
assumed distributions to simulate gene expression data, and their performance also varies.
The reason is that different distributions have distinct data characteristics, and the same
method performs differently on different distributions, just as linear regression works well
on normal distribution, but poorly on skewed data. The same group of authors used the Poisson
distribution in the SPARK! paper (Sun S, Zhu J & Zhou X), but the NB distribution in the SPARK-
X2 paper(Zhu J, Sun S & Zhou X). SPARK had a high TPR (>0.75) on simulated data generated by
the Poisson distribution, but a low TPR (<0.25) on the NB distribution. SOMDE? (Hao M, Hua K
& Zhang X), scGCO* (Zhang K, Feng W & Wang P), and SPARK all used Poisson distribution,
but they had different TPRs in different papers: scGCO was much higher in its own paper than

in SOMDE; SPARK performed better in the scGCO paper than in its own; and SpatialDE's TPR
1



was higher in the SOMDE and scGCO papers than in the SPARK paper. Interestingly, we noticed
that scGCO’s paper did not compare with SOMDE in their own simulation, but they added a
comparison with SOMDE’s results in applications, which made us suspicious.

Secondly, previous studies usually only used one distribution for gene expression simulation.
To ensure more fair and comprehensive comparisons, we generated gene expression data
following multiple distributions (ZINB, NB, ZIP, and Pois), and performed SVG
identification performance evaluation. We think this is essential, and should not be questioned
because it is different from the simulation mechanism used in articles such as scGCO. The
gene expression distribution in real spatial transcriptomics data is complex and variable, and there
is no single distribution that can perfectly fit all genes. A recently published article on spatial
transcriptomics simulator SRTsim® (Zhu, J., Shang, L. & Zhou, X.) also confirmed this, "SRTsim
relies on four popular count models that include Poisson, ZIP, NB, and ZINB for generating the
synthetic data">. These distributions, ZINB, NB, ZIP, and Pois, have been widely used and validated
in studies of spatial transcriptomics'=>1°, For example, SPARK' uses the Poisson distribution,
while SPARK-X? uses the NB distribution, even though they are proposed by the same group of
authors. SOMDE? uses Poisson distribution to simulate gene expression data, scGCO* uses
Poisson distribution and Normal distribution, Daniel et al. use the NB distribution to generate

simulated data, while Spatial DE® and Squidpy'! do not perform simulation.

Comment 2. Gaussian noise level at 0.6 is quite strong as shown by the pictures provided by
the authors, then how can all methods maintain a TPR of 1 at Gaussian noise level 0.6 for the
ZIP model (And POIS) as shown in S3? This suggests that ZIP and POIS are not good models

to evaluate SVG identification because they are intrinsically biased.

Thank you for your comment. We would like to emphasize the following points:

Firstly, the TPR is not exactly 1, but very close to 1.

Secondly, "high TPRs at Gaussian level 0.6 and Gaussian level 0 in the ZIP and Pois distributions",
indicates that the addition of Gaussian noise has minimal impact, suggesting that its inclusion is
ineffective rather than indicating any invalidation of the data generation mechanism associated with

ZIP and Pois distributions.



The comment challenges our simulation mechanism, arguing that it is unreasonable that the TPR is
close to 1 in the ZIP and Pois distributions when the Gaussian noise level is 0.6. However, we add
Gaussian noise following the procedures described by scGCO and our simulation results are in
agreement with those in the scGCO paper too. The scGCO study used Poisson and Normal
distributions to simulate gene expression. When the Gaussian noise level was 0.6, the accuracy
(>0.995), TPR (>0.96), and F1 score (>0.975) of scGCO were also very close to 1. The downward
trend presented in the scGCO paper was due to the different scaling of the y-axis (0.97~1, 0.7~1,
0.825~1, instead of a uniform 0~1). Therefore, our simulation mechanism is valid and reliable.
Thirdly, we need to point out that different assumed distributions (ZINB, NB, ZIP, and Pois) to
simulate gene expression data result in distinct gene-wise properties (such as mean, variance,
coefficient of variation, and zero proportion). Therefore, adding the same level of Gaussian noise
to ZINB, NB, ZIP, and Pois had different effects on the signal of SVG. For a simple example, the
changes caused by subtracting 0.5 from 100 and 1 are completely different. We believe that it is
normal for the same method to perform differently in different distributions of simulated data, rather
than a problem with our simulation mechanism. Moreover, the exchanging noise simulation results
also confirmed this conclusion. Exchanging noise simulation is a more stable noise addition method,
and the impact of adding the same level of exchanging noise on all distributions is consistent and
independent of the expression property. Compared with the exchanging noise level of 0, the TPR
always showed lower values when the exchanging noise level was 0.6. Given these findings, we are
considering removing the Gaussian noise simulation part from the revised manuscript.

We would like to restate that the distributions and parameter settings we used are based on
references from other papers and follow mainstream practices. We understand your concerns
about the data distribution in Comments 1 and 2. Therefore, we have attached the detailed

settings and justifications for the different distribution parameters we used in our simulation

in the appendix (Page 8).



Comment 3.ScGCQ’s performance is weird for ZINB and NB models. For example, in S2A,
it seems scGCO was unable to identify any genes as SVG, even when noise is zero. This is
related to point 1. I pointed out issues with squidpy previously, the author should carefully

examine their code and evaluate whether additional errors impacted scGCO.

Thank you for your comment. However, after careful consideration, we have a different perspective
on this matter.
Firstly, the comment regarding our simulation results, because of the poor performance of
scGCO in the ZINB and NB distributions, is unfair. In the ZINB and NB distributions, besides
our HEARTSVG method, two other methods, Squidpy and SPARK, also showed an effective
ability to identify SVGs. Moreover, the NB performance of SPARK-X, SPARK, and SpatialDE
was consistent with the performance reported in the SPARK-X paper?. In addition, we would like
to point out that the simulated data of scGCO used Poisson distribution and Normal distribution in
its own paper. It is very unreasonable to use Normal distribution when simulating spatial gene
expression data, as spatial transcriptomics data are known to be sparse, over-dispersed, and non-
negative'>!3,
Secondly, we conducted a fair comparison of scGCO with other methods and discovered that
s¢GCO is not a very powerful method for identifying SVGs. Since the scGCO paper did not
involve the simulation of ZINB and NB distributions, which are commonly used to model the
gene expression data, we cannot compare with the results of scGCQO's paper. Therefore, we
collected other papers that make benchmarking methods (including scGCO) or compare their
methods with the scGCQ. For example:

+  SOMDE? used Poisson distribution to simulate gene expression data, and the parameter lambda
was estimated from the "Slide-seq (nHipp) data'* near the hippocampus". SOMDE was
compared with SpatialDE and scGCO. In all simulations, SOMDE’s performance (TPR and
FPR) was close to SpatialDE and much better than scGCO.

¢ Liang Y, Shi G, CaiR, et al. '° compared PROST, SPARK-X, SINFONIA, scGCO, SpatialDE,
and Seurat in identifying SVGs in the DLPFC dataset'®. scGCO was clearly weaker than
PROST and SPARK-X. SVGs identified by scGCO had lower average Moran'l values.



Charitakis N, Salim A, Piers A T, et al.> benchmarked six methods for identifying SVGs, and
the results showed that scGCO identified significantly fewer SVGs than other methods, but it
controlled FP well.

Li Z, Patel Z M, Pinello et al.® compared 14 methods in massive datasets and conducted a
systematic evaluation, including 60 simulated datasets generated by four different simulation
strategies, 12 real-world transcriptomics, and three spatial ATAC-seq datasets. They found that
scGCO performed worse than Moran’s I, and "scGCO produced a small number of SVGs
(<1000) in most datasets"°.

Maxspin (Jones D C, Danaher P, Kim Y, et al.) 7 used NB distribution to generate simulated
data and compared the performance of various SV identification methods. The results showed
that scGCO had low PR-AUC (around 0.3). They also pointed out in the paper that “scGCO
appears to assign a p value of roughly 0.5 to most genes”, which was consistent with our
findings.

We also pointed out in our previous reply that scGCO’s identification ability depends on its
initial smooth factor. As shown in Figure A1, RPS20 and GASS5 have very similar patterns,
but using the default initial smooth factor = 50, only RPS20 can be identified, and GASS5 cannot
be identified (adjusted p_value = 0.5). To identify GASS5, a smaller initial smooth factor needs
to be set. This is the limitation of scGCO's performance. In Figure A2, scGCO missed
Calmland Calm2, which have clear spatial expression patterns, and assigned a p value of 0.5
In Figure A2, scGCO missed Calmland Calm2, which have clear spatial expression patterns,

and assigned p value=0.5 to Calmland Calm2.

Comment 4.In S2D, TPR becomes zero for all method except scGCO at Gaussian noise 0.6,

but corresponding precisions are not zero. The nominators for TPR and precision are the

same, both are TP. Then how could precisions be not zero while TPRs are zero? The same

error was observed in multiple other graphs as well.

Thank you for your comment. We would like to highlight a point regarding Figure S2d. When high-

intensity noise was introduced, the results of HEARTSVG, SPARK-X, and Squidpy were not

precisely 0, but rather close to 0. It's important to note that it is not uncommon for the TPR to be

close to zero while the precision approaches 1. This discrepancy arises from the different
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benchmarks considered by TPR and Precision. While both TPR and Precision utilize true positives
(TP) in their numerator, they assess the model's ability to identify positives based on different
criteria. Precision is determined by the proportion of correctly identified positives among all
samples predicted as positives, whereas TPR considers the proportion of correctly identified
positives among all actual positives. In Figure S2d, the total number of actual positives (the number
of SVGs) 1s 1000. With the addition of high-intensity noise, the signal of SVGs weakened, resulting
in HEARTSVG, SPARK-X, and Squidpy identifying only a few SVGs (resulting in low true
positives) but with minimal false positives (FP). Consequently, their TPR approached zero, yet they

exhibited high precision.

Figure A1 scGCO missed SVGs (RPS29, ARPC3, GASS) with clear spatial expression patterns
comparing with other methods. (a) Visualizations of spatial expressions of gene RPS20, RPS29,
ARPC3, and GASS. (b) Venn diagrams of SVGs in the colorectal cancer data identified by
HEARTSVG, Spatial DE, SPARK, SPARK-X, scGCO, and Squidpy. (¢) Marginal expression plots
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of gene RPS20, and GASS5 by HEARTSVG. (d) Visualizations of graph cuts by scGCO with
different initial smooth factor of gene RPS20, and GASS by HEARTSVG.

Calm1 (asjusted p=0) default initial smooth factor

1000 2000 3000 4000 5000
X coordinate

1000 2000 3000 4000 5000
X coordinate

FigureA2 scGCO missed SVGs (Calml, Calm2) with clear spatial expression patterns
comparing with other methods. (a) Visualizations of spatial expressions of Calm1 and Calm2 in
the in the Slide-seqV2 cerebellum data. (b) Visualizations of graph cuts by scGCO with default

initial smooth factor of Calm1 and Calm?2.



Parameter Setting:

We used four distributions, Poisson, ZIP, NB, and ZINB, in our simulation. ZINB distribution is
suitable for simulating highly sparse data. Poisson, ZIP, NB are suitable for simulating moderately
sparse data, where the mean and variance of Poisson distribution are equal, while ZIP, NB can
simulate higher dispersion than Poisson distribution. Over-dispersion is a characteristic of spatial
transcriptomics data and single-cell data.
We used Poisson distribution to generate simulated data and followed the parameter settings
of SPARK'. Firstly, we introduce the parameters used in the SPARK manuscript. For the gene
expression in the i-th spot/cell of non-SVG and non-marked area of SVG, the parameter of the
Poisson distribution is:
Anon = N; * exp(—10.2 + 1)
For the gene expression in the marked area of SVG, the parameter of the Poisson distribution is:
Asve = N; xexp (=9.1 + 1;)
Where N; is the total read counts obtained from the real data seqFISH data'®, 7; is drawn from a
normal distribution with mean zero and variance being 0.35. According to the above method, the
range of A,,,is about (0.01,1), and the range of Agy; is about (0.03,3). To simplify our
simulation, we set  A,,, = 0.5, Agyc = 1.5, which is three times of the former.
For the simulated data based on the NB distribution, we followed the simulation parameter
settings of SPARK-X?. For the gene expression in the i-th spot/cell of non-SVG and non-marked
area of SVG, the parameters of the NB distribution are: mu,,, = 0.5,size,,, = 1.5. For the gene
expression in the marked area of SVG, the parameter size sizegy; = 1.5 remains unchanged, and

mugy; = 1.5 is three times the value o mu,,,, = 1.5.

For both ZIP and ZINB distributions, which are zero-inflated models, we need to set a zero-
proportion parameter to control the proportion of zeros. To determine this parameter, we refer to
the criteria for SVG in SPA-GCN!7: "(1) the percentage of spots expressing the gene in the target
domain, that is, in-fraction, is >80%:; (2) for each neighboring domain, the ratio of the percentages
of spots expressing the gene in the target domain and the neighboring domain(s), that is, in/out

fraction ratio, is >1; and (3) the expression fold change between the target and neighboring domain(s)



is >1.5. If a user is interested in finding SVGs for a particular combination of spatial domains,
SpaGCN offers the option to do so."!’

Therefore, in the ZIP distribution, for the gene expression of non-SVG and non-marked area of
SVG, the probability of the zero part is 0.6, and the non-zero part follows a Poisson distribution
with parameter A,,, = 2. For the gene expression of marked area of SVG, the probability of the
zero part is 0.6/3=0.2, and the non-zero part follows a Poisson distribution with parameter Agy; =
6. In this case, in the ZIP distribution, the zero proportion of the gene of non-SVG and non-marked
area of SVG is 0.654, and the mean is 0.8. The zero proportion of the gene of the marked area of
SVG is 0.202, and the mean is 4.8. Compared with the Poisson distribution, the zero proportions of
both are close, but the dispersion and expression level of the gene of the marked area of SVG are
higher.

For the ZINB distribution, we followed the parameter settings for highly sparse data in the
SPARK-X? and the criteria for SVG in the SPA-GCN'!7. We assumed that the gene expression of
non-SVG and non-marked area of SVG had more than 94% zeros, while the gene of marked area
of SVG had a significantly lower zero proportion. Specifically, for non-SVG and non-marked area
of SVQG, the probability of the zero part was 0.8, and the non-zero part followed an NB distribution
with parameters mu,,, = 0.5, size,,,, = 0.5. For marked area of SVG, the probability of the zero
part was 0.8/3=0.267, and the non-zero part followed an NB distribution with parameters mu,,, =
1,size,,, = 1. In this case, in the ZINB distribution, the zero proportion of the gene of non-SVG
and non-marked area of SVG was 0.941, and the mean was 0.05. The zero proportion of the gene
of marked area of SVG was 0.633, and the mean was 0.733.

Here, we note that the SPARK-X? used the NB distribution to generate highly sparse simulated data.
For the gene expression of non-SVG and non-marked area of SVG, the parameters of the NB
distribution were: mu,,, = 0.005,size,,, = 2.5, resulting in 99.5% zeros. For the gene
expression of marked area of SVG, the parameters of the NB distribution were: mu,,, =
0.015, sizey,, = 2.5, resulting in 98.5% zeros. This means that the genes of non-marked area of
SVG and marked area of SVG had very high zero proportions (>98.5%), and very small non-zero
expression values (see Figure A3). We argue that, when the expression of the marked area of SVG
is almost zero, it is hard to determine whether a gene is a biologically meaningful SVG, so we also

referred to the criteria in the SPA-GCN paper!”.



Figure A3. The relationship between gene expression and density in the highly sparse simulated
data generated by SPARK-X. The red line represents the genes of non-SVG and non-marked area

of SVG, and the blue line represents the genes of marked area of SVG.
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Reviewer #2 (Remarks to the Author):

The current version of HEART-SVG manuscript presented by Yuan et al. meets my prior
requirements.

Related to the rebuttal letter associated with this manuscript and shared by another reviewer, the
authors utilized four distinct data distribution in their simulation of spatial variable genes (SVGs)
and justify the rationale behind their selection. I would propose that a shorten version of the
comments provided below is included in the final version of the manuscript, to inform the broad
scientific community on why these simulations were performed using a variety of data distributions
and how that reflects on the observed results.

“The gene expression distribution in real spatial transcriptomics data is complex and variable, and
there is no single distribution that can perfectly fit all genes. A recently published article on spatial
transcriptomics simulator SRTsim9 (Zhu, J., Shang, L. & Zhou, X.) also confirmed this, "SRTsim
relies on four popular count models that include Poisson, ZIP, NB, and ZINB for generating the
synthetic data" 5. These distributions, ZINB, NB, ZIP, and Pois, have been widely used and
validated in studies of spatial transcriptomics1-3,5-10.”

Additionally, it would be of interest if the authors can comment on using the average false
discovery proportion (FDP) compared with nominal false discovery rate (FDR) as a benchmark of
performance for a given statistical method. Benidt et al. proposed that this methodology can be
used to access how a well an analysis method controls FDR for a given simulation method:
(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4481850/)

Reviewer #3 (Remarks to the Author):

The previous reviewer has raised several valid issues regarding the rigor of the evaluation process,
which I agree should be addressed carefully. The large discrepancy between different simulations
is concerning and needs careful investigation. If the source of discrepancy only comes from the
underlying probability distribution of gene expression data used in data simulation. then it would
be helpful to know which part of the analysis procedure is highly sensitive to the choice of such
distributions. I also agree with the previous reviewer that the accuracy for Gaussian noise seems
too good to be true. All in all, the comments raised by the previous reviewer have not been
satisfatorily addressed by the rebuttal.



Dear Reviewers:

Thank you for your comments concerning our manuscript entitled "HEARTSVG: a fast and
accurate method for spatially variable gene identification in large-scale spatial
transcriptomic data" (ID: NCOMMS-23-29155D-Z). We have carefully considered each of
your comments and have made the necessary revisions to address them. We provide a
detailed point-to-point response for each comment in the following document and make
corresponding changes in the manuscript.

We hope these revisions will fully address your concerns and substantially improve our

submission.



Resonse to Reviewer #2:

The current version of HEART-SVG manuscript presented by Yuan et al. meets my prior
requirements.

Commentl1 Related to the rebuttal letter associated with this manuscript and shared
by another reviewer, the authors utilized four distinct data distribution in their
simulation of spatial variable genes (SVGs) and justify the rationale behind their
selection. I would propose that a shorten version of the comments provided below is
included in the final version of the manuscript, to inform the broad scientific
community on why these simulations were performed using a variety of data
distributions and how that reflects on the observed results. “The gene expression
distribution in real spatial transcriptomics data is complex and variable, and there is
no single distribution that can perfectly fit all genes. A recently published article on
spatial transcriptomics simulator SRTsim9 (Zhu, J., Shang, L. & Zhou, X.) also
confirmed this, '""SRTsim relies on four popular count models that include Poisson, ZIP,
NB, and ZINB for generating the synthetic data' 5. These distributions, ZINB, NB,
Z1P, and Pois, have been widely used and validated in studies of spatial

transcriptomics1-3,5-10.”

Thank you for your comment. We have included a shorten version of this section in the
manuscript (Page 7, line 141-145), and the full version has been incorporated into the

Supplementary.



Comment2 Additionally, it would be of interest if the authors can comment on using
the average false discovery proportion (FDP) compared with nominal false discovery
rate (FDR) as a benchmark of performance for a given statistical method. Benidt et al.
proposed that this methodology can be used to access how a well an analysis method
controls FDR for a given simulation method:
(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4481850/

We greatly appreciate your insightful suggestions, which have broadened our perspective in
assessing various methods. We evaluated the average False Discovery Proportion (FDP)
against the nominal False Discovery Rate (FDR) using noise-free simulated data at mean
levels of 0.5 and 0.25 (Page 9 of this response for detailed simulation settings). We
examined the average FDP of various methods at nominal FDR settings of 0.01, 0.05, and
0.1. Our findings (Fig. S1) indicate that Squidpy's average FDP consistently exceeded the
nominal FDR. In contrast, HEARTSVG and SPARK-X maintained an average FDP below
the nominal FDR consistently. For scGCO, the average FDP surpassed the nominal FDR at
the mean level of 0.5 simulated data with moderate data sparsity. However, at the lower
expression level with higher sparsity (mean level of 0.25), scGCO's average FDP fell below
the nominal FDR, albeit with a concurrently low TPR. These results highlight the superior
performance of HEARTSVG and SPARK-X in controlling false positives.

We noted that the literature! suggests "Simulation experiments relying on parametric models
may offer an overly optimistic assessment of a method's efficacy". Given the inability to
generate spatial transcriptomics simulated data for SVGs using the SimSeq algorithm, we
embarked on an alternative intriguing endeavor. We analyzed the changes of average FDP
as the capacity to identify SVGs deteriorated (reflected by a decrease in F; score).
Specifically, we modified the approach of adding Gaussian noise as Reviewer 3's comment.
With this modified approach to Gaussian noise incorporation, we observed that as the level
of noise increased, all patterns became increasingly difficult to detect (Fig. S2a), causing a
decline inthe F; scores ofall methods towards zero (Fig. S2b). At a nominal FDR of 0.05,
we analyzed how the average FDP of various methods altered with increasing noise. Our
results (Fig. S2b) indicated that Squidpy’s average FDP consistently exceeded the nominal
FDR. In contrast, HEARTSVG and SPARK-X’s average FDP remained below the nominal
FDR. For scGCO, the average FDP began to rise with increasing noise levels and ultimately
surpassed the nominal FDR.

In summary, HEARTSVG stands out in controlling false positives, indicating that its
identified SVGs are highly credible. However, this may also suggest that HEARTSVG’s

selection is relatively conservative.



Fig. S1 a, Plot of average FDP at different nominal FDR. The solid gray line represents an
average FDP that is exactly equal to nominal FDR. b, Plot of average F; score at different

nominal FDR. c, Plot of average TPR at different nominal FDR.



Fig. S2 a, Visualizations of spatial patterns, incorporating noise using the modified Gaussian
noise addition approach. b, Plot of average FDP, F; score and TPR at nominal FDR=0.05.
The solid gray line represents nominal FDR=0.05.
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Response to Reviewer #3:

Comments The previous reviewer has raised several valid issues regarding the rigor
of the evaluation process, which I agree should be addressed carefully. The large
discrepancy between different simulations is concerning and needs careful
investigation. If the source of discrepancy only comes from the underlying probability
distribution of gene expression data used in data simulation. then it would be helpful
to know which part of the analysis procedure is highly sensitive to the choice of such
distributions. I also agree with the previous reviewer that the accuracy for Gaussian
noise seems too good to be true. All in all, the comments raised by the previous reviewer

have not been satisfactorily addressed by the rebuttal.

Thank you for your insightful comments. We appreciate the opportunity to enhance the rigor
of our study. We will address them in the following two points: the source of discrepancy

and Gaussian noise.

Comment] If the source of discrepancy only comes from the underlying probability
distribution of gene expression data used in data simulation. then it would be helpful
to know which part of the analysis procedure is highly sensitive to the choice of such

distributions.

Thank you for the comment. In fact, it is the data characteristics of different distributions
(expression levels, degree of dispersion, and sparsity) that significantly affect the
performance of various methods in identifying SVGs. We have added two new simulations
in which we adjusted the parameters of all distributions (ZINB, ZIP, NB, Pois) to ensure
the data characteristics (mean, dispersion, and sparsity levels) produced are similar. It is
important to note that, due to the inherent properties of the distributions, ZIP and ZINB
will inherently exhibit greater dispersion than Pois and NB under similar mean and
variability levels.

Our analysis shows that when the data characteristics are aligned, each method's
performance is relatively stable across different simulated datasets, regardless of the
underlying distribution (Fig. S1-S3). We have also conducted sensitivity analyses to
pinpoint which steps in the analysis are particularly sensitive to variations in data
characteristics. The main conclusions are as follows. The detailed results of our sensitivity
analyses, which are provided in Figs. S4-S11, elucidate the specific parts of the analysis that

are sensitive to these data characteristics.



Main Conclusions:

1. scGCO is significantly impacted by increased data dispersion, whereas
HEARTSVG, SPARK-X, and Squidpy are robust under these conditions.

2. An increase in data sparsity and a decrease in overall expression levels
generally diminishes all methods' capacities to identify SVGs.

3. The normalization procedures by spatialDE and SPARK distorts the data
characteristics, negatively affecting SVG detection.

4. Alow count of cells or spots uniformly hinders all methods' abilities to identify
SVGs effectively.

There are details.

We generated two new simulations using different distributions with similar data
characteristics (mean, dispersion, and sparsity level). Each method demonstrated a similar
ability to identify SVGs across these simulated datasets from different distributions (Fig.
S1-S3). In simulated datasets with higher dispersion (ZIP,ZINB), scGCO showed lower
F, scores. Furthermore, in simulated datasets with higher sparsity and lower expression

levels (mean level 0.25), the SVG identification capabilities of all methods diminished.

Fig. S1 a, Visualization of Ring Pattern for different distributions that share similar data
characteristics (mean, dispersion, and sparsity level). b, Each method has similar F; score
across different simulated datasets. scGCO has lower F; score on datasets characterized

by higher dispersion, such as those from ZIP and ZINB distributions.



Fig. S2 a, Visualization of Ring Pattern for different distributions that share similar data
characteristics (mean, dispersion, and sparsity level). b. Each method has similar F; score

across different simulated dataset.

Fig. S3  Each method has similar F; score across different simulated dataset of Big
circles Pattern. These datasets generated by different distributions sharing similar data

characteristics (mean, dispersion, and sparsity level).

The parameter settings for the two new simulations are as follows.

1) Simulations with medium sparsity and high expression levels.

For non-SVGs and the non-marked area of SVGs, the data characteristics (mean, dispersion,
and sparsity level) generated by different distributions were adjusted to be close to a
mean = var = 0.5, P(X =0) = 0.6 (approximating Pois(A = 0.5)). For the marked
area of SVGs, the data characteristics were made to approximate a mean = var =

1.5,P(X =0) = 0.3 (approximating Pois(A = 1.5)). The specific parameters are as
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follows.

Tab. S1 Parameters of different distributions close to a mean = var = 0.5,P(X =0) =
0.6 and mean = var = 1.5,P(X = 0) = 0.3.

non-SVG and non-marked area of

marked area of SVGs
SVGs
probability non-zero part probability non-zero part
of extra of extra
mu/lambda size mu/lambda size
ZEros ZEros
Pois - 0.5 - - 1.5

NB - 0.5 30 - 1.5 30

ZIP 0.4 0.833 - 0.2 1.8 -
ZINB 0.5 1 30 0.25 2 30

2) Simulations with high sparsity and low expression levels

For non-SVGs and the non-marked area of SVGs, the data characteristics (mean, dispersion,

and sparsity level) generated by different distributions were adjusted to be close to a

mean=var=0.25, P(X=0)=0.8 (approximating Pois(A = 0.25)). For the marked area of

SVGs, the data characteristics were made to approximate a mean=var=0.75, P(X=0)=0.5

(approximating Pois(A = 0.75)). The specific parameters are as follows.

Tab. S2 Parameters of difterent distributions close to a mean=var=0.5, P(X=0)=0.6 and
mean=var=1.5, P(X=0)=0.3.

non-SVG and non-marked area of
SVGs

marked area of SVGs

probability non-zero part

probability non-zero part

of extra of extra
mu/lambda size mu/lambda size
ZEros ZEros
Pois - 0.25 - - 0.75
NB - 0.25 30 - 0.75 30
ZIP 0.5 0.5 - 0.2 0.95 -
ZINB 0.5 0.5 30 0.2 0.95 30




Sensitivity Analysis

1. We found that scGCO is significantly impacted by increased data dispersion,
whereas HEARTSVG, SPARK-X, and Squidpy are robust under these conditions.

In simulations of our previous manuscript, using NB and Pois distributions,
HEARTSVG, SPARK-X, and Squidpy showed similar performances across both sets of
simulated data. However, scGCO showed notable differences, performing significantly
worse on the NB distribution than on the Pois distribution.

The previous simulations with NB(1.5,0.5) and Pois(0.5) distributions had similar
spatial expression patterns (Fig. S4a), equal means (Non-SVG: both NB and Pois with
u = 0.5; SVG: both NB and Pois with y = 1.5) and similar sparsity levels (Fig. S4b).
Yet, the NB (size = 1.5) distribution is more right-skewed, indicating stronger
overdispersion (Fig. S4b).

As we know, with the 'size' parameter in the NB distribution increases, the data dispersion
decreases. When 'size' approaches infinity, the NB(size, 1) converges to a Poisson
distribution Pois(A) with A=p. Fig-Slc demonstrated that, the NB(size = 30) and Pois
distributions' shapes are almost identical ( A = p) (Fig. S4c). Therefore, we generated two
sets of NB simulation data with size = 30 and size =5 (the u parameter same as
before) to compare with the previous NB(1.5,0.5) and Pois(0.5) distribution results.
The simulation results (Fig. S5) showed that with NB(size = 30), as dispersion
decreases, scGCO’s F; score significantly improves (Fig. S5b), aligning with the
F, score seen with the Poisson distribution (Fig. S5¢). We conducted similar simulations
on the 'Big squares' pattern and obtained consistent results (Fig. S6). Compared to
NB(size = 30), NB(size =5), NB(size = 1.5), with areduced 'size' leads to increased
dispersion, significantly diminishing scGCO’s ability to identify SVGs, while HEARTSVG,
SPARK-X, and Squidpy showed no significant change, demonstrating greater robustness.
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Fig. S4 a,Visualizations of the 'Ring pattern’ SVGs. Gene expression distributions
correspond to NB(size = 1.5), NB(size = 30), and Poisson distribution, with same
'mean' parameter. Their visual appearances are fundamentally similar. b, Density
comparision of Pois and NB(size = 1.5). NB (size = 1.5) distribution is more right-
skewed, indicating stronger overdispersion. ¢, Density comparision of Pois and NB(size =

30). NB(size = 30) and Pois distributions’ shapes are almost identical.
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Fig. S5 a,Visualizations of the 'Ring pattern’ SVGs. Gene expression distributions
correspondto NB(size = 1.5), NB(size = 5), NB(size = 30), and Poisson distribution,
with same 'mean' parameter. Their visual appearances are similar. b, F;score comparision
of all methods on simulations using NB(size =5) and NB(size = 30). ¢, F;score
comparision of all methods on simulations of previous manuscript. The SVG

identification capability of scGCO diminished with high dispersion (small 'size' parameter).
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Fig. S6 Big circles Pattern. a, Fyscore comparision of all methods on simulations using
NB(size =5) and NB(size =30) . b, F;score comparision of all methods on

simulations of previous manuscript. The SVG identification capability of scGCO

diminished with high dispersion (small 'size' parameter).,
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2. An increase in data sparsity and a decrease in overall expression levels generally

diminishes all methods' capacities to identify SVGs.

High sparsity often coexists with low expression levels in single-cell and spatial
transcriptomics data. In simulations of our previous manuscript, we generated simulated
scenarios with high sparsity and low expression levels using the ZINB distribution. In
these simulations, the non-SVGs had over 94% zeros, while the SVGs had over 60% zeros.
High sparsity is common in data generated by techniques like Slide-seqV2, HDST, Visium
HD and Stereo-seq at single-cell or subcellular resolution.

To further investigate this, we introduced a new NB distribution with parameters
(SVG: NB(size = 0.5,u = 0.73), non-SVG: NB(size = 0.065,u = 0.1) ), aiming to
approximate the original ZINB distribution (Fig. S7a). We generated simulated data
following this new NB distribution and compared it with the previous ZINB simulation
results. The results (Fig. S7b) show that all methods performed on the new NB simulated
data that were generally consistent with the original ZINB results. The comparison of the
new NB simulation with the original NB results demonstrated that all methods' SVG
identification capabilities decreased on the more sparsely distributed new NB data.
Additionally, we conducted another simulation (Tab.S3). Using Poisson distributions with
decreasing A values: (Pois(4 = 0.5), Pois(A = 0.25), Pois(4 = 0.1). As we know, for
Poisson distribution, as the parameter A decreased, the data sparsity increased, and overall
expression levels decreased. Similar to the previous simulation, all methods exhibited
decreased SVG identification capabilities as A decreased. HEARTSVG and Squidpy showed

greater robustness to changes in sparsity than others.
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Fig. S7 a, Density comparision of new NB and original ZINB . Their distributions’
shapes are almost identical. b, F;score comparision of all methods on simulated data from
new NB distributions. ¢, F;score comparision of all methods on simulations of previous

manuscript.
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Tab. S3 new Poisson distributions parameters.

non-SVG and non-

marked area of SVGs
marked area of SVGs
‘ Pois(1 =0.1) 0.1 0.3
Pois
Pois(A = 0.25) 0.25 0.75
(lambda) )
Pois(A = 0.5) 0.5 1.5

Fig. S8 a, Visualizations of the 'Ring pattern' SVGs. Gene expression distributions
correspond to (Pois(A =0.5), Pois(A =0.25), Pois(A=0.1). As the paraneter A

decreased, the data sparsity increased, overall expression levels decreased, and visual clarity

diminished. The color pattern distribution across the plots gets progressively sparser from

left to right, illustrating the effect of decreasing the lambda parameter on the sparsity of the

generated data. b, Ring Pattern, comparing the F; scores of four different methods across

three simulated scenarios with varying A for Poisson distributions: 0.5, 0.25, and 0.1. c,

Big circles Pattern, comparing the F; scores of four different methods across three

simulated scenarios with varying A for Poisson distributions: 0.5, 0.25, and 0.1. The bar

chart clearly visualizes the decreasing F; scores of four methods as data sparsity increases

with decreasing A values.
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3. The normalization procedures by spatialDE and SPARK distorts the data

characteristics, negatively affecting SVG detection.

In our simulations, SPARK and Spatial DE perform noticeably weaker compared to other
methods. Both SPARK and SpatialDE use the Gaussian process regression as the
underlying data model. It is well-known that spatial transcriptomics data do not follow a
normal distribution. SPARK and SpatialDE employ additional normalization mechanisms
to approximate the spatial transcriptomics data to a normal distribution before modeling and
identifying SVGs'. However, the normalization mechanism of SPARK and SpatialDE
removes excessive heterogeneity, including signals from SVGs, which limits their ability to
identify SVGs. Fig. S9 displays SVGs' visualizations before and after SPARK normalization.
These visualizations showed the effect of normalization mechanism on spatial gene
expression data. The normalization procedures of SPARK and SpatialDE overcorrected the
signals of SVGs. Nevertheless, to facilitate a comprehensive comparison of various methods,
we still created a new simulation with higher heterogeneity. This simulated data possesses
increased heterogeneity in order to mitigate the impact of normalization procedures. We
maintained the expression distribution and parameters constant, while incorporating
variations such as higher expression in the central circle for some SVG genes, and similar
expression across three circles for others, as shown in Figure S10. Upon increasing the
heterogeneity in the simulated data, SPARK and SpatialDE's performance improved, albeit
still not on par with other methods. This was particularly evident in datasets with higher
sparsity and dispersion (NB and ZINB), aligning with the findings reported for SPARK-
X! in the literature. Notably, enhancing the heterogeneity did not significantly alter the

performance of the other methods compared to results from the previous revision.
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Fig. S9 a, SVGs' visualization of Big squares in the simulated data. b, SVG in the
MERFISH data. The left plot shows the original spatial expression for SVGs. The right plot

shows the spatial expression for SVGs after SPARK normalization.

Method

Fig. S10Simulation results for identifying SVGs using simulated data with higher
heterogeneity a, Visualization of SVGs and non-SVG. b-e, Simulation results of six different
methods (HEARTSVG, scGCO, SPARK, SPARK-X, SpatialDE and Squidpy) on simulated
data generated by four distinct distributions (ZINB, ZIP, NB, Poisson).

18



4. Alow count of cells or spots uniformly hinders all methods' abilities to identify SVGs

effectively.

Although unrelated to the data distribution and data characteristics, our research indeed
found that the capability of all methods to identify SVGs diminishes when the dataset
contains a smaller number of cells/spots. We generated a new simulations with the same
Poisson distribution parameters as the previous simulation in the manuscript, but with the
number of cells set to 500. Compared to the previous simulation results, the new simulation

showed a marked decrease in the F; scores for all methods (Fig. S11).

Fig. S11 a, New simulation results with the number of cells set to 500. b, Previous

simulation results with the number of cells set to 3000.
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Comment 2 I also agree with the previous reviewer that the accuracy for Gaussian

noise seems too good to be true.

In the previous manuscript, we applied the same level of Gaussian noise to all simulated
data from different distributions. For ZINB and NB data, all methods' F; scores decreased
as the noise level increased. However, after adding Gaussian noise to ZIP and Poisson data,
all methods' F; scores remained close to 1. We observed that this phenomenon arises due
to the varying expression levels, sparsity, and dispersion characteristics across different
simulated data distributions, resulting in differing levels of difficulty for spatial pattern
identification. Thus, the impact of the same noise level also varied. Figure S12 illustrates
the visualization of the same level of Gaussian noise added to simulated data from different
distributions, where ZIP and Poisson data still exhibit clear patterns even after the addition
of 0.6 noise. In contrast, the visual patterns in ZINB and NB data became blurred after the

addition of 0.6 noise.

Fig. SI12Ring Pattern.Visualizations of simulated data from different distributions with

increasing levels of Gaussian noise, as presented in the previous manuscript.
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Gaussian noise is commonly used in the field of computer vision. Consequently, we referred
to articles in the field of computer vision and modified the approach for adding Gaussian
noise. To ensure a consistent impact across all images, Min-Max normalization is performed
before noise addition.
New adding Gaussian noise:
1. Min-Max normalization:
We first normalized the expression data, scaling gene expression values to a uniform
range between 0 and 1. This helps maintain consistency in expression levels across
different distributions.
2. Generating and adding noise:
We generated noise from a Gaussian distribution N(0,0) and added it to the
normalized data, ensuring that the post-noise addition pixel values remained within the
valid range.
3. Reverse normalization:
After noise addition, we reverted the expression values from their normalized state back
to their original scale.
4. We applied methods to identify SVGs.

Following this modified Gaussian noise addition approach, we found that adding the same
level of Gaussian noise consistently impacted different data features. The variation
inF; scores for all methods was also consistent across the different distributions of
simulated data with Gaussian noise (Fig. S13-S15).
Z1P: Patterns became blurred when noise exceeded 0.3, and three methods' F; scores
decreased from 0.3 noise.
Pois: Patterns became blurred when noise exceeded 0.2, leading to a noticeable decline in
performance across methods.
NB: Similar to Poisson, patterns blurred when noise exceeded 0.1, three methods' F; score
declined significantly.
ZINB: Given its inherent sparsity and dispersion, initial patterns were already somewhat
blurred. Adding 0.05 noise resulted in blurred spatial pattern, and three methods' F; score
declined significantly from 0.05 noise onward.
Similar to our observations in the sensitivity analysis, we found that the performance of
scGCO declines with increased Gaussian noise, leading to unreliable outcomes and
fluctuations. We hypothesize that this is due to the fixed hyperparameter, the initial factor,
but the influence of the initial factor on the direction of result variations remains unclear.
The pertinent results have been included in the appendix (Fig. Al).
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Fig. SI3Ring Pattern. a, Visualizations of simulated data from various distributions,
incorporating noise using the modified Gaussian noise addition approach. b, Comparison of

F, scores on the new Gaussian noise simulated data.
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Fig. S14 Streaks Pattern. a, Visualizations of simulated data from various distributions,
incorporating noise using the modified Gaussian noise addition approach. b, Comparison of

F, scores on the new Gaussian noise simulated data.
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Fig. S15Hotspot Pattern. a, Visualizations of simulated data from various distributions,
incorporating noise using the modified Gaussian noise addition approach. b, Comparison of

F, scores on the new Gaussian noise simulated data.
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Appendix

Fig. A1 Comparison of F; scores of four methods on the new Gaussian noise simulated
data.

Reference
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Reviewer #2 (Remarks to the Author):

The revised version of HEART-SVG manuscript presented by Yuan et al. meets my prior
requirements. The authors have successfully addressed my last set of comments. Although the
supplementary materials already include 103 pages of additional results, I would suggest including
the analysis shared by the authors in their last rebuttal letter.

Reviewer #3 (Remarks to the Author):

The sensitivity analysis added in this revision is informative, but it would only be useful if it is
incorporated in the manuscript, which does not seem to be the case now.



Dear Reviewers:

Thank you for your valuable feedback on our manuscript titled "HEARTSVG: a fast
and accurate method for spatially variable gene identification in large-scale spatial
transcriptomic data™ (ID: NCOMMS-23-29155E). We have thoroughly reviewed your
comments and have incorporated the necessary revisions to enhance the quality of our
submission. Below, we present a comprehensive response to each of your suggestions,
accompanied by corresponding modifications made to the manuscript.

We hope these revisions adequately address your concerns and significantly strengthen
our manuscript.



Resonse to Reviewer #2:

The revised version of HEART-SVG manuscript presented by Yuan et al. meets my
prior requirements. The authors have successfully addressed my last set of comments.
Although the supplementary materials already include 103 pages of additional results,
I would suggest including the analysis shared by the authors in their last rebuttal letter.

Thank you for acknowledging the revisions to our manuscript. We appreciate your
suggestions. We have incorporated the analysis mentioned in our last rebuttal letter into
the manuscript (Page 8, lines 185-187) and included all relevant content in the
Supplementary (Pages 114-116) to ensure the completeness and comprehensibility of
the paper.

Resonse to Reviewer #3:

The sensitivity analysis added in this revision is informative, but it would only be useful
if it is incorporated in the manuscript, which does not seem to be the case now.

Thank you for your comment. We have revised the paper to include the sensitivity
analysis within the manuscript (Page 8, lines 180-185) and included the full sensitivity
analysis in the Supplementary (Pages 110-113) to ensure its relevance and usefulness.



