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Supporting Information Text
1. Implementation

In order to enable differentiable rigid body dynamics, we extend the JAX-MD framework to anisotropic systems. The two major
advancements are a new RigidBody dataclass and extended integrators with rotational degree of freedom. The RigidBody
object consists of a center and an orientation. In the typical case, the center stores the information related to translation
movements of an object and the orientation stores the information related to rotation movements of the object, which may
be an array of angles in two dimensions or an array of quaternions in three dimensions.

While the RigidBody is most commonly used to store positional information, where the center would correspond to the
position of the center of mass and the orientation would correspond to the rotation of an object based on its initial reference
frame, the RigidBody class is used to store information about any quantity with both a center of mass and an orientation
component. This includes momentum, where the center corresponds to the linear momentum and the orientation corresponds
to the angular momentum, the force, where center is linear force and orientation is torque, and the mass, where the center
stores the total mass of the object and the orientation stores the moment of inertia tensor. Because JAX-MD is built on top of
JAX, by storing all of these quantities as RigidBody objects, we can take advantage of the tree_map functionality offered by
JAX to easily map over these quantities. Among other advantages, this allows us to make use of the differentiability of the code
base to compute angular accelerations via gradients rather than via explicit, complex torque expressions (1).

In three dimensions, the orientation component of the RigidBody object is represented as a quaternion. In order to
make energy and force calculations convenient and efficient, we include a set of functions that act on quaternions, including
transformations between the body frame and the space frame.

The utility of these functions can be particularly seen in the methods we provide to construct rigid bodies from unions of
point particles. We construct a RigidPointUnion class that contains a set of positions for the particles that make up the rigid
body as defined in the body frame, a set of masses of each constituent particle, an array specifying the number of points in each
shape, an array specifying how to index the particle positions according to the shape, and finally species information about the
constituent particles. We use the information in the RigidPointUnion to construct a pointwise energy function. In essence,
the RigidPointUnion describes the shape of the rigid body. We note, however, that our code is valid for more general rigid
body types, despite the fact that we only provide functionality for rigid bodies composed of point particles. Adding explicit
functionality for other types of rigid bodies is an avenue for future work.

In order to run simulations with rigid bodies, we additionally extended the original JAX-MD integrators to function with
rotational degrees of freedom. We implemented the algorithm developed in (1), which introduces a symplectic integrator that
acts on unit quaternions. The algorithm relies on the Trotter-Suzuki operator splitting approach. We note that this method is
compatible with both constant energy (NVE) and constant temperature (NVT) ensembles, but is not compatible with constant
pressure (NPT) simulations.

We chose to allow for flexibility in our representation of the particles and objects we simulate. Many common Molecular
Dynamics (MD) packages use a common representation of objects under the hood, which leads to, for instance, unneces-
sarily storing orientations for isotropic particles. In order to accommodate varying input types, we make use of the JAX
single_dispatch function. This allows us to use the original JAX-MD simulation functions if the input type does not contain
rotational degrees of freedom, but to use RigidBody-enabled simulation functions if the input type is a RigidBody. This allows
simulations that do not require functionality for rotational degrees of freedom to maintain higher efficiency. All the code
discussed above is now available in the main branch of the JAX-MD Github repository (2).

2. Simulation

A. 2D Self-Limited Rings. Here, we investigate the temperature dependence of the yield of trimers and squares in the case
of self-limited assembly of squares. We surmised that at a higher temperature, incorrect products would more easily break
apart, which would reduce the need for the wider opening angle. Indeed, we find that the optimal opening angle at a higher
temperature is much closer to the naively expected 90 degrees. We again compute the yields for triangles, squares, and
pentagons for the 90 degree guess and the higher temperature optimal parameters in Fig S5.

Fig. S2 shows the patch interaction evolution as a function of optimization timesteps. We start with randomly generated
patch interactions and optimize the interaction matrix alongside of the patch angle. We notice that interaction between
different patch species (A-B) is clearly favored to achieve the target finite square morphology, while same species interactions
(A-A, B-B) are discouraged. Since we started with random guesses for the patch interactions, A-A and B-B interactions, while
small, do not approach zero at the end of the optimization. Judging from the trajectory of interaction evolution, it is clear that
patch angle plays a more crucial role in the final assembled structure if the interaction strengths are different enough.

B. 3D Cluster Stabilization. In order to optimize for the stabilization of the 3D octahedron, we begin with particles initialized
in an octahedral configuration, but rotated randomly. The particles may resultingly fall apart or may remain in the octahedral
configuration, depending on the current set of parameters. Sufficiently long simulations are needed to measure the degree to
which the octahedron will stay together, and therefore to provide the gradient calculation with a meaningful signal from the
simulation.

To determine the necessary simulation length, we ran forward simulations of the octahedron stabilization and computed
the loss as a function of simulation time. These results are shown in Fig. S3B (Yellow line). To reliably observe the relevant
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Fig. S1. Optimal square parameters prevent triangle formation. A Yield for our optimal parameters for formation of square rings at kT=1.0 (solid line) and the yield for
particles with a 90 degree opening angle (dashed line). B Yield for our optimal parameters for formation of square rings at kT=1.5 (solid line) and the yield for particles with a 90
degree opening angle (dashed line). C Occurance of triangles (incorrect product), squares (correct product) and pentagons (incorrect product) as a function of temperature for
our optimal parameters for kT=1.0 (solid line) and for a 90 degree opening angle (dashed line). D Occurance of triangles (incorrect product), squares (correct product) and
pentagons (incorrect product) as a function of temperature for our optimal parameters for kT=1.5 (solid line) and for a 90 degree opening angle (dashed line).

Ella M. King®!, Chrisy Xiyu Du>*!, Qian-Ze Zhu®, Samuel S. Schoenholz® ¢, Michael P. Brenner®*



Square Optimization

N—

\

\/\F_/\/' T —

-10 — A-A
A-B

— B-B

-15

Interaction Strength (kgT)

0 50 100 150 200 250 300
Optimization Steps

Fig. S2. Patch Interaction Evolution Plot for the patch interactions between same species (A-A and B-B) and different species (A-B) as a function of optimization timesteps.
To achieve the finite square morphology, strong A-B interaction is desired while A-A/B-B interactions should be negligible.
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changes in the loss function from the initial to the final configuration, we used 200,000 timesteps per simulation. The loss
function is described in Fig. S4. The blue curve shows the loss values for the optimal parameters found in our optimization,
and the yellow curve shows parameters used in (3) to assemble an octahedron. As expected, because our parameters were
optimized to stabilize an octahedron, our parameters show a lower final loss value on average.

3. Optimization

In both the 2D and the 3D examples we discuss, we use a loss function that considers a set of N particles, computes the
distances between each particle and its nearest neighbors, and compares these distances to distances computed for a reference
structure that also consists of N particles. In the 2D self-limiting assembly case, the reference structure was a 2D trimer or a
square. In the 3D case, the reference structure was an octahedron. A graphical representation of this loss function is given in
fig S4.

A. Comparison to Literature. As discussed in the main text, we aim to stabilize an octahedral cluster. While we find different
optimal parameters than those found by Long et al in (3), this is expected: Long et al aim to assemble an octahedron rather
than to stabilize one. We explicitly demonstrate that our optimal parameters are preferred for the task of stabilization in
two ways. First, we initialize the optimization from the parameters given by Long et al, and show in Fig S5 that those initial
parameters reliably converge to our optimal parameters. Second, we perform forward simulations of stabilization using both
our optimal parameters and the parameters found by Long et al. The results are given in Fig S3. We observe that our optimal
parameters consistently show a lower loss for stabilization than the parameters given in (3).
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Fig. S3. 3D Cluster: comparsion A Stabilization test between (3) and JAX-MD. B Forward simulation results. In both subfigures, we plot loss as a function of simulation time.
Blue curve shows optimal parameters from our optimization, and the yellow curve shows parameters used in (3) to assemble an octahedron.
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Fig. S4. Graphic illustration of loss function
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Fig. S5. Stabilization optimization initialized using (3) parameters
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Fig. S6. Larger system (N = 216) forward simulations using HOOMD-blue for both (3) parameters and JAX-MD optimized parameters Value of the loss for the
optimal parameters over the course of a representative simulation for 2e6 time steps for both literature optimized parameters and JAX-MD optimized parameters. JAX-MD
optimized parameters show a slightly lower loss function value for stabilization test.
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