Cell Reports Medicine, Volume 5

Supplemental information

Single-cell multiomics profiling reveals
heterogeneous transcriptional programs

and microenvironment in DSRCTs

Clémence Henon, Julien Vibert, Thomas Eychenne, Nadége Gruel, Léo Colmet-
Daage, Carine Ngo, Marlene Garrido, Nicolas Dorvault, Maria Eugenia Marques Da
Costa, Virginie Marty, Nicolas Signolle, Antonin Marchais, Noé Herbel, Asuka Kawai-
Kawachi, Madison Lenormand, Clémence Astier, Roman Chabanon, Benjamin
Verret, Rastislav Bahleda, Axel Le Cesne, Fatima Mechta-Grigoriou, Matthieu
Faron, Charles Honoré, Olivier Delattre, Joshua J. Waterfall, Sarah Watson, and Sophie
Postel-Vinay



Figure S1
A



Figure S1. DSRCTtumor cellsare characterized by lineage-related states, stemness features, and homogeneous EWSR1::WT1
expression levels, related to Figures 1 and 2.

(A) Uniform Manifold Approximation and Projection (UMAP) highlighting Int_sc 3' sScRNA-seq clusters.

(B) UM AP showing the Int_sc dataset annotation according to Cao et al. fetal cells atlas.

(C) UMAP highlighting differentiation degree prediction of the Int_sc dataset using CytoTRACE.

(D) UM AP showing cell-based transcriptome entropy of the Int_sc dataset using StemlID.

(E) UMAP showing “WT1” expression within Int_sc dataset. “WT1” herein corresponds to both EWSR1::WT1 and wild-type WT1
transcripts.

(F) UMAP showing “WT1" expression within | C1 site#3 (left panel) and GR7 site#2 (right panel) datasets.

(G) Schematic representation of the in-house developed method characterizing EWSR1::WT1 fusion transcript expression level at the
single-cell resolution. The method relies on sequential PCRs to enrich the library for EWSR1::WT1 specific barcoded cDNASs derived from
10X Genomics 3’ single cell pipeline.

(H) UMAP highlighting EWSR1::WT1 single-cell expression level in | C1 site#3 and GR7 site#2.
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Figure S2. EWSR1::WT1 target genesdisplay EGR1 motif and are variably accessible across snM ultiome clusters, related to Figure 3.

(A) EWSR1 western blot (WB) showing the input, immunoprecipitated (1P), and flow-through fractions (No IP) of EWSR1::WT1in
JN-DSRCT-1 protein lysate (upper panel). IPwas done using WT1 C-ter GTX15249 antibody. As a negative control, we show an
inefficient immunoprecipitation with an alternate WT1 antibody. Strong staining for EWSRL1 at the predicted fusion protein size (65 kDa)
highlights the specificity of the immunoprecipitated fraction. WB was performed using the EWSR1 C-9 clone, sc-48404.

Pie chart representing the genomic distribution of EWSR1::WT 1-binding peaks (lower panel). TTS relates to transcription termination
sSite.

(B) Integrated Genome Viewer (IGV) track of EWSR1::WT1 known (CCND1, FGFR4, COL23A1, EGR1) and newly described (GAL,
ADGRB1, CHI3L1) targets.

(C) Gene Ontology (GO) enrichment analysis of EWSR1::WT 1-binding peaks for GO biological process (GOBP). All pathways with
significant enrichment (adjusted p-value <0.05) are displayed on y-axis from lower (top) to higher (bottom) adjusted p-value. Generatio is
shown on x-axis. Dots color refer to Log(Odds Ratio).

(D) Scatter plot representing 6-mer s frequency within EWSR1::WT 1-binding peaks (y-axis) accor ding to their frequency within the
whole genome (x-axis). Specific enrichment for GGA/CCT repeats motifs is highlighted.

(E) Chart recapitulating significantly enriched de novo EWSR1::WT 1-binding motifs with their best match with known transcription
factor (TF) consensus maotifs. The analysis was performed using the MEME suite with JASPAR2020 or HOCOMOCO-v11 TF database.

(F) WB of EWSR1::WT1 expression assessment upon EWSR1::WT1 silencing of IN-DSRCT-1 cells before assay for transposase-
accessible chromatin with sequencing (ATAC-seq). Silencing was performed using a EWSR1::WT1- or CCND1-targeting SIRNA, or a
control non-targeting SSIRNA at H48 post-transfection. A mock-transfected control is shown. EWSR1::WT1 and wild type EWSR1 correspond
to the 65 kDa and 80 kDa band respectively, using a EWSR1 N-ter antibody (EWSR1 C-9 clone, sc-48404). CCND1, which isadirect target
of EWSR1::WT1, is shown as a positive control for efficient EWSR1::WT1 silencing. b-actin is shown as a control for protein loading at 50
kDa.

(G) Volcano plot showing ATAC-seq differentially accessible peaks-corresponding genesin EWSR1::WT 1-silenced ver sus hon-
silenced IN-DSRCT-1 cells. Peaks with increased accessibility upon EWSR1::WT1 silencing are shown on the left (EWSR1::WT1 “off"),
whereas those that have increased accessibility in non-silenced cells are shown on the right (EWSR1::WT1 “on”). Colored dots correspond to
the most differentially accessible peaks (-Log10(adjusted p-value)>100 and absolute Log2 fold change (Log2FC)>1.5).

(H) Venn diagram showing overlap between EWSR1::WT1“on” ATAC peaksand EWSR1::WT1-binding peaks.

(I ChlP-seq read cover age heatmaps centered around EWSR1::WT 1-binding peaks (+/- 5 kb) and ordered by genomic regions.
Heatmaps display EWSR1::WTL1 (first panel), H3K 9ac (second panel), and H3K 27ac (third panel) ChlP-seq assays. The fourth panel shows
coverage for EWSR1::WT1 “on” peaks from ATAC-seq assay.

(J) Heatmap showing cell-based motif activity Z-scorefor the top enriched motifsfrom known TFsin the snM ultiome assay.
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Figure S3. Microenvironment shapes DSRCT cells phenotype, related to Figure 5.

(A) Selected ligands expression across I nt_sc dataset clusters (NichetNet). The color scale represents the average expression Z-score
percluster. For each cluster, the percentage of cells expressing the feature of interest is represented by the dot size.

(B) Prior ligand-receptor interaction potential between selected ligands and matching receptorsin the Int_sc dataset (NicheNet).

(C) Regulatory potential between selected ligands and imputed downstream tar get genes from high (purple) to low (white) regulatory
activity.

(D) Representative image of a IN-DSRCT-1 spheroid embedded in Matrigel stained for DESand WT1.

(E) Colony formation assay (CFA) of IN-DSRCT-1 cell line cocultured with (w/) or without (w/0) CAFs obtained from DSRCT
patients-derived xenografts (PDXs). The picture shows colonies stained with crystal violet after two weeks of coculture.

(F) Bar plots showing the per centage of well area covered by JN-DSRCT-1 colonies cultureswith (w/) or without (w/0) PDXs-derived
CAFs, assessed by absorbance cell viability assay. A t-test was used for p-value calculation.

(G) IN-DSRCT-1 spheroids growth culturein the presence (w/) or absence (w/o) of DSRCT PDXs-derived CAFs. The median volume
of the spheroids (triplicate assay) assessed at Day 0, Day 2, and Day 8 is shown on y-axis. A.U: Arbitrary Unit; two-way ANOVA was used
for p-value calculation.



