
DrugMetric 13

Supplementary Section 1: The meanings of the

molecular physicochemical features

ALERTS: ALERTS (ALERTS for structure) is a set of rules

used to identify structural patterns in molecules that may

indicate potential issues. These rules are commonly employed

in drug screening and chemoinformatics applications to identify

structures that might exhibit chemical instability, toxicity, or

other adverse properties. By recognizing and excluding these

problematic structures, researchers can focus on compounds

with better drug potential.

FractionCSP3: FractionCSP3 (Fraction of sp3 Carbon-Sp3

Carbon bonds) is a molecular descriptor that describes the

saturation level of the molecular skeleton. It represents the

ratio of sp3 hybridized carbon-carbon bonds (single bonds) to

all carbon-carbon bonds (including single, double, and triple

bonds) in the molecule. A higher FractionCSP3 value indicates

a higher proportion of sp3 carbon-carbon bonds, while a lower

value indicates a higher proportion of unsaturated bonds (such

as double and triple bonds). The FractionCSP3 value is often

associated with the stereochemical complexity and drug-like

properties of molecules.

MW: MW (Molecular Weight) is the sum of the masses of

all atoms in a molecule. Molecular weight is closely related

to physical properties such as size, sedimentation coe�cient,

di↵usion coe�cient, and so on. In the process of drug screening,

molecular weight is often used as a filtering criterion because

larger molecules may have more di�culty in penetrating cell

membranes or exhibit unfavorable pharmacokinetic properties.

ALOGP: ALOGP (ALOGP value of a molecule) is the

logarithm of the partition coe�cient between water and an

organic phase (typically n-octanol). It is a descriptor that

characterizes the lipophilicity of a molecule and is often

associated with the absorption, distribution, metabolism, and

excretion (ADME) properties of a molecule in the body. A

higher ALOGP value indicates a molecule’s higher stability

in the organic phase, while a lower value indicates a more

hydrophilic molecule. In the process of drug screening and

optimization, ALOGP values are frequently used to assess the

drug-like properties and bioavailability of molecules.

Supplementary Section 2: MoleculeNet datasets

SIDER: The Side E↵ect Resource (SIDER) is a database that

contains information on marketed drugs and their adverse drug

reactions (ADRs).

BBBP: The Blood-Brain Barrier Penetration (BBBP)

dataset is based on recent research on modeling and predicting

barrier permeability. The blood-brain barrier is a membrane

that separates the circulating blood from the brain extracellular

fluid, preventing most drugs, hormones, and neurotransmitters

from passing through. This dataset includes binary labels

indicating the permeability characteristics of over 2000

compounds.

ToxCast: ToxCast provides toxicology data from a large

compound library screened using high-throughput in vitro

methods, similar to the Tox21 project. The subset processed

in MoleculeNet includes qualitative results from over 600

experiments for 8615 compounds.

Tox21: The Toxicology in the 21st Century (Tox21) project

created a public database for measuring the toxicity of

compounds, which was used in the 2014 Tox21 Data Challenge

[42].

ClinTox: The ClinTox dataset compares FDA-approved

drugs with drugs that failed clinical trials due to toxicity

reasons. It includes two classification tasks for 1491 known drug

compounds: (1) clinical trial toxicity (or non-toxicity) and (2)

FDA approval status [42].

FreeSolv: The Free Solvation database provides experimental

and calculated hydration free energies of small molecules in

water.

ESOL: The ESOL dataset contains water solubility data for

1128 compounds. It has been used to train models for predicting

solubility based on the chemical structures encoded in SMILES

(Simplified Molecular Input Line Entry System) strings. These

structures do not include 3D coordinates since the solubility is

a molecular property, not a specific conformational property.

qm7: The dataset is a subset of the GDB-13 database, where

the 3D Cartesian coordinates of each molecule are determined

using binary density functional theory (PBE0/tier2 basis set) to

obtain the most stable conformations and electronic properties

(atomic energies, HOMO/LUMO eigenvalues, etc.). Learning

methods based on the qm7 benchmark are responsible for

predicting these electronic properties using the most stable

conformation coordinates.

qm8: The dataset originates from recent research on

quantum mechanical calculations of electronic spectra and

modeling of small molecule excited-state energies. It is a subset

of GDB-17 and contains four excited-state properties computed

using three di↵erent methods on 22 thousand samples.

Supplementary Section 3: Implementation

Details

Encoder
Our VAE architecture, inspired by the JTVAE, involves a

two-part encoder and decoder system designed specifically

for molecular graphs. The encoder consists of two separate

components:

1. Graph Encoder: This component encodes the original

molecular graph into a latent representation. It uses a

graph message passing network where each vertex and

edge has feature vectors representing atom and bond types

respectively. The final graph representation is aggregated

from the latent vectors of all vertices. The dimensionality

of the graph encoder output is designed to capture the

fine-grained connectivity of the molecular graph.

2. Tree Encoder: This component encodes a junction tree

representation of the molecule. The junction tree is formed

by clusters that represent subgraphs such as rings or

bonds. The tree encoder uses a message passing network

specifically adapted for trees, where each node or cluster

in the tree is encoded into a latent representation. This

representation captures the higher-level structure of the

molecule.

The latent embedding (z) from our VAE consists of two

parts: zT from the tree encoder and zG from the graph encoder.

Each part of z is sampled from a Gaussian distribution derived

from the respective encoder outputs.

Decoder
The decoder also has two components corresponding to the two

encoders:
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Table S1. The hyper-parameters for VAE training.

Hyper-parameter Value Description

batch size 32 The input batch size

hidden size 450 The size of the hidden layers in the model

latent size 64 The dimensionality of the latent space

depthG 3 The number of GNN layers in the model

lr 0.001 Initial learning rate

clip norm 50.0 Maximum norm for gradient clipping

max beta 1.0 Maximum value for beta in KL annealing

warmup 40000 Number of steps for learning rate warmup

epoch 20 Total number of training epochs

anneal rate 0.9 Annealing rate for learning rate adjustment

anneal iter 40000 Iterations over which to anneal the learning rate

Table S2. Atom and Bond features.

Features Size Description

Atom type 23 The atom type (e.g., C, N, O), by atomic number

Number of H 6 The number of bonded hydrogen atoms

Atom Charge 5 The formal charge of the atom

Chirality 4 The chiral-tag of the atom

Is-aromatic 1 Whether the atom is part of an aromatic system or not

Bond Bond type 5 The bond type (e.g., single, double, triple et al.)

Stereo 6 The stereo-configuration of the bond

1. Tree Decoder: This decodes the latent tree representation

zT back into a junction tree structure. It operates in a top-

down fashion, predicting the structure and labels of the

nodes in the tree.

2. Graph Decoder: After reconstructing the junction tree,

this component predicts the detailed connectivity between

the clusters based on zG. It ensures that the final output is

a chemically valid molecular graph that corresponds to the

encoded molecule.

Input to the Model
The input to our model is a molecular graph, where each atom

is represented as a vertex and each bond as an edge. Feature

vectors for vertices and edges include atom type, valence, bond

type, and other chemical properties.

GNN Architecture
The GNN used in both the graph encoder and decoder employs

a message passing mechanism where messages are exchanged in

a loopy belief propagation fashion, iterating through multiple

steps to refine the encoding of graph structure.

Supplementary Section 4: Supplementary

Experimental Results
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Fig. S1. The structures of 17 FDA-approved but toxic molecules.
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Table S3. Metabolic half-lives of small molecules in mouse and human liver microsomes

SMILES Mouse Human

ClC1=CC(NN=C2NC3CCN(S(=O)(C)=O)CC3)=C2C=C1C4CCN(C)CC4 120 120

O=C(C1COC1)NC2=CC=C(C=C2)C3=CSC4=CN=C(NC5CCN(S(=O)(C)=O)CC5)N=C43 8 45.6

O=S(N(CC1)CCC1NC2=NC=C3C(C(C4=CC=C(NC(OC)=O)C=C4)=CS3)=N2)(C)=O 16 45.3

O=S(N(CC1)CCC1NC2=NC=C3C(C(C4=CC=C(C(NCC5(F)COC5)=O)C=C4)=CS3)=N2)(C)=O 1.95 9

O=C(OC)NC1=CC=C(C2=CSC3=CN=C(NC4CCN(S(=O)(C)=O)CC4)N=C32)C=C1 21.5 120

O=C(OC)NC1=CC=C(C(F)=C1)C2=CSC3=CN=C(NC4CCN(S(=O)(C)=O)CC4)N=C32 31.1 56.8

O=C(OC1COC1)NC2=CC=C(C=C2)C3=CSC4=CN=C(NC5CCN(S(=O)(C)=O)CC5)N=C43 7.73 31.4

O=C(OC)NC1=CC=C(C(F)=C1)C2=CSC3=CN=C(NC4CCN(S(=O)(CCN)=O)CC4)N=C32 38.3 120

NCCS(N(CC1)CCC1NC2=NC=C3C(C(C4=C(F)C=C(C(NCC5COCC5)=O)C=C4)=CS3)=N2)(=O)=O 58.2 120

O=C(OC)NC1=CC=C(C(C)=C1)C2=CSC3=CN=C(NC4CCN(S(=O)(CCN)=O)CC4)N=C32 31.6 120

O=C(OC(C)C)NC1=CC=C(C(F)=C1)C2=CSC3=CN=C(NC4CCN(S(=O)(CCN)=O)CC4)N=C32 51 120

O=C(OCC(F)(F)F)NC1=CC=C(C(F)=C1)C2=CSC3=CN=C(NC4CCN(S(=O)(CCN)=O)CC4)N=C32 30.9 120

O=C(OC)NC1=CC=C(C(Cl)=C1)C2=CSC3=CN=C(NC4CCN(S(=O)(CCN)=O)CC4)N=C32 26.1 120

CC(C)C1=C2N=C3N=C(NCC4=CC=CC=C4OCCCCC5(CCNCC5)CN3)N2N=C1 15 27

CC(C)C1=C2N=C3N=C(NCC4=CC=CC=C4OCCCCCC5(CCNCC5)CN3)N2N=C1 24.3 10.9

CC(C)C1=C2N=C3N=C(NCC4=CC(F)=CC=C4OCCCCC5(CCNCC5)CN3)N2N=C1 16.5 34.5

CC(C)C1=C2N=C3N=C(NCC4=CC=CC=C4OCC@HCCCC5(CCNCC5)CN3)N2N=C1 48.5 21.3

CC(C)C1=C2N=C3N=C(NCC4=CC(C(F)(F)F)=CC=C4OCCCCC5(CCNCC5)CN3)N2N=C1 114 92.4

CC(C)C1=C2N=C3N=C(NCC4=CC(C(F)(F)F)=CC=C4OCCCCCC5(CCNCC5)CN3)N2N=C1 316 65.4

CC(C)C1=C2N=C3N=C(NCC4=CC=CC(N4CCCCC5(CCNCC5)CN3)=O)N2N=C1 4.77 43.9

CC(C)C1=C2N=C3N=C(NCC4=CC=CC=C4OCC(O)CCCC5(CCNCC5)CN3)N2N=C1 38.5 34.1

CC(C)C1=C2N=C3N=C(NCC4=CC=CC=C4OCCCCCC5(CCNCC5)CN3)N2N=C1 24.3 10.9

CC(C)C1=C2N=C3N=C(NCC4=CC(OC)=CC=C4OCCCCCC5(CCNCC5)CN3)N2N=C1 39.8 20.7

CC(C)C1=C2N=C3N=C(NCC4=CC=NC=C4OCCCCCC5(CCNCC5)CN3)N2N=C1 5.1 5.07

CC(C)C1=C2N=C3N=C(NCC4=CC=C(C)N=C4OCCCCCC5(CCNCC5)CN3)N2N=C1 15.7 46.8

CC(C)C1=C2N=C3N=C(NCC4=CC=CC(N4CCCCCCC5(CCNCC5)CN3)=O)N2N=C1 13.2 63

CC(C)C1=C2N=C3N=C(NCC4=CC=CC=C4COCCCCC5(CCNCC5)CN3)N2N=C1 39.1 31.2

CC(C)C1=C2N=C3N=C(NCC4=CC=CC=C4COC/C=C/CC5(CCNCC5)CN3)N2N=C1 14.4 24.1

CC(C)C1=C2N=C3N=C(NCC4=CC=CC=C4OCC@HCCCC5(CCNCC5)CN3)N2N=C1 59.7 46.2

CC(C)C1=C2N=C3N=C(NCC4=CC=CC=C4OCCCCCN3CC5CCNCC5)N2N=C1 4.99 84.5

CC1=C(CP(C)(C)=O)C2=C(C=C1)C(C3=NC(N[C@H]4CCCNC4)=NC5=C3SC=C5)=CN2 120 8.6

CP(C1=CC=CC2=C1NC=C2C3=NC(N[C@H]4CCC@@HNC4)=NC5=C3SC=C5)(C)=O 120 10.6

CP(C1=CC=CC2=C1NC=C2C3=NC(N[C@H]4CCNC4)=NC5=C3SC=C5)(C)=O —— 10.7

O=P(C)C1=CC=CC2=C1NC=C2C3=NC(N[C@H]4CC@@HNC4)=NC5=C3SC=C5 —— 10.6

CP(C1=CC=CC2=C1NC=C2C3=NC(N[C@H]4C@@HCNC4)=NC5=C3SC=C5)(C)=O —— 6.2

CP(C1=CC=CC2=C1NC=C2C3=NC(NC4C5C4CNC5)=NC6=C3SC=C6)(C)=O —— 6.6

CP(C1=CC=CC2=C1NC=C2C3=NC(N[C@@H]4CC@@HCC4)=NC5=C3SC=C5)(C)=O 120 48.8

CP(C1=C(C#N)C=CC2=C1NC=C2C3=NC(N[C@H]4CCCNC4)=NC5=C3SC=C5)(C)=O 120 23.3

CP(C1=CC(F)=CC2=C1NC=C2C3=NC(N[C@H]4CCCNC4)=NC5=C3SC=C5)(C)=O 120 14.5

CP(C1=CC=C(F)C2=C1NC=C2C3=NC(N[C@H]4CCCNC4)=NC5=C3SC=C5)(C)=O 120 14.1

CP(C1=CC(C(F)(F)F)=CC2=C1NC=C2C3=NC(N[C@H]4CCCNC4)=NC5=C3SC=C5)(C)=O —— 85.6

CP(C1=CC(C#N)=CC2=C1NC=C2C3=NC(N[C@H]4CCCNC4)=NC5=C3SC=C5)(C)=O 120 106

CP(C1=NC=CC2=C1NC=C2C3=NC(N[C@H]4CCCNC4)=NC5=C3SC=C5)(C)=O 120 17.9

CP(C1=C(C#N)C=CC2=C1NC=C2C3=NC(N[C@H]4CCCN(C)C4)=NC5=C3SC=C5)(C)=O —— 12.6

CP(C1=C(C#N)C=CC2=C1NC=C2C3=NC(N[C@@H]C)=NC4=C3SC=C4)(C)=O —— 120

O=P(C)(C)C1=C(C#N)C=CC2=C1NC=C2C3=NC(N[C@H]4CC@@HCNC4)=NC5=C3SC=C5 120 120

CP(C1=C(C#N)C=CC2=C1NC=C2C3=NC(N[C@H]4CC@HCNC4)=NC5=C3SC=C5)(C)=O 72.2 50.6

CP(C1=C(C#N)C=CC2=C1NC=C2C3=NC(NC4CC(F)(F)CNC4)=NC5=C3SC=C5)(C)=O 22.6 20.7

O=P(C)(C)C1=C(C#N)C=CC2=C1NC=C2C3=NC4=C(SC=C4)C(N[C@H]5CCCNC5)=N3 120 103
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Table S4. Molecular Count in Datasets for Training and Prediction Tasks in Drug-likeness Studies

Task Dataset Molecular Count

Train/Drug-likene ss prediction

CD 4527

ChEMBL 943683

ZINC 249451

GDB 1048547

Drug-likeness prediction

Anticancer drugs[39] 195

SIDER 1427

BBBP 2039

ToxCast 8576

Tox21[42] 7831

ClinTox[42] 1478

FreeSolv 642

ESOL 1128

qm7 6830

qm8 21786

WITHDRAW[44] 240

Table S5. Pros and Cons of Classical QED, Current QED (ADMET-score), and DrugMetric in Drug-likeness Evaluation

Feature / Method Classical QED (Bickerton et

al., 2012)

Current QED

(ADMET-score, 2019)

DrugMetric

Core Concept Evaluates drug-likeness

based on a desirability

function over molecular

properties.

Evaluates drug-likeness

based on 18 ADMET

properties.

Introduces an unsupervised

learning framework

combining VAE and GMM

to enhance precision and

reliability in drug-likeness

evaluation.

Pros Straightforward and

intuitive.

Transparent scoring system.

Easily implemented and

integrated.

Comprehensive evaluation of

ADMET properties.

Aligned with

pharmacokinetic

considerations.

Useful for ADMET

predictions.

Advanced AI techniques

(VAEs, GMM) enhance

distinction capabilities.

E↵ectively utilizes unlabeled

data to overcome traditional

method limitations.

Proven robustness and

higher accuracy across

various datasets, improving

drug discovery processes.

Cons May miss biological aspects

of drug-likeness.

Limited to static molecular

descriptors.

Complex model

interpretation.

- Requires extensive data for

accuracy.

Higher computational

resources initially required.

Steeper learning curve

for understanding model

intricacies.

Data Requirements Low; basic molecular

descriptors.

High; requires accurate

ADMET property models.

Moderate; leverages

unlabeled as well as labeled

data e↵ectively.

Computational

Complexity

Low; relies on simple

calculations of molecular

properties.

Moderate; involves complex

predictions based on

multiple ADMET properties.

Moderate to High; employs

advanced AI but optimized

for e�ciency.

Model Parameters: 17,426K.

Training Time: 20 hours on

a single NVIDIA 3090 GPU.
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Table S6. Criteria for Various Rules Used in Drug Screening

Rule Drug Screening Criteria

Lipinski’s Rule of Five Molecular weight  500 Da, LogP  5, hydrogen bond donors

 5, hydrogen bond acceptors  10, violations  1.

Pfizer Rule Molecular weight  480 Da, CLogP  5, hydrogen bond donors

 5, hydrogen bond acceptors  10, polar surface area  140

Å², violations  1.

GSK Rule Molecular weight  500 Da, CLogP  5, hydrogen bond donors

 3, hydrogen bond acceptors  3, rotatable bonds  10.

Golden Triangle Rule Molecular weight ranging from 200-600 Da, LogP ranging from -

0.4 to 5.6, with a negative correlation between molecular weight

and LogP.

QED Overall score: 0 to 1, a higher QED score indicates greater drug-

likeness, approaching 1.

Table S7. Molecular properties of FDA-approved but clinically toxic compounds.

Index SMILES QED DrugMetric

0 C1=CC(=CC=C1C#N)C(C2=CC=C(C=C2)C#N)N3C=NC=N3 74.07 90.13

1 C1=CC=C(C=C1)NC(=O)CCCCCCC(=O)NO 38.32 86.03

2 C1=CN(C(=O)N=C1N)[C@H]2[C@H]([C@@H]([C@H](O2)CO)O)O 44.89 92.04

3 C1=CN(C(=O)N=C1N)[C@H]2C(C@@HO)(F)F 61.21 91.33

4 C1CN(P(=O)(OC1)NCCCl)CCCl 60.57 84.77

5 C1CNP(=O)(OC1)N(CCCl)CCCl 60.57 79.47

6
C[C@@H]1C[C@H]2[C@@H]3CCC4=CC(=O)C=C[C@@]4([C@]3([C@H](C[C@@]

66.72 90.77
2([C@]1(C(=O)CO)O)C)O)F)C

7
C[C@]12C[C@@H]([C@H]3[C@H]([C@@H]1CC[C@@]2(C(=O)CO)O)CCC4=CC(=O)

69.46 88.36
C=C[C@]34C)O

8
C[C@]12CC(=O)[C@H]3[C@H]([C@@H]1CC[C@@]2(C(=O)CO)O)CCC4=CC

78.48 88.69
(=O)C=C[C@]34C

9
C[C@]12CCC(=O)C=C1CC[C@@H]3[C@@H]2[C@H](C[C@]4([C@H]3CC[C@@]

69.6 84.86
4(C(=O)CO)O)C)O

10
CC(C)(C)[C@@H](C(=O)N[C@@H](CC1=CC=CC=C1)[C@H](CN(CC2=CC=C

15.43 84.88
(C=C2)C3=CC=CC=N3)NC(=O)[C@H](C(C)(C)C)NC(=O)OC)O)NC(=O)OC

11 CC(C)(C)C(=O)OCOP(=O)(COCCN1C=NC2=C1N=CN=C2N)OCOC(=O)C(C)(C)C 20.72 81.18

12

CC1=C2[C@H](C(=O)[C@@]3([C@H](C[C@@H]4[C@]([C@H]3[C@@H]([C@@]

12.98 74.99(C2(C)C)(C[C@@H]1OC(=O)[C@@H]([C@H](C5=CC=CC=C5)NC(=O)C6=CC=CC=C6)O)O)

OC(=O)C7=CC=CC=C7)(CO4)OC(=O)C)O)C)OC(=O)C

13

CC1=C2[C@H](C(=O)[C@@]3([C@H](C[C@@H]4[C@]([C@H]3[C@@H]

14.68 85.81([C@@](C2(C)C)(C[C@@H]1OC(=O)[C@@H]([C@H](C5=CC=CC=C5)NC(=O)OC(C)

(C)C)O)O)OC(=O)C6=CC=CC=C6)(CO4)OC(=O)C)O)C)O

14 CC1=CC=C(C=C1)C2=CC(=NN2C3=CC=C(C=C3)S(=O)(=O)N)C(F)(F)F 75.41 84.23

15
CC[C@H](C)C(=O)O[C@H]1C[C@H](C=C2[C@H]1[C@H]([C@H](C=C2)C)

67.2 89.99
CC[C@@H]3C[C@H](CC(=O)O3)O)C

16 CN1C(=O)N2C=NC(=C2N=N1)C(=O)N 56.01 86.33

Table S8. Comparison of DrugMetric and QED Scores for Selected Drugs

Drug DrugMetric Score QED Score

Bortezomib 77.94 46.30

Thalidomide 90.39 72.34

Warfarin 88.06 74.76


