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ADDITIONAL DATA 

 

Additional Methods 

Patients & Breakpoint detection 

BCR::ABL1 genomic breakpoints were characterized by multiplex long-distance PCR (1) 

followed by Sanger sequencing or sequencing on the GS Junior platform (454 next-

generation sequencing technology, Roche Diagnostics, CA, USA) (2); or using NGS Custom 

Target Enrichment (SS QXT Reagent Kit and SS XT HS2 Reagent Kit; Agilent, CA, USA) or 

Nextera® Rapid Capture Custom Enrichment protocol (Illumina, CA, USA), followed by 

sequencing on MiSeq or NextSeq 550 (Illumina, CA, USA).(3) Data from target enrichment 

sequencing were analyzed using NextGene (SoftGenetics, PA, USA), STAR(4) and deFuse(5) 

or Cicero(6) and manually curated.  

Fusion sequences of primary (n = 1427) and secondary (n = 61) leukemias with KMT2A gene 

rearrangement (partly previously published (7)) were obtained from the Diagnostic Center of 

Acute Leukemia (DCAL) in Frankfurt, Germany, and were used as a validation set of samples 

to verify the ability to identify potential hot-spots of genomic breakpoints. 



The project was approved by the Institutional Review Board of University Hospital Motol 

(Czech Republic) and Hunter Human Research Ethics Committee HNE 2019/ETH01219 

(multisite, Australia). Informed consent was obtained following the Declaration of Helsinki. 

 

Analysis tools 

Alignment against GRCh 38 was performed using one of the following tools: BLAST, 

ENSEMBL or BLAT (University of California Santa Cruz). For further analyses and visualization 

(including comparison of breakpoint distribution in various subgroups with statistical 

calculation; comparison, visualization and analysis of primary breakpoint structure; 

visualization of BCR::ABL1 vs. ABL1::BCR breakpoints and its structure; analysis of 

colocalization of breakpoints with DNA motifs and epigenetic features), the following R (v. 

4.1.2)(8) tools and packages were used: R Studio (v. 2021.09.1.372)(9), 

BSgenome.Hsapiens.UCSC.hg38 (v. 1.4.4)(10), DT (v. 0.22)(11), gridExtra (v. 2.3)(12), gviz (v. 

1.38.4)(13), ggplot2 (v. 3.3.5)(14), htmltools (v. 0.5.2)(15), plyranges (v. 1.14.0)(16), RCurl (v. 

1.98.-1.6)(17), reshape2 (v. 1.4.4)(18), rtracklayer (v. 1.54.0)(19), shiny (v. 1.7.1)(20), 

shinyauthr (v. 1.0.0)(21), shinyjs (v. 2.0.0)(22), shinythemes (v. 1.2.0)(23), spgs (v. 1.0-3)(24), 

TxDb.Hsapiens.UCSC.hg38.knownGene_(v. 3.14.0; the database defined intron/exon 

boundaries for further analysis)(25). 

 

Statistic tests 

The uniformity of breakpoint site distribution within particular gene area was tested using 

Pearson’s Chi-Squared test. Kolmogorov-Smirnov test was used to compare breakpoint 

positions between two groups of patients. Logistic regression was used to test the effects of 

particular variables to the probability of the breakpoint distribution. 

 

Motif search and epigenetic data 

The RSS database (26), MEME software (27) and RepeatMasker (28) were used to search for 

RSS, specific motifs known to mediate DNA breaks (59 motifs, adopted from Ross et al., 



2013)(29) and interspersed and other types of repeats within particular DNA areas 

(breakpoint regions of BCR, ABL1 and KMT2A genes), respectively. Data regarding DNA 

accessibility (ATAC-seq, ChIA-PET, ChIP-seq, DNase-seq, WGB) in K562 cell line and particular 

cell types possibly involved in breakpoint origin were downloaded from ENCODE (30, 31), 

McGill Epigenomics Mapping Centre (32), and studies published elsewhere.(33-35)  

 

Additional Results 

Primary structure of breakpoints 

The detailed analysis of genomic breakpoints showed that fusions are mostly formed in loci 

with short homologies (48.6 %; median length = 1 bp, range 1 – 71 bp), by blunt-end 

junctions (36.6 %) or by a junction with the insertion of a few random nucleotides (12.4 %; 1 

– 42 bp, median length = 2.5 bp; see the main text). However, several atypical fusions were 

detected – i) BCR::[inverted ABL1 segment]::ABL1 (n = 9; median length of inverted segment 

= 35 bp; notably, in 7/8 such patients with Major-BCR::ABL1 fusion, the breakpoint occurred 

within 1 kbp area at the BCR side), ii) BCR::[third partner]::ABL1 (n = 5; insertion length 935 – 

12,300 bp; the third partners were from chromosomes 3 [IGSF11 gene], 4 [INPP4B], 5 

[SRD5A1], 12 [intergenic region] and 17 [ASIC2]), iii) BCR::[inverted BCR segment]::ABL1 (n = 

3; length of inverted segment 76 – 270 bp), iv) BCR::[duplicated ABL1 segment]::ABL1 (n = 3; 

length of duplicated segment 11 – 86 bp). In two patients, the insertion of DNA from 

chromosome 9 (ABL1 and downstream sequence in total length of ~ 97 kbp and ~ 190 kbp) 

into the BCR gene was detected.  

 

Association of breakpoints with DNA motifs and chromatin structure 

We did not find any significant association between the localization of breakpoints and any 

type of DNA motif or DNA sequences with specific chromatin structure (see the main text). 

Generally, breakpoints in specific motifs (RSS, SINE/Alu, LINE/L1) on both fusion partners 

were rare. Regarding RSS motifs, taking into account the 12/23 spacer rule and RSS sequence 

orientation (+/-), a breakpoint possibly produced by RSS mechanism was found in only 3 

patients. Using MEME software (searching for selected DNA motifs, see Additional Table 3), 



we found breakpoints localized within the same DNA motif family on both BCR and ABL1 

sides in seven patients – 1x XY32 homopurine pyrimidine H palindrome motif (minor 

BCR::ABL1), 6x human minisatellite (1x minor, 5x Major BCR::ABL1). When analyzing DNA 

motifs defined by RepeatMasker software, the breakpoints in the same motif family (or its 

fragment) were found in 44 (4.5%) patients (25x minor, 19x Major BCR::ABL1; 15x Line/L1, 

28x SINE/Alu and 1x SINE/MIR). Of those, in all six patients, in whom larger homologies (22 – 

71 bp) were detected in the BCR::ABL1 fusions (all minor BCR::ABL1), and in one patient with 

translocation including insertion from a third partner from chromosome 17 (4,760 bp), the 

breakpoints were located in SINE/Alu repeats on both BCR and ABL1 sides. Moreover, the 

breakpoints in three of the patients with large homologies (2x 71 bp and 1x 40 bp) occurred 

within exactly the same specific SINE/Alu repeat on the BCR side. Although these cases are 

noteworthy and may represent one of the mechanisms of breakpoints origin, they represent 

a subtle minority in the entire cohort of almost one thousand of analyzed patients. The 

overall overview of the DNA motifs is shown in Additional Table 3.  

 

Secondary leukemias with KMT2A rearrangement 

To validate our approach of mapping breakpoints to DNA/epigenetic motifs, we 

complemented our cohort with 1488 leukemia patients with KMT2A rearrangements, 

including 61 patients with secondary leukemia. Using the “Break-App” web tool, a 

breakpoint hotspot near KMT2A exon 12, in close proximity to the Topoisomerase II 

consensus cleavage site, DNAse I HS and CTCF-binding site (36) was clearly apparent and 

visible, particularly in secondary leukemias harboring the KMT2A rearrangement (Additional 

Figure 3), confirming effectiveness of our approach.  
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Additional Table legends 

For Additional Tables see file Additional Tables.xls 

 

Additional Table 1:  

Breakpoint positions and basic characteristics of the patients 

 

Additional Table 2:  

Structure of breakpoints - comparison of BCR::ABL1 and ABL1::BCR fusions 

 

Additional Table 3:  

Summary of DNA motifs and their association with breakpoints 

The table shows the number of occurrences of each motif within the respective breakpoint 

region and the total proportion of the breakpoint region occupied by these motifs 

(percentage shown for motif alone and for motif +/- 10 bp surrounding sequence). Number 

and percentage of patients with a breakpoint within the motif (and also within +/- 10 bp 

surrounding sequence) is shown. Relative difference between the percentage of sequence 

occupied by the motif and percentage of patients with a breakpoint within the motif (and 

also +/- 10 bp surrounding sequence) is also shown (hence values near zero suggesting 

random association, positive values enrichment and negative values reduction of 

breakpoints within the particular motif). Relative differences ≥ 10% are highlighted in colours 

(+10 to +30 % in yellow; +31 to +50 % in green; > +50% in red) when breakpoints colocalise 

with motifs in > 10 patients. 

 

  



Additional Figures 

Additional Figure 1:  

Breakpoint distribution of younger (≤ 16 years) and older (> 16 years) patients within 

minor BCR. 

Gene coordinates are given according to GRCh38/hg38. Comparison of breakpoint 

distribution between the groups was tested using Kolmogorov-Smirnov test. Images adapted 

from the “Break-App” web tool. 

 

 

Additional Figure 2: 

Projection of BCR::ABL1 and reciprocal ABL1::BCR fusions in 415 patients. 

Each patient is represented by a point. If 2 or more patients overlap at one point, this is 

represented by a larger point size (see caption below). Positive values show duplication, 

negative values deletion of BCR or ABL1 DNA at the breakpoints; 14 patients at coordinates 

0:0 represent perfectly reciprocal fusions. Three graphs (zoomed at ±1000 bp (A), ±100 bp 

(B) and ±25 bp (C) area around a theoretically perfectly reciprocal fusion) show 301, 253 and 

219 patients, respectively. Primary structure of the involved breakpoints is shown in 

attached tables. Images adapted from the “Break-App” web tool. 

 



 

 

 



Additional Figure 3: 

Distribution of breakpoints within KMT2A gene in 61 patients with secondary leukemia. 

Scheme of KMT2A gene breakpoint cluster region between exons 8 and 15 showing a 

breakpoint hotspot near exon 12, in close proximity to the DNAse I HS and CTCF-binding site 

(ChiP-seq, DNAseseq) and Topoisomerase II consensus cleavage site colocalization. Image 

adapted from the “Break-App” web tool. 

 

 

 


