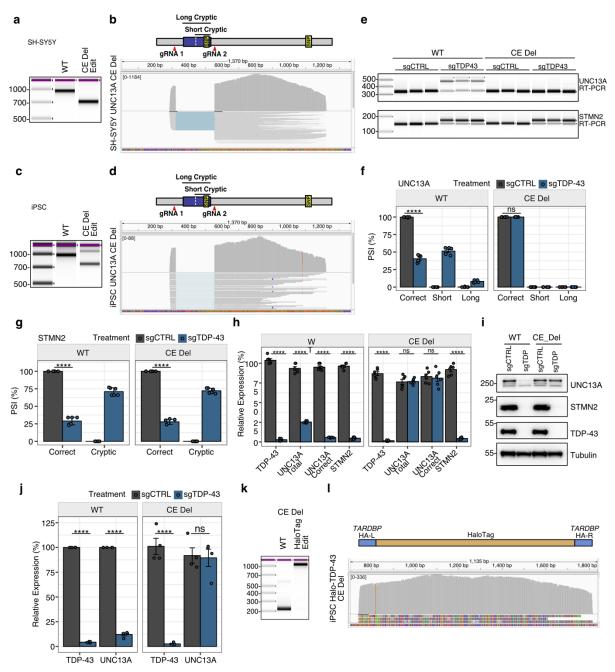
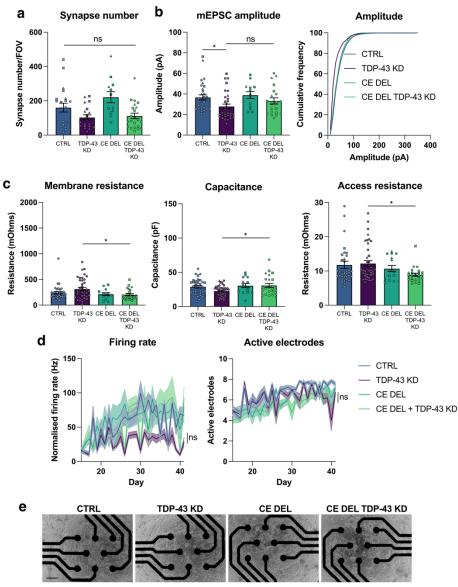

Extended Data Figures and Table

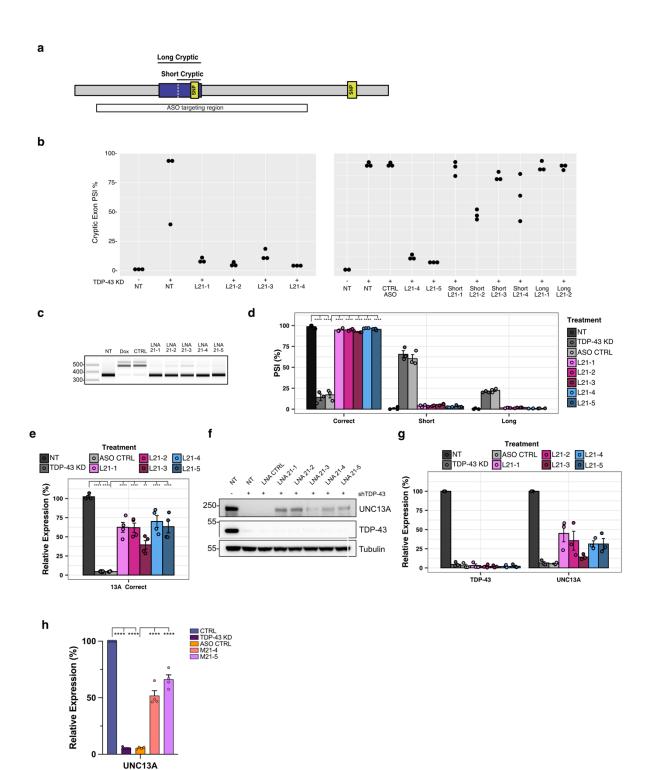


KD. (h) Quantification of results in (g) *n*=6 from 3 experiments. (i) RT-qPCR analysis shows a reduction of correctly spliced *UNC13A* at exon 20-21 junction following TDP-43 KD. (j) Western blot analysis indicates a dramatic decrease in UNC13A protein after TDP-43 KD. (k) Quantification of results in (j) *n*=7 from 3 experiments. **I**, RT-qPCR analysis of DIV 38 HaloTDP iNeuron cultures indicates similar expression of glutamate receptors. A cryptic exon in *CamK2B* and cryptic polyadenylation in *STMN2* results in reduction of mRNA transcripts. *n*=8 from 2 experiments. **m**, Western blot analysis of control and CRISPRi-mediated UNC13A knockdown in iNeurons. Graphs in (f) (h) (i) (k) and (l) represent mean ± s.e.m. Statistics are two-sided Student's *t* test with additional Bonferroni adjustment for multiple comparisons in (l) **P* < 0.05; ** *P* < 0.01; **** *P* < 0.001; **** *P* < 0.001; **** *P* < 0.001; ****

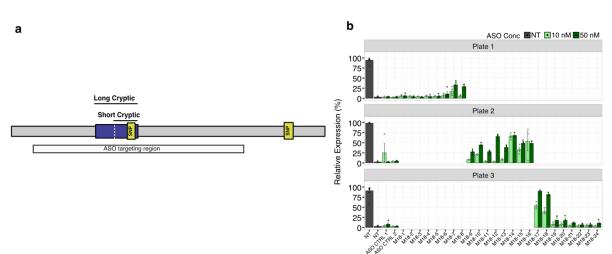


Extended Data Figure 2 | Additional electrophysiological parameters following UNC13A and TDP-43 knockdown. a, AMPAR blockade using CNQX abolishes mEPSC activity. b, mEPSC amplitude from control (*n*=12) and UNC13A depleted (*n*=13) iNeurons pooled from 3 experiments. c, mEPSC amplitude from control (n=20) and TDP-43 knockdown (n=22) HaloTDP iNeurons from 3 experiments. d, Quantification of passive membrane properties for UNC13A knockdown iNeurons. f, AMPAR blockade using CNQX abolishes

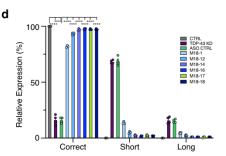
network synchrony on multielectrode array recordings, with minimal effects on firing rate and number of active electrodes. **g**, Quantification of firing rate and number of active electrodes following UNC13A knockdown. **h**, Quantification of firing rate and number of active electrodes following TDP-43 knockdown. **i**, Phase contrast images showing cell coverage on multielectrode array plates. Scale bar = 350 µm. Graphs for (**b**) (**c**) (**d**) (**e**) (**f**) represent mean ± s.e.m. Statistics for (**b**) (**c**) (**d**) and (**f**) are two-sided Student's *t* tests. Statistics for (**g**) and (**h**) are paired *t* tests. **P* < 0.05; ns (not significant).



Extended Data Figure 3 | UNC13A cryptic exon deletion rescues UNC13A splicing/expression following TDP-43 knockdown. a, PCR from genomic DNA of WT SH-SY5Y cells and CE Del SH-SY5Y cells indicated successful deletion of the genomic region of UNC13A containing the sequence corresponding to the exon 20-21 cryptic exon. b, Amplicon sequencing of PCR products in (a). c, PCR from genomic DNA of WT iPSCs and CE Del iPSCs indicated successful deletion of the genomic region of UNC13A containing the sequence corresponding to the exon 20-21 cryptic exon. d, Amplicon sequencing of PCR products in (c) e-j, Analysis of WT and CE Del iNeurons following CRISPRi knockdown with CTRL or TDP-43 sgRNAs. (e) RT-PCR analysis shows UNC13A cryptic deletion rescues UNC13A exon 20-21 splicing following TDP-43 knockdown, but not cryptic polyadenylation of STMN2 (f). Quantification of UNC13A splicing in figure (e) n=6 biological replicates from 2 experiments. (g) Quantification of STMN2 splicing in figure (e) *n*=6 biological replicates from 2 experiments. (**h**) RT-qPCR analysis shows *UNC13A* CE Del prevents the loss of *UNC13A* transcripts but not *STMN2* transcripts in iNeurons after TDP-43 knockdown. *UNC13A* correct RT-qPCR assay detects correct splicing at *UNC13A* exon 20-21 junction. *n* = 6 biological replicates from 2 experiments. (**i**) Western blot analysis shows *UNC13A* CE Del rescues the loss of UNC13A protein following TDP-43 knockdown. (**j**) Quantification of western blots in (**i**) *n*=4 biological replicates from 2 experiments. **k**, PCR of genomic DNA of *UNC13A* CE Del iPSCs with primers flanking exon 1 of *TARDBP* indicates successful edit of *TARDBP* with HaloTag. **l**, Amplicon sequencing of HaloTag PCR product in (**k**). Graphs for (**f**) (**g**) (**h**) and (**j**) represent mean ± s.e.m. Statistics are One-way ANOVA with Tukey multiple comparison test. **P* < 0.05; ** *P* <0.01; *** *P* < 0.001; **** *P* < 0.0001; ns (not significant).

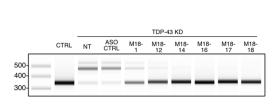

Extended Data Figure 4 | Additional synaptic and electrophysiological parameters following genomic deletion of UNC13A CE. a, Immunofluorescence quantification of synapse number and size based on synapsin labelling in control n=21, TDP-43 KD n=20, CE Del n=12 and CE Del TDP-43 KD n=22 fields of view from 3 experiments. **b**, mEPSC amplitude from control n=17, TDP-43 knockdown n=22, CE Del n=15, CE Del TDP-43 knockdown n=28 iNeurons pooled from 3 experiments. **c**, Quantification of passive membrane properties. **d**, Quantification of

multielectrode array mean firing rates and number of active electrodes for control, TDP-43 KD, CE Del, CE Del TDP-43 KD conditions n=18 wells from 3 experiments. **e**, Phase contrast images showing cell coverage on multielectrode array plates. Scale bar = 350 μ m. Graphs for (**a**) (**b**) (**c**) (**d**) represent mean \pm s.e.m. Statistics are One-way ANOVA with Dunnet's multiple comparison test. *P < 0.05; ns (not significant).



Extended Data Figure 5 | ASOs targeting the UNC13A cryptic exon rescues UNC13A splicing/expression following TDP-43 knockdown. a, Schematic of UNC13A cryptic exon. b, Quantification of RT-PCR products following treatment of SK-N-BE(2) cells with indicated ASOs. c, RT-PCR analysis of UNC13A splicing in SH-SY5Y cells shows ASOs prevent cryptic splicing after TDP-43 knockdown. d, Quantification of results in (C) n=3 biological replicates from 2 experiments. e, RT-qPCR analysis of UNC13A shows an ASO mediated rescue of UNC13A RNA after TDP-43 KD in SH-SY5Y cells. n=4 biological replicates from 2 experiments. f, Western blot analysis shows

rescue of UNC13A protein following ASO treatment after TDP-43 KD in SH-SY5Y cells. **g**, Quantification of blots from (**f**). *n*=3 biological replicates from 3 experiments. **h**, RT-qPCR analysis of *UNC13A* shows an ASO mediated rescue of *UNC13A* RNA after TDP-43 KD in HaloTDP iNeurons. *n*=4 biological replicates from 2 experiments. Graphs for (**d**) (**e**) (**g**) and (**h**) represent mean \pm s.e.m. Statistics are One-way ANOVA with Tukey multiple comparison test. **P* < 0.05; ** *P* <0.01; **** *P* < 0.0001; ns (not significant).



UNC13A

TDP-43

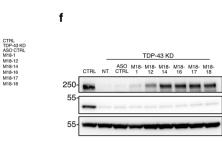
Tubulin

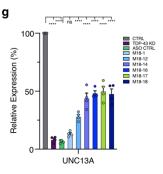
Indiana Instantia Indiana

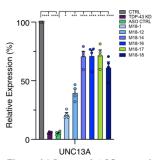
UNC13A

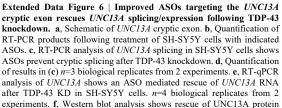
100

50

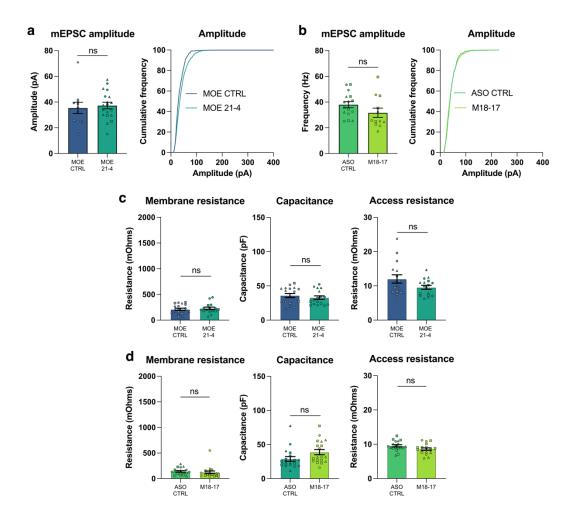

0


Relative Expression (%)


С


е

h



following ASO treatment after TDP-43 KD in SH-SY5Y cells. **g**, Quantification of blots from (**f**). n=3 biological replicates from 3 experiments. **h**, RT-qPCR analysis of *UNC13A* shows an ASO mediated rescue of *UNC13A* RNA after TDP-43 KD in Halo-iNeurons. n=4 biological replicates from 2 experiments. Graphs for (**d**) (**e**) (**g**) and (**h**) represent mean \pm s.e.m. Statistics are One-way ANOVA with Tukey multiple comparison test. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.001; n (not significant).

Extended Data Figure 7 | Additional electrophysiological parameters following ASO treatments. a, Quantification of mEPSC amplitude in TDP-43 KD iNeurons treated with MOE CTRL ASO (n=17) and MOE 21-4 ASO (n=18) from 3 experiments. b, Quantification of mEPSC amplitude in TDP-43 KD iNeurons treated with CTRL ASO (n=19) and M18-17 ASO (n=19) from 3 experiments. c, Passive membrane properties for TDP-43 KD iNeurons treated with MOE CTRL ASO (n=17) and MOE 21-4 ASO (n=18) from 3 experiments. d, Passive membrane properties in TDP-43 KD iNeurons treated with CTRL ASO (n=19) and M18-17 ASO (n=19) from 3 experiments. Graphs for (a) (b) (c) and (d) represent mean ± s.e.m. Statistics are two-sided Student's t test. ns (not significant).

Extended Data Table 1 | Key Reagents

Reagent	Supplier	Catalog #
XAV939	Cambridge Bioscience	SM38-10
LDN-193189 hydrochloride	Cambridge Bioscience	19396-5mg-CAY
SB431542	Cambridge Bioscience	SM33-50
Recombinant Cas9	IDT	Alt-R® S.p. Cas9 Nuclease V3
Recombinant Cas12	IDT	Alt-R® A.s. Cas12a (Cpf1) Ultra
HDR Enhancer V2	IDT	NA
Trans-IT 293	Mirius	MIR2700
dibutyryl cAMP	Merck Sigma	D0627-100MG
Doxycycline Hyclate	Merck Sigma	D9891
L-Ascorbic Acid	Merck Sigma	A0278-25G
Poly-D-lysine hydrobromide >300,000 MW	Merck Sigma	P7405
Poly-L-ornithine hydrobromide 30,000-70,000 MW	Merck Sigma	P3655
Puromycin	Merck Sigma	P8833
BDNF	PeproTech	450-02
GDNF	PeproTech	450-10
Accutase	ThermoFisher	A1110501
cultureOne	ThermoFisher	A3320201
Geltrex	ThermoFisher	A14133-01
Laminin	ThermoFisher	23017015
RevitaCell	ThermoFisher	A2644501
TrypLE	ThermoFisher	12605010
Versene	ThermoFisher	15040066
ROCK inhibitor (Y-27632)	Tocris	1245/10
Halo-Protac E	University of Dundee DSTT	HALO-PROTAC-E active
Tetrodotoxin	Tocris	1069
Gabazine	Tocris	1262

Extended Data Table 2 | DNA Oligonucleotides sequences

Name	Sequence 5'-3'	Use	Supplier	Catalog Number
UNC13A_For	CAGACGATCATTGAGGTGCG	RT-PCR	IDT	NA
UNC13A_Rev	ATACTTGGAGGAGAGGCAGG	RT-PCR	IDT	NA
STMN2_For	GCTCTCCCGCTGCTGTAG	RT-PCR	IDT	NA
STMN2_Rev	CGAGGTTCCGGGTAAAAGCA	RT-PCR	IDT	NA
STMN2_Cryptic_Rev	CTGTCTCTCTCTCGCACA	RT-PCR	IDT	NA
UNC13A_Total_For	TGATGTTGACCTCGATGAACG	RT-qPCR	IDT	Hs.PT.58.1883136
UNC13A_Total_Rev	TCTGTCCATGTTGAGCTGTTC	RT-qPCR	IDT	Hs.PT.58.1883136
UNC13A_Total_Probe	/56-FAM/AGCCACCAC/ZEN/TTTCACTGTGACCTT/3IABkFQ/	RT-qPCR	IDT	Hs.PT.58.1883136
UNC13A_Correct_For	GGACAAGCGAACTGACAAATC	RT-qPCR	IDT	NA
UNC13A_Correct_Rev	ACAGGTTCTCATGCAGACAG	RT-qPCR	IDT	NA
UNC13A_Correct_Probe	/5SUN/ATCAAAGGC/ZEN/GAGGAGAAGGTGGC/3IABkFQ/	RT-qPCR	IDT	NA
Gapdh-Jun	NA	RT-qPCR	Thermo	4485713
CamK2A_For	TCAATCAGCTGCTCTGTCAC	RT-qPCR	IDT	Hs.PT.56a.28027747
CamK2A_Rev	CCAGTTCCAGCGTTCAGTT	RT-qPCR	IDT	Hs.PT.56a.28027747
CamK2B_For	TCTTGGCTGCATACTCATGG	RT-qPCR	IDT	Hs.PT.56a.20211778.g
CamK2B_Rev	CTTCACCGACGAGTACCAG	RT-qPCR	IDT	Hs.PT.56a.20211778.g
GRIA1_For	CTTAATCGAGTTCTGCTACAAATCC	RT-qPCR	IDT	Hs.PT.58.15517507
GRIA1_Rev	GTATGGCTTCGTTGATGGTTG	RT-qPCR	IDT	Hs.PT.58.15517507
GRIA2_For	GGTACGACAAAGGAGAGTGC	RT-qPCR	IDT	Hs.PT.58.25075751
GRIA2_Rev	CCCGACAAGGATGTAGAATACTC	RT-qPCR	IDT	Hs.PT.58.25075751
GRIN1_For	CTCCTGGAAGATTCAGCTCAA	RT-qPCR	IDT	Hs.PT.58.39141804
GRIN1_Rev	GTGGATGGCTAACTAGGATGG	RT-qPCR	IDT	Hs.PT.58.39141804
GRIN2A_For	CAAGAAGTAATGGCACCGTCT	RT-qPCR	IDT	Hs.PT.58.26949410
GRIN2A_Rev	GCAGAAACAATGAGCAGCATC	RT-qPCR	IDT	Hs.PT.58.26949410
GRIN2B_For	CTTCATAGAGACAGGCATCAGT	RT-qPCR	IDT	Hs.PT.58.40419546
GRIN2B_Rev	CATCACAAACATCATCACCCATAC	RT-qPCR	IDT	Hs.PT.58.40419546
mGluR5_For	TGTGAGAAAGGCCAGATCAAG	RT-qPCR	IDT	Hs.PT.58.40025787
mGluR5_Rev	TGCCTTGCATGTGTACTCATC	RT-qPCR	IDT	Hs.PT.58.40025787
STMN2_For	CCACGAACTTTAGCTTCTCCA	RT-qPCR	IDT	Hs.PT.58.5075784
STMN2_Rev	GCCAATTGTTTCAGCACCTG	RT-qPCR	IDT	Hs.PT.58.5075784

Antibody	Supplier; Catalog Number	Use	Dilution	
Rabbit anti UNC13A	Synaptic Systems; 126 103	WB	1:2,000	
Rabbit anti TDP-43	ProteinTech; 10782-2-AP	WB	1:2,000	
Mouse anti Tubulin	ProteinTech; 66031-1-Ig	WB	1:2,000	
Rabbit anti STMN2	ProteinTech; 10586-1-AP	WB	1:2,000	
Goat anti Mouse IGG-HRP conjugate	BioRad; 1706516	WB	1:10,000	
Goat anti Rabbit IGG-HRP conjugate	BioRad; 1706515	WB	1:10,000	
Mouse anti TDP-43	Abcam; ab104223	IF	1:1,000	
Mouse anti Synapsin	Synaptic Systems; 106 011	IF	1:1,000	
Guinea Pig anti UNC13A	Synaptic Systems; 126 104	IF	1:500	
Chicken anti MAP2	Abcam; ab5392	IF	1:10,000	
Goat anti Mouse IgG (H+L) AlexaFluor 488	ThermoFisher; A-11029	IF	1:1,000	
Goat anti Guinea Pig IgG (H+L) AlexaFluor 647	ThermoFisher; A-21450	IF	1:1,000	
Goat anti Chicken IgY (H+L) AlexaFluor 647	ThermoFisher; A-21449	IF	1:1,000	

Software	Source		
FIJI/ImageJ v2.14	https://imagej.net/software/fiji/		
Prism v10	GraphPad		
R v4.2.2	https://www.r-project.org/		
Clampex v10.6	Molecular Devices		
Axon Multiclamp Commander v10.4	Molecular Devices		
Clampfit 10.7	Molecular Devices		
MATLAB R2021a	Mathworks		
ImageLab Touch Software v1.0.0.15	Bio-Rad		
IGV browser v2.8.2	UC San Diego and Broad Institute of MIT and Harvard		
Minimap2 v2.26-r1175	https://github.com/lh3/minimap2		
QIAxcelR	https://github.com/Delayed-Gitification/QIAxcelR		
TapeStation Systems Software v3.2	Agilent		
QuantStudio Design & Analysis v1.5.2	ThermoFisher Scientific		
Maestro Pro – AxIS Navigator v3.7.2	Axion Biosystems		
Neural Metric Tool v4.0.5	Axion Biosystems		
Zen Blue v3.3	Carl Zeiss AG		