Supplementary Information

Genetically Encoded Nô-Vinyl Histidine for the Evolution of Enzyme Catalytic Center

Haoran Huang^{†, #}, Tao Yan^{†, #}, Chang Liu^{†, #}, Yuxiang Lu[†], Zhigang Wu[†], Xingchu Wang[†], Jie Wang^{†, *}

[†]Department of Chemistry, Research Center for Chemical Biology and Omics Analysis, College of Science, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China

[#]These authors contributed equally to this work.

*Correspondence to: wangjie@sustech.edu.cn (J.W.)

Sup	Supplementary Methods	
1.	Chemical synthesis of Nδ-vinyl histidine (δVin-H)	1
2.	Chemical synthesis of resorufin acetyl methoxymethyl ether (A-Me-Res)	2
3.	Chemical synthesis of ethyl 2-(dimethyl(phenyl)silyl) acetate by whole-cell catalysis	2
Supplementary Figures (1-58)		3
Supplementary Tables (1-6)		56
Sup	Supplementary References	

Supplementary Methods

Br DCC(1.0ea). DMAP(1.0 eq) • Ph •Ph OTf overnight, rt. Br Dh 'n DCM/ DCM, 0 °C, BocHN BocHN MeOH=1:1 overnight BocHN (v/v) 1 ö 2 B 1M NaOH(aq) MeOH, 40 °C, 6 h K₂CO₃(5eq), DMF 6M HCI(aq) dioxane, r t dioxane, r.ť. 60 °C, overnight BocHN BocHN BocHN 0 0 0 ö 4 5 6

1. Chemical synthesis of Nδ-vinyl histidine (δVin-H)

MeOH (100 mL) was added to a stirred solution of protected histidine **1** (50 mmol), DCC (55 mmol), and DMAP (50 mmol) in DCM (50 mL) in an ice bath. The reaction mixture was gradually warmed to room temperature and stirred for 12 hours. The completion of the reaction was monitored by TLC. After completion, the mixture was concentrated under reduced pressure, dissolved in EtOAc, and filtered through a Celite pad. The filtrate was evaporated and purified by flash column chromatography to give product **2** (yield: 90%). ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.28 (m, 10H), 7.15 – 7.05 (m, 6H), 6.53 (s, 1H), 5.99 (d, *J* = 8.4 Hz, 1H), 4.52 (m, 1H), 3.59 (s, 3H), 3.04 (dd, *J* = 14.6, 5.2 Hz, 1H), 2.97 (dd, *J* = 14.4, 4.8 Hz, 1H), 1.41 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 155.67, 142.33, 138.76, 136.48, 129.84, 128.17, 128.15, 119.69, 79.61, 75.40, 53.83, 52.11, 30.34, 28.44. HRMS: m/z calculated for [M+H]⁺: 512.2549; Found: 512.2533.

Freshly prepared 2-bromoethyl trifuoromethanesulfonate (44 mmol) was added to a stirred solution of protected histidine **2** (40 mmol) in dry DCM (160 mL) ¹under a nitrogen atmosphere in an ice bath. The reaction mixture was gradually warmed to room temperature and stirred for 12 hours. The completion of the reaction was monitored by TLC. After completion, the mixture was concentrated under reduced pressure to give compound **3** without purification and the solid obtained after concentration was further dissolved in 40 mL of MeOH at 40 °C for another 6 hours. The mixture was evaporated and purified by flash column chromatography to give product **4** (yield: 54%). ¹H NMR (400 MHz, CDCl₃) δ 7.99 (s, 1H), 6.89 (s, 1H), 5.29 (d, *J* = 7.6 Hz, 1H), 4.53 (m, 1H), 4.47 – 4.28 (m, 1H), 3.76 (s, 2H), 3.62 (t, *J* = 6.5 Hz, 2H), 3.18 (dd, *J* = 15.7, 5.7 Hz, 1H), 3.11 (dd, *J* = 15.6, 5.9 Hz, 1H), 1.42 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 171.42, 155.35, 137.82, 127.70, 125.67, 80.64, 53.09, 52.92, 46.64, 30.05, 28.35, 26.78. HRMS: m/z calculated for [M+H]⁺: 376.0872; Found: 376.0862.

K₂CO₃ (100 mmol) was added to a mixture of resulting compound **4** (20 mmol) and dry DMF (80 mL) under a nitrogen atmosphere. The mixture was stirred at 60 °C for 12 hours. The completion of the reaction was monitored by TLC. Then, the reaction mixture was cooled to room temperature, dissolved in EtOAc, and filtered through a Celite pad. The mixture was then extracted with EtOAc and dried over MgSO₄. The filtrate was evaporated and purified by flash column chromatography to give product **5** (47% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.57 (s, 1H), 6.72 – 6.61 (m, 2H), 5.66 (d, *J* = 7.9 Hz, 1H), 5.21 (d, *J* = 15.6 Hz, 1H), 4.84 (d, *J* = 8.8 Hz, 1H), 4.33 (m, 1H), 3.54 (s, 3H), 2.99 (dd, *J* = 15.5, 5.7 Hz, 1H), 2.92 (dd, *J* = 15.4, 6.3 Hz, 1H), 1.24 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 171.28, 154.89, 134.53, 128.40, 127.78, 125.70, 104.63, 79.53, 52.82, 52.10, 27.94, 26.29. HRMS: m/z calculated for [M+H]⁺: 296.1610; Found: 296.1601.

NaOH solution (2 N, 5 mL) was added to a stirred solution of protected N δ -vinylhistidine **5** (9 mmol) in dioxane (5 mL), and the mixture was stirred at room temperature for 2 hours. The completion of the reaction was monitored by TLC. The pH of the reaction mixture was adjusted to 7. After that, the mixture was evaporated and dissolved in DCM. Then, the mixture was filtered through a Celite pad. After that, the DCM was evaporated in vacuo to give product **6**.

The resulting compound **6** was dissolved in HCl (6 M, 10 mL), and the reaction was allowed to stir for 6 h at room temperature. The volatiles were subsequently evaporated, and the residue was redissolved in MeOH (5 mL) and precipitated into Et₂O (250 mL), giving product **7** as a white solid in 69% yield. ¹H NMR (400 MHz, MeOD) δ 9.35 (s, 1H), 7.68 (s, 1H), 7.28 (dd, *J* = 15.2, 8.4 Hz, 1H), 6.00 (dd, *J* = 15.2, 2.1 Hz, 1H), 5.69 (dd, *J* = 8.4, 2.2 Hz, 1H), 4.38 (t, *J* = 7.1 Hz, 1H), 3.62 – 3.45 (m, 2H). ¹³C NMR (101 MHz, MeOD) δ 168.61, 134.40, 128.12, 126.85, 119.58, 115.05, 50.95, 23.96. HRMS: m/z calculated for [M+H]⁺: 182.0925; Found: 182.0923.

2. Chemical synthesis of resorufin acetyl methoxymethyl ether (A-Me-Res)

Following the literature procedure², resorufin **2** (50 mg, 0.235 mmol) and anhydrous potassium carbonate (K₂CO₃) were dissolved in H₂O (2.4 mL) to obtain a dark red solution. *N*,*N*,*N*-Tributyl-1-butanaminium sulfate 50 wt. % in H₂O (150 mg, 0.286 mmol) was added, followed by chloromethyl acetate **1** (94 μ L, 1.304 mmol) in DCM. The reaction mixture was stirred at room temperature overnight. The reaction mixture was then diluted with H₂O and DCM. The aqueous layer was extracted with DCM, and the combined organics were washed with H₂O and saturated brine three times. The organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give a purple oil. Purification via column chromatography afforded the compound resorufin acetyl methoxymethyl ether as a red–orange solid in 37% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.74 (d, J = 8.8 Hz, 1H), 7.42 (d, J = 9.7 Hz, 1H), 7.04 (dd, J = 8.9, 2.7 Hz, 1H), 6.99 (d, J = 2.7 Hz, 1H), 6.84 (dd, J = 9.7, 1.9 Hz, 1H), 6.33 (d, J = 1.9 Hz, 1H), 5.84 (s, 2H), 2.16 (s, 2H). HRMS: m/z calculated for [M+H]⁺: 286.0715; Found: 286.0707.

3. Chemical synthesis of ethyl 2-(dimethyl(phenyl)silyl) acetate by whole-cell catalysis

E. coli BL21(DE3) cells expressing wild-type myoglobin (H64V, V68A) were prepared according to the protocol described above. After harvesting, the cells were suspended in PBS buffer and diluted to an OD600 of 40. The cell suspension was transferred to an open Erlenmeyer flask equipped with a stir bar and supplemented with 50 mM D-glucose solution (from a 2 M stock solution). Reactions were initiated by the dropwise addition of compound **1** (from a 2 M stock solution in ethanol, final concentration: 20 mM), followed by the dropwise addition of EDA (from a 2 M stock solution in ethanol, final concentration: 20 mM). The reaction mixtures were stirred at room temperature for 20 hours and extracted twice with ethyl acetate. The combined organic layers were dried over sodium sulfate and evaporated under reduced pressure. The crude product was purified by flash column chromatography to give product **2** in 22% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.56 – 7.51 (m, 2H), 7.42 – 7.34 (m, 3H), 4.04 (q, *J* = 7.2 Hz, 2H), 2.11 (s, 2H), 1.16 (t, *J* = 7.1 Hz, 2H), 0.41 (s, 6H).

Supplementary Figures (1-58)

Supplementary Figure 1: Measurement of pka of imidazole analogs. (A) Principle of weak-base pKa determination. (B) Titration curve of vinyl imidazole. (C) Titration curve of imidazole. (D) Titration curve of methyl imidazole. The data is the representative data from similar results after three independent experiments.

Supplementary Figure 2: Direct synthesis of N δ -vinyl histidine by a metal-catalyzed C–N bond formation reaction. (A) Synthetic routes for direct vinylation of histidine. (B) HMBC NMR verification of the structure obtained by direct histidine vinylation.

Supplementary Figure 3: The workflow of the direct evolution of δ VinH-RS. (A) Construction workflow of the PylRS gene library. (B) First-round evolution of δ VinH-RS by negative and positive selection. (C) PylRS sequence results of positive clones in the first round of evolution. (D) Selection results of the positive clones in the presence of δ Vin-H by the GFP reporter in the first round of evolution. (E) Second round of evolution for δ VinH-RS by positive selection. (F) PylRS sequence results of positive clones in the second round of evolution. (G) Selection results of the positive clones in the presence of δ Vin-H by the GFP reporter in the presence of δ Vin-H by the GFP reporter in the presence of δ Vin-H by the GFP reporter in the presence of δ Vin-H by the GFP reporter in the second round of evolution. (H-I) Validation of the different δ VinH-RS variants through amber codon suppression of GFP-N190TAG in DH10B *E. coli*. The data in Figure D, G, H and I is the representative data from similar results after three independent experiments.

Supplementary Figure 4: Fluorescence images of the incorporation of δ Vin-H into GFP-Y40TAG in HEK 293T cells. The data is the representative data from similar results after three independent experiments.

Supplementary Figure 5: SDS–PAGE analysis of the incorporation efficiency of δ Vin-H into OE1.3-H23TAG. The data is the representative data from similar results after three independent experiments.

Supplementary Figure 6: Proposed mechanism of the ester hydrolysis reaction in the catalytic center of the histidine analogs. (A) Histidine ester hydrolysis catalyzed by histidine under neutral conditions. (B) Ester hydrolysis catalyzed by Nδ-methyl histidine under neutral conditions. (C) Ester hydrolysis catalyzed by Nδ-vinyl histidine under acidic conditions.

Supplementary Figure 7: Comparison of the hydrolysis activity of resorufin acetyl methoxymethyl ether (A-Me-Res) catalyzed by OE1.3-His, δ MeH and δ VinH at different pH values. (A) pH=5.5. (B) pH=6.5. (C) pH=7.0. (D) pH=7.5. The data in Figure A-D are presented as mean values \pm SEM (n=3 independent experiments).

δVinH-RS (hit-3)

Supplementary Figure 8: SDS–PAGE analysis of the incorporation efficiency of δVin-H into four different heme-dependent proteins by different PyIRS variants. (A-B) Myoglobin-H93TAG. (C-D) APEX2-H163TAG. (E-F) P450-BM3-HStar-H400TAG. (G-H) dnHEM1.2-H149TAG. The data is the representative data from similar results after three independent experiments.

Supplementary Figure 9: Standard curve for determination of cyclopropane product concentrations. The data is the representative data from similar results after three independent experiments.

Supplementary Figure 10: Mb-catalyzed cyclopropanation in air. Conversions for myoglobin-catalyzed cyclopropanation reactions by using different Mb(H64V, V68A) variants under aerobic conditions. Reaction conditions: 10 μ M enzyme, 10 mM styrene, 20 mM EDA and 10 mM dithionite. The data are presented as mean values \pm SD (n=3 independent experiments).

Supplementary Figure 11: Mb-catalyzed Si–H insertion reaction. The data is the representative data from similar results after three independent experiments.

Supplementary Figure 12: Plasmid map of PylRS in the eukaryotic expression vector (top) and prokaryotic expression vector (bottom).

Supplementary Figure 13: Plasmid map of the positive selection plasmid (top) and negative selection plasmid (bottom).

Supplementary Figure 14. ¹H NMR spectrum for compound 2.

Supplementary Figure 15. ¹³C NMR spectrum for compound 2.

Supplementary Figure 16. High-resolution mass spectral of for compound 2.

Supplementary Figure 17. ¹H NMR spectrum for compound 4.

Supplementary Figure 18. ¹³C NMR spectrum for compound 4.

Supplementary Figure 19. High-resolution mass spectral of for compound 4.

Supplementary Figure 20. ¹H NMR spectrum for compound 5.

Supplementary Figure 21. ¹³C NMR spectrum for compound 5.

Supplementary Figure 22. High-resolution mass spectral of for compound 5.

Supplementary Figure 23. ¹H NMR spectrum for compound 7.

Supplementary Figure 24. ¹³C NMR spectrum for compound 7.

Supplementary Figure 25. ¹³C NMR spectrum(top) and DEPT135 NMR spectrum(down) for compound 7

Supplementary Figure 26. HH COSY spectrum for compound 7.

Supplementary Figure 27. HSQC spectrum for compound 7

Supplementary Figure 28: HMBC NMR spectrum for compound 7

Supplementary Figure 29: High-resolution mass spectrum for 7.

Supplementary Figure 30: ¹H NMR spectrum for A-Me-Res.

Supplementary Figure 31: High-resolution mass spectrum for A-Me-Res..

Supplementary Figure 32: ¹H NMR spectrum for Mb*-H936VinH catalyzed product 1c.

Supplementary Figure 33: ¹³C NMR spectrum for Mb*-H938VinH catalyzed product 1c.

Supplementary Figure 34: ¹H NMR spectrum for Mb*-H936VinH catalyzed product **2c**.

Supplementary Figure 35: ¹³C NMR spectrum for Mb*-H938VinH catalyzed product 2c.

Supplementary Figure 36: ¹H NMR spectrum for Mb*-H936VinH catalyzed product **3c**.

Supplementary Figure 37: ¹³C NMR spectrum for Mb*-H938VinH catalyzed product 3c.

Supplementary Figure 38: ¹⁹F NMR spectrum for Mb*-H938VinH catalyzed product 3c.

Supplementary Figure 39: ¹H NMR spectrum for Mb*-H936VinH catalyzed product 4c.

Supplementary Figure 40: ¹³C NMR spectrum for Mb*-H938VinH catalyzed product 4c.

Supplementary Figure 41: chiral HPLC spectrum for (rac)-1c.

Supplementary Figure 42: chiral HPLC spectrum for 1c(Mb*-\deltaMeH catalyzed product).

Supplementary Figure 43: chiral HPLC spectrum for **1c**(Mb*-δMeH catalyzed product).

Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
 1 6.002 VB 2 8.138 BB	0.1320	64.75498 2803.16626	7.26480 264.05133	2.2579 97.7421

Supplementary Figure 44: chiral HPLC spectrum for 1c(Mb*-\deltaVinH catalyzed product).

Supplementary Figure 45: chiral HPLC spectrum for (rac)-2c.

Supplementary Figure 46: chiral HPLC spectrum for 2c(Mb*-WT catalyzed product).

Supplementary Figure 47: chiral HPLC spectrum for **1c**(Mb*-δMeH catalyzed product).

Supplementary Figure 48: chiral HPLC spectrum for 2c(Mb*-\deltaVinH catalyzed product).

Supplementary Figure 49: chiral HPLC spectrum for (rac)-3c.

Supplementary Figure 50: chiral HPLC spectrum for 3c(Mb*-WT catalyzed product).

Supplementary Figure 51: chiral HPLC spectrum for **3c**(Mb*-δMeH catalyzed product).

#	[min]		[min]	[mAU*s]	[mAU]	%
-						
1	5.785	MM R	0.1272	22.56845	2.95628	0.9730
2	6.319	MM R	0.1324	2296.98755	289.08282	99.0270

Supplementary Figure 52: chiral HPLC spectrum for 3c(Mb*-\deltaVinH catalyzed product).

Supplementary Figure 53: MS result before deconvolution: GFP-D190-δVinH.

Supplementary Figure 54: MS result before deconvolution: OE1.3-H23-δVinH.

Supplementary Figure 55: MS result before deconvolution: P450-H400-δVinH.

Supplementary Figure 56: MS result before deconvolution: APEX-H163-6VinH.

Supplementary Figure 57 MS result before deconvolution: dnHEM1.2-8VinH.

Supplementary Figure 58: MS result before deconvolution: Mb-H93-δVinH.

Supplementary Tables (1-6)

Variants	Wavelength Soret band in nm	ε(Soret) in mM ⁻¹ cm ⁻¹
Mb*-WT	412	135.12±1.30
Мb*-Н93-бМе-Н	412	134.93±6.57
Mb*-H93-δVin-H	412	130.22±2.56

Supplementary Table 1: Summary of the extinction coefficients of the different myoglobin variants.

Name	Heme loading in %		
Mb*-WT	46.1±2.2		
Mb*-H93-δVin-H	40.7±2.6		
Мb*-Н93-бМе-Н	35.7±3.1		

Supplementary Table 2: Heme loading efficiencies of Mb* variants.

	Mb variants	ee %	
	Mb(H64V, V68A)-WT	90±1.1% ee	
	Mb(H64V, V68A)-H93-6Vin-H	96±0.9% ee	
	Мb(H64V, V68A)-H93-δMe-H	97±1.4% ee	
	Mb(H64V, V68A)-WT	95±0.5% ee	
	Mb(H64V, V68A)-H93-6Vin-H	93±0.5% ee	
	Мb(H64V, V68A)-H93-δMe-H	95±0.2% ee	
	Mb(H64V, V68A)-WT	91±1.1% ee	
	Mb(H64V, V68A)-H93-6Vin-H	95±1.1% ee	
	Mb(H64V, V68A)-H93-δMe-H	98±0.2% ee	

Supplementary Table 3: Summary of enantiomeric excess (ee) percent for Mb variants catalyzed cyclopropanation of styrene

Supplementary Table 4: The cycloaddition reaction catalyzed by Mb(H64V, V68A)-H93-δVinH.

Entry	Substrate (mM)	$Na_2S_2O_4$ (mM)	Cat. (mol%)	Time (min)	Conversion (%)
1	1a	10	0.1	5	77.1
2	1a	20	0.1	5	76.1
3	1a	50	0.1	5	72.0
4	1a	100	0.1	5	78.4
5	1a	10	0.05	5	55.2
6	1a	10	0.02	5	26.6
7	3a	10	0.1	60	79.5
8	3a	10	0.1	30	76.8
9	3a	10	0.1	5	78.5

Supplementary Table 5: Cartesian coordinates (Å) for the DFT-optimized structures:

Imidazole

C -0.64590000 0.06870000 0.00000000 C 0.21600000 1.13840000 0.00000000 C 1.47130000 -0.60140000 0.00000000 N 0.17930000 -1.03860000 -0.00010000 H -0.12220000 -2.00150000 0.00050000 H 2.30960000 -1.28060000 -0.00020000 N 1.53270000 0.71370000 0.00000000 C -2.13360000 -0.02310000 0.00000000 H -2.50510000 -0.55190000 0.88300000 H -2.56510000 0.97840000 -0.00020000 H -2.50490000 -0.55220000 -0.88290000 H -0.04210000 2.18660000 0.00010000

N-methylimidazole

C 0.28743300 -0.70240400 0.00014100 C -0.98837500 -1.21471500 -0.00008400 C -1.22384400 0.91402300 0.00005600 N 0.11968800 0.67167100 0.00025600 H -1.61918600 1.91857500 0.00017100 N -1.92591100 -0.20087200 -0.00011500 C 1.62579500 -1.35707100 -0.0000100 H 2.21381900 -1.08457900 0.88219700 H 1.50270700 -2.44053500 0.00013400 H 2.21343500 -1.08478700 -0.88254100 H -1.27531300 -2.25563200 -0.00008400 C 1.17840600 1.66984300 -0.00013700 H 1.80352000 1.56679800 0.88834600 H 1.80274100 1.56691300 -0.88918700 H 0.72534400 2.65960400 0.00013400
N-vinyl-imidazole

C 0.91528800 0.53788800 -0.00528600

C 1.82970000 -0.48030700 -0.03476100

C -0.08281500 -1.45058700 0.04248600

H -0.87740000 -2.17717100 0.09241700

N 1.20022900 -1.71393000 -0.00179000

C 1.08628400 2.01751000 -0.02440900

H 0.67704900 2.49003700 0.87379100

H 2.14960300 2.25393300 -0.07030600

H 0.60167600 2.47545800 -0.89175800

H 2.90448400 -0.39276500 -0.07536100

C -1.57615300 0.55643200 0.07459500

C -2.76045900 -0.02895400 -0.08088500

H -1.49577900 1.62122800 0.24789800

H -3.65838300 0.56967800 -0.01539700

H -2.87815400 -1.08805500 -0.27017400

N -0.32796700 -0.09524600 0.04156800

The incorporation sites of UAA are highlighted in yellow.

1	chPyIRS-IPYE-&Me-H "IPYE" mutations (V31I, T56P, H62Y, and A100E) and fixed mutation
	(Y349F) were labeled in blue.
	ATGGATAAGAAGCCGCTGGATGTTCTGATCTCTGCGACCGGTCTGTGGATGTCCCGTA
	CCGGCACGCTGCACAAGATCAAGCACTATGAGATTTCTCGTTCTAAAATCTACATCGA
	AATGGCGTGTGGTGACCATCTGGTTGTGAACAACTCTCGTTCTTGTCGTCCCGCACGT
	GCATTCCGTTATCATAAATACCGTAAAACCTGCAAACGTTGTCGTGTTTCTGACGAAG
	ATATCAACAACTTCCTGACCCGTTCTACCGAAGGCAAAACCTCTGTTAAAGTTAAAG
	TTGTTTCTGAGCCGAAAGTGAAAAAAGCGATGCCGAAATCTGTTTCTCGTGCGCCGA
	AACCGCTGGAAAATCCGGTTTCTGCGAAAGCGTCTACCGACACCTCTCGTTCTGTTC
	CGTCTCCGGCGAAATCTACCCCGAACTCTCCGGTTCCGACCTCTGCAAGCGCCCCAG
	CTCTGACTAAATCCCAGACGGACCGTCTGGAGGTGCTGCTGAACCCAAAGGATGAA
	ATCTCTCTGAACAGCGGCAAGCCTTTCCGTGAGCTGGAAAGCGAGCTGCTGTCTCGT
DNA	CGTAAAAAGGATCTGCAACAGATCTACGCTGAGGAACGCGAGAACTATCTGGGTAAG
sequence	CTGGAGCGCGAAATTACTCGCTTCTTCGTGGATCGCGGTTTCCTGGAGATCAAATCTC
-	CGATTCTGATTCCGCTGGAATACATTGAACGTATGGGCATCGATAATGATACCGAACT
	GTCTAAACAGATCTTCCGTGTGGATAAAAACTTCTGTCTG
	AACATCTTCAACTATGGTCGTAAACTGGACCGTGCCCTGCCGGACCCGATCAAAATTT
	TCGAGATCGGTCCTTGCTACCGTAAAGAGTCCGACGGTAAAGAGCACCTGGAAGAAT
	TCACCATGCTGAACTTCTTCCAGATGGGTAGCGGTTGCACGCGTGAAAACCTGGAAT
	CCATTATCACCGACTTCCTGAATCACCTGGGTATCGATTTCAAAATTGTTGGTGACAG
	CTGTATGGTGTTTGGCGATACGCTGGATGTTATGCACGGCGATCTGGAGCTGTCTTCC
	GCAGTAGTGGGCCCAATCCCGCTGGATCGTGAGTGGGGTATCGACAAACCTTGGATC
	GGTGCGGGTTTTGGTCTGGAGCGTCTGCTGAAAGTAAAACACGACTTCAAGAACATC
	AAACGTGCTGCACGTTCCGAGTCCTATTACAATGGTATTTCTACTAACCTGTAA
	MDKKPLDVLISATGLWMSRTGTLHKIKHYEISRSKIYIEMACGDHLVVNNSRSCRPARAF
	RYHKYRKTCKRCRVSDEDINNFLTRSTEGKTSVKVKVVSEPKVKKAMPKSVSRAPKPLE
Protein	${\tt NPVSAKASTDTSRSVPSPAKSTPNSPVPTSASAPALTKSQTDRLEVLLNPKDEISLNSGKP$
Sequence	FRELESELLSRRKKDLQQIYAEERENYLGKLEREITRFFVDRGFLEIKSPILIPLEYIERMGI
Sequence	${\tt DNDTELSKQIFRVDKNFCLRPMLAPNIFNYGRKLDRALPDPIKIFEIGPCYRKESDGKEHL}$
	${\tt EEFTMLNFFQMGSGCTRENLESIITDFLNHLGIDFKIVGDSCMVFGDTLDVMHGDLELSS}$
	AVVGPIPLDREWGIDKPWIGAGFGLERLLKVKHDFKNIKRAARSESYYNGISTNL*

2	chPyIRS-IPYE-δVin-H "IPYE" mutations (V31I, T56P, H62Y, and A100E) and fixed mutation (Y349F) were labeled in blue, and the mutations selected from the evolution were labeled in red.
DNA sequence	ATGGATAAGAAGCCGCTGGATGTTCTGATCTCTGCGACCGGTCTGTGGATGTCCCGTA CCGGCACGCTGCACAAGATCAAGCACTATGAGATTTCTCGTTCTAAAATCTACATCGA AATGGCGTGTGGTGACCATCTGGTTGTGAACAACTCTCGTTCTTGACGTCCGCACG TGCATTCCGTTATCATAAATACCGTAAAACCTGCAAACGTTGTCGTGTTCTGACGACA GATATCAACAACTTCCTGACCCGTTCTACCGAAGCGAAAACCTCTGTTAAAGTTAAA GTTGTTTCTGAGCCGAAAGTGAAAAAAGCGATGCCGAAAACCTCTGTTAAAGTTAAA GTTGTTTCTGAGCCGAAAGTGAAAAAAGCGATGCCGAAATCTGTTTCTCGTGGCGCCG AAACCGCTGGAAAATCCGGTTTCTGCGAAAGCGTCTACCGACACCTCTGGTCTGTT CCGTCTCCGGCGAAATCTACCCGAACTCTCCGGTTCCGACCTCTGGAAGCGCCCCA GCTCTGACTAAATCCCAGACGGCCACGTCTGGAGGTGCTGCTGAACCCAAAGGATGA AATCTCTCTGAACAGCGGCAAGCCTTTCCGTGAGGTGGCAAAGCGAGCACCAAAGGATGA AATCTCTCTGAACAGCGGCAAGCCTTTCCGTGAGCTGGAAAGCGAGCACCAAAGGATGA AATCTCTCTGAACAGCGGCAAGCCTTTCCGTGAGCTGGAAAGCGAGCACCATACTGGGTAA GCTGGAGCGCGAAATTACTCGCTTCTTCGTGGATCGCGGTTTCCTGGAGACCAAAATCT CCGATTCTGATCCGCTGGAGATACATTGAACGTATGGGCATCGATAATGATACCGAAC TGTCTAAACAGATCTTCCGTGGGATAAAAACTTCTGCCGGACCCGATCAAAATCT CCGATCTGGATCTGCACCGTGAAACGGAGGCGTGCCGATCGAAAAT TTTCGAGATCGGTCCTTGCTGCGAACGCGTGCCGACCGGACCCGATCAAAAT TTTCGAGATCGGTCCTTGCTACCGTAAAGAGTCCGACGGTAAAAGAGCACCTGGAA ATCCATGCTGGATTTCCAGCAGATGGGAAGCGGTTGCACGCGGTAAAAGAGCACCTGGA ATCCATTATCACCGACTTCCTGAAACTGGAACCGGGTATCGACGGCGTGAAAACCTGGA ATCCATTGGTGTTGGCATACGCTGGAAGCGGTTGCACGGCGTGAAAACCTGGA ATCCATTATCACCGACTTCCTGAAACGTGGAAGCGGTATCGACAAACCTGGA ATCCATTATCACCGACTTCCTGAAACGCGGTATACGATTTCAAAATTGTTGGTGAACA GCTGTATGGTGTTTGGCCAACGCTGGAAGCGGTTACGACTGGAGCGTCTTC CGCAGTAGGGGCCCAATCCCGCGGGATCGGAAGTAAAACACGACCTTGGAT CGGTGCGGGTTTTGGCCAACCCGCGGTGCGGGGTATCGACAAACCTTGGAT CGGTGCGGGTTTTGGCCAAGCCTGCGAGCGCTCTGCTGAAAGTAAAACACGACCTTGAACC TCAAACGTGCTGCACGTCCGAGGCTCTGCTGAAAGTAAAACACGACCTGGAACA TCAAACGTGCTGCACGTCCGAGGCTCTGCTGAAAGTAAAACACGGACTTCAAAACA CGGTGCGGGTTTTGGCCACGGTCCGCGCGCTCTGCTGAAAGTAAAACACGGCTCTCCAAGAACA TCAAACGTGCTGCCACGTTCCGAGGTCTGCTGAAAGTAAAACACGGCTTCAACACTGGAACA
Protein Sequence	MDKKPLDVLISATGLWMSRTGTLHKIKHYEISRSKIYIEMACGDHLVVNNSRSCRPARAF RYHKYRKTCKRCRVSDEDINNFLTRSTEGKTSVKVKVVSEPKVKKAMPKSVSRAPKPLE NPVSAKASTDTSRSVPSPAKSTPNSPVPTSASAPALTKSQTDRLEVLLNPKDEISLNSGKP FRELESELLSRRKKDLQQIYAEERENYLGKLEREITRFFVDRGFLEIKSPILIPLEYIERMGI DNDTELSKQIFRVDKNFCLRPMLAPNMLNYLRKLDRALPDPIKIFEIGPCYRKESDGKEH LEEFTMLDFKQMGSGCTRENLESIITDFLNHLGIDFKIVGDSCMVFGDTLDVMHGDLEL SSAVVGPIPLDREWGIDKPWIGAGFGLERLLKVKHDFKNIKRAARSESYYNGISTNL*

3	Mm-PylRS-&Me-H(hit-2) in eukaryotic expression vector:
DNA sequence	ATGGATAAAAAACCACTAAACACTCTGATATCTGCAACCGGGCTCTGGATGTCCAG GACCGGAACAATTCATAAAATAAA
Protein Sequence	MDKKPLNTLISATGLWMSRTGTIHKIKHHEVSRSKIYIEMACGDHLVVNNSRSSRTARA LRHHKYRKTCKRCRVSDEDLNKFLTKANEDQTSVKVKVVSAPTRTKKAMPKSVARA PKPLENTEAAQAQPSGSKFSPAIPVSTQESVSVPASVSTSISSISTGATASALVKGNTNPIT SMSAPVQASAPALTKSQTDRLEVLLNPKDEISLNSGKPFRELESELLSRRKKDLQQIYA EERENYLGKLEREITRFFVDRGFLEIKSPILIPLEYIERMGIDNDTELSKQIFRVDKNFCL RPMLAPNIFNYGRKLDRALPDPIKIFEIGPCYRKESDGKEHLEEFTMLNFFQMGSGCTR ENLESIITDFLNHLGIDFKIVGDSCMVFGDTLDVMHGDLELSSAVVGPIPLDREWGIDK PWIGAGFGLERLLKVKHDFKNIKRAARSESYYNGISTNL*

4	Mm-PylRS-ðVin-H (hit-3) in eukaryotic expression vector:
DNA sequence	ATGGATAAAAAACCACTAAACACTCTGATATCTGCAACCGGGCTCTGGATGTCCAG GACCGGAACAATTCATAAAATAAA
Protein Sequence	MDKKPLNTLISATGLWMSRTGTIHKIKHHEVSRSKIYIEMACGDHLVVNNSRSSRTARA LRHHKYRKTCKRCRVSDEDLNKFLTKANEDQTSVKVKVVSAPTRTKKAMPKSVARA PKPLENTEAAQAQPSGSKFSPAIPVSTQESVSVPASVSTSISSISTGATASALVKGNTNPIT SMSAPVQASAPALTKSQTDRLEVLLNPKDEISLNSGKPFRELESELLSRRKKDLQQIYA EERENYLGKLEREITRFFVDRGFLEIKSPILIPLEYIERMGIDNDTELSKQIFRVDKNFCL RPMLAPNMLNYLRKLDRALPDPIKIFEIGPCYRKESDGKEHLEEFTMLDFKQMGSGCT RENLESIITDFLNHLGIDFKIVGDSCMVFGDTLDVMHGDLELSSAVVGPIPLDREWGID KPWIGAGFGLERLLKVKHDFKNIKRAARSESYYNGISTNL*

5	GFP-HisTag in prokaryotic expression vector
DNA sequence	ATGGGTAAAGGAGAAGAACTTTTCACTGGAGTTGTCCCAATTCTTGTTGAATTAGAT GGTGATGTTAATGGGCACAAATTTTCTGTCAGTGGAGAGGGGTGAAGGTGATGCAAC ATACGGAAAACTTACCCTTAAATTTATTTGCACTACTGGAAAACTACCTGTTCCATGG CCAACACTTGTCACTACTTTCTCTTATGGTGTTCAATGCTTTTCCCGTTATCCGGATCA CATGAAACGGCATGACTTTTTCAAGAGTGCCATGCCCGAAGGTTATGTACAGGAACG CACTATATCTTTCAAAGATGACGGGAACTACAAGACGCGTGCTGAAGTCAAGTTTGA AGGTGATACCCTTGTTAATCGTATCGAGTTAAAAGGTATTGATTTTAAAGAAGATGGA AACATTCTCGGACACAAACTCGAGTACAAAGTATAACTCACACAATGTATACATCACG GCAGACAAACAAAAGAATGGAATCAAAGCTAACTACAACAAATTCGCCACAACATTGA AGGTGGATCCGTTCAACTAGCAGACCATTATCAACAAAATACTCCACAATGGCGATGG CCCTGTCCTTTTACCAGACAACCATTACCTGTCGACACAATCTGCCATTGGAAGT CCCAACGAAAAGGCTGACCACTTACCAGGTCCTTCTTGAGATCGCCCTTTCGAAAGAT CCCAACGAAAAGGTGACCACATGGCCCTTCTTGAGTTTGTAACTGCTGCTGGGGATT ACACATGGCATGG
Protein Sequence	MGKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPT LVTTFSYGVQCFSRYPDHMKRHDFFKSAMPEGYVQERTISFKDDGNYKTRAEVKFEGD TLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYITADKQKNGIKANFKIRHNIEDGSVQ LADHYQQNTPIG <mark>D</mark> GPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITHGMDE LYKGPHHHHHH*

6	GFP-FLAG in eukaryotic expression vector:
	ATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCT
	GGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGAT
	GCCACCTATGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTG
	CCCTGGCCCACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTAC
	CCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGT
DNA	CCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGG
sequence	TGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTC
	AAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCACA
	ACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGATCC
	GCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACAC
	CCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCAGT
	CCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTC
	GTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAaGGATTACAAGgAT
	GACGACGATAAGTAA
	MVSKGEELETGVVDILVELDGDVNGHKESVSGEGEGDAT <mark>V</mark> GKLTLKEICTTGKLDVDWD
Protein	TI VTTI TVGVOCESDVDUMKOUDEEKSAMDEGVVOEDTIEEKDGOVVTDAEVKEEG
Sequence	
	VOLADUVOONTRICOCRVLI RDNUVI STOSAI SKORNEKRDUMVI LEEVTAACITI CM
	VQLADITI QQNTFIODOFVLLPDNHYLSTQSALSKDPNEKKDHMVLLEFVTAAGITLGM

7	Myoglobin-6×His in prokaryotic expression vector:
DNA sequence	ATGGTTCTGTCTGAAGGTGAATGGCAGCTGGTTCTGCATGTTTGGGCTAAAGTTGAA GCTGACGTCGCTGGTCATGGTCAGGACATCTTGATTCGACTGTTCAAATCTCATCCG GAAACTCTGGAAAAATTCGATCGTTTCAAACATCTGAAAACTGAAGCTGAAATGAA AGCTTCTGAAGATCTGAAAAAAGTGGGTGTTACCGCGTTAACTGCCCTAGGTGCTAT CCTTAAGAAAAAAGGGCATCATGAAGCTGAAGCTGAAACCGCTTGCACAATCGCATG CTACTAAACATAAGATCCCGATCAAATACCTGGAATTCATCTCTGAAGCGATCATCCA
	TGTTCTGCATTCTAGACATCCAGGTGACTTCGGTGCTGACGCTCAGGGTGCTATGAA CAAAGCTCTGGAGCTGTTCCGTAAAGATATCGCTGCTAAGTACAAAGAACTGGGTTA CCAGGGTGGCTCGGGACATCATCACCATCACCATTGA
Protein Sequence	MVLSEGEWQLVLHVWAKVEADVAGHGQDILIRLFKSHPETLEKFDRFKHLKTEAEMK ASEDLKKVGVTALTALGAILKKKGHHEAELKPLAQS <mark>H</mark> ATKHKIPIKYLEFISEAIIHVLHS RHPGDFGADAQGAMNKALELFRKDIAAKYKELGYQGGSG HHHHHH *

8	APEX2-6×His in prokaryotic expression vector:
	ATGGGTAAATCTTACCCGACCGTTTCTGCGGACTACCAGGACGCGGTTGAAAAAGC
	GAAAAAAAACTGCGTGGTTTCATCGCGGAAAAACGTTGCGCGCCGCTGATGCTGC
	GTCTGGCGTTCCACTCTGCGGGTACCTTCGACAAAGGTACCAAAACCGGTGGTCCG
	TTCGGTACCATCAAACACCCGGCGGAACTGGCGCACTCTGCGAACAACGGTCTGGA
DI	CATCGCGGTTCGTCTGCTGGAACCGCTGAAAGCGGAATTCCCGATCCTGTCTTACGC
DNA	GGACTTCTACCAGCTGGCGGGTGTTGTTGCGGTTGAAGTTACCGGTGGTCCGAAAG
sequence	TTCCGTTCCACCCGGGTCGTGAAGACAAACCGGAACCGCCGCCGGAAGGTCGTCTG
	CCGGACCCGACCAAAGGTTCTGACCACCTGCGTGACGTTTTCGGTAAAGCGATGGG
	TCTGACCGACCAGGACATCGTTGCGCTGTCTGGTGGTCATACCATCGGTGCGGCGCA
	CAAAGAACGTTCTGGTTTCGAAGGTCCGTGGACCTCTAACCCGCTGATCTTCGACAA
	CTCTTACTTCACCGAACTGCTGTCTGGTGAAAAAGAAGGTCTGCTGCAGCTGCCGTC
	TGACAAAGCGCTGCTGTCTGACCCGGTTTTCCGTCCGCTGGTTGACAAATACGCGGC
	GGACGAAGACGCGTTCTTCGCGGACTACGCGGAAGCGCACCAGAAACTGTCTGAAC
	TGGGTTTCGCGGACGCGCATCATCATCATCATCATTGA
Drotain	MGKSYPTVSADYQDAVEKAKKKLRGFIAEKRCAPLMLRLAFHSAGTFDKGTKTGGPF
Soguence	GTIKHPAELAHSANNGLDIAVRLLEPLKAEFPILSYADFYQLAGVVAVEVTGGPKVPFHP
Sequence	GREDKPEPPPEGRLPDPTKGSDHLRDVFGKAMGLTDQDIVALSGG <mark>H</mark> TIGAAHKERSGFE
	GPWTSNPLIFDNSYFTELLSGEKEGLLQLPSDKALLSDPVFRPLVDKYAADEDAFFADYA
	EAHQKLSELGFADA <mark>HHHHHH</mark> *

9	dnHEM1.2-6×His in prokaryotic expression vector:
DNA sequence	ATGGTGAGCCTGGATCAGGCGATTGATATTCTGGTGGTGGCGGCGAAACTGGGCACC ACCGTGGAAGAAGCGGTGAAACGCGCGCTGTGGCTGAAAACCAAATTAGGCGTGTC GTTGGACCAGGCGCTGCGTATTCTGAGCGATGCCGCCAATACCGGCACGACGGTTGA AGAGGCCGTTAAACGTGCACTGAAACTGAAGACGAAGCTCGGTGTTTCGTTAGAGG CGGCGCTGGCGATTTTAAGCGCAGCCGCGCAGCTGGGTACTACTGTGGAGGAGGGCG GTTAAGCGCGCGTTGAAATTGAAAACGAAGTTGGGCGTGGATCTGGAAACCGCGGC CTTAGCGTTGTTGACCGCAGCCAAGTTAGGTACGACCGTTGAGGAAGCAGTTAAGC GCGCCCTGAAGTTAAAGACCAAGTTGGGTGTGAGCTTGATTGA
Protein Sequence	MVSLDQAIDILVVAAKLGTTVEEAVKRALWLKTKLGVSLDQALRILSDAANTGTTVEE AVKRALKLKTKLGVSLEAALAILSAAAQLGTTVEEAVKRALKLKTKLGVDLETAALAL LTAAKLGTTVEEAVKRALKLKTKLGVSLIEAL <mark>H</mark> ILLTAAVLGTTVEEAVYRALKLKTKL GVSLLQAAAILLLAARLGTTVEEAVKRALKLKTKLGGGSGGSHHWGSGS <mark>HHHHHH</mark> *

10	OE1.3-StrepTagII in prokaryotic expression vector:
DNA sequence	ATGATTCGTGCGGTATTCTTTGATAGCCCGGGTACTCTGAATAGCGTTGAAGGTCATG CTAAAATGCATCTGAAAATTATGGAGGAAGTGCTGGGTGACTATCCGCTGAACCCGA AAACCCTTCTTGACGAATACAATAAACTGACCCGCGAAGCGTTCTCTAACTATGCGG GCAAACCGTATCGCGGTCTGCGTGATATCCTGGAAGAAGTAATGCGTAAACTGGCGG AAAAGTACGGTTTCAAATACCCTGAAAACTTCTGGGAAGTACTGCCTGC
Protein Sequence	MIRAVFFDSPGTLNSVEGHAKM <mark>H</mark> LKIMEEVLGDYPLNPKTLLDEYNKLTREAFSNYAG KPYRGLRDILEEVMRKLAEKYGFKYPENFWEISLRMSQRYGELYPEVVEVLKSLKGKY HVGMITDSGTEQAMAFLDALGIKDLFDSITTSEEAGFFKPHPRIFELALKKAGVKGEEA VYVGDNPVKDCGGSKNLGMTSILLDRKGEKREFWDKCDFIVSDLREVIKIVDELNGQG SWSHPQFEK*

11	P450-BM3-HStar-8×His in prokaryotic expression vector:
	GAAAGGIIACCACGCGAIGAIGGIIGACAICGCGGIICAGCIGGIICAGAAAIGGG
	AACGICIGAACGCGGACGAACACAICGAAGIICCGGAAGACAIGACCCGICIGACC
	AGCCGCACCCGTTCATCACCTCTATGGTTCGTGCGGTTGACGAAGCGATGAACAAAC
	TGCAGCGTGCGAACCCGGACGACCCGGCGTACGACGAAAACAAAC
	GGAAGACATCAAAGTTATGAACGACCTGGTTGACAAAATCATCGCGGACCGTAAAG
	CGTCTGGTGAACAGTCTGACGACCTGCTGACCCACATGCTGAACGGTAAAGACCCG
	GAAACCGGTGAACCGCTGGACGACGAAAACATCCGTTACCAGATCATCACCTTCCT
	GATCGCGGGTCACGAAGCGACCTCTGGTCTGCTGTCTTTCGCGCTGTACTTCCTGGT
	TAAAAACCCGCACGTTCTGCAGAAAGCGGCGGAAGAAGCGGCGCGTGTTCTGGTTG
	ACCCGGTTCCGTCTTACAAACAGGTTAAACAGCTGAAATACGTTGGTATGGTTCTGA
	ACGAAGCGCTGCGTCTGTGGCCGACCGCGCCGGCGTTCTCTCTGTACGCGAAAGAA
	GACACCGTTCTGGGTGGTGAATACCCGCTGGAAAAAGGTGACGAACTGATGGTTCT
	GATCCCGCAGCTGCACCGTGACAAAACCATCTGGGGTGACGACGTTGAAGAATTCC
	GTCCGGAACGTTTCGAAAACCCGTCTGCGATCCCGCAGCACGCGTTCAAACCGTTC
DNA	GGTAACGGTCAGCGTGCGCATATCGGTCAGCAGTTCGCGCTGCACGAAGCGACCCT
sequence	GGTTCTGGGTATGATGCTGAAACACTTCGACTTCGAAGACCACCACCAACTACGAACT
	GGACATCAAAGAAACCTGGACCCTGAAACCGGAAGGTTTCGTTGTTAAAGCGAAAT
	CTAAAAAATCCCGCTGGGTGGTATCCCGTCTCCGTCTACCGAACAGTCTGCGAAAA
	AAGTTCGTAAAAAAGCGGAAAAACGCGCACAACACCCCGCTGCTGGTTCTGTACGGT
	TCTAACATGGGTACCGCGGAAGGTACCGCGCGTGACCTGGCGGACATCGCGATGTCT
	AAAGGTTTCGCGCCGCAGGTTGCGACCCTGGACTCTCACGCGGGTAACCTGCCGCG
	TGAAGGTGCGGTTCTGATCGTTACCGCGTCTTACAACGGTCACCCGCCGGACAACGC
	GAAACAGTTCGTTGACTGGCTGGACCAGGCGTCTGCGGACGAAGTTAAAGGTGTTC
	GTTACTCTGTTTTCGGTTGCGGTGACAAAAACTGGGCGACCACCTACCAGAAAGTTC
	CGGCGTTCATCGACGAAACCCTGGCGGCGAAAGGTGCGGAAAACATCGCGGACCGT
	GGTGAAGCGGACGCGTCTGACGACTTCGAAGGTACCTACGAAGAATGGCGTGAACA
	CATGTGGTCTGACGTTGCGGCGTACTTCAACCTGGACATCGAAAACTCTGAAGACA
	ACAAATCTACCCTGTCTCTGCAGTTCGTTGACTCTGCGGCGGACATGCCGCTGGCGA
	AAATGCACGGTGCGTTCTCTACCAACGTTGTTGCGTCTAAAGAACTGCAGCAGCCG
	GGTTCTGCGCGTTCTACCCGTCACCTGGAAATCGAACTGCCGAAAGAAGCGTCTTAC
	CAGGAAGGTGACCACCTGGGTGTTATCCCGCGTAACTACGAAGGTATCGTTAACCGT
	GTTACCGCGCGTTTCGGTCTGGACGCGTCTCAGCAGATCCGTCTGGAAGCGGAAGA
	AGAAAAACTGGCGCACCTGCCGCTGGCGAAAACCGTTTCTGTTGAAGAACTGCTGC
	AGTACGTTGAACTGCAGGACCCGGTTACCCGTACCCAGCTGCGTGCG
	AAAACCGTTTGCCCGCCGCACAAAGTTGAACTGGAAGCGCTGCTGGAAAAACAGG
	CGTACAAAGAACAGGTTCTGGCGAAACGTCTGACCATGCTGGAACTGCTGGAAAAA
	TACCCGGCGTGCGAAATGAAATTCTCTGAATTCATCGCGCTGCTGCCGTCTATCCGTC
	CGCGTTACTACTCTATCTCTTCTTCTCCGCGTGTTGACGAAAAACAGGCGTCTATCAC
	CGTTTCTGTTGTTTCTGGTGAAGCGTGGTCTGGTTACGGTGAATACAAAGGTATCGC

DNA sequence	GTCTAACTACCTGGCGGAACTGCAGGAAGGTGACACCATCACCTGCTTCATCTCTAC CCCGCAGTCTGAATTCACCCTGCCGAAAGACCCGGGAAACCCCGCTGATCATGGTTG GTCCGGGTACCGGTGTTGCGCCGTTCCGTGGTTTCGTTCAGGCGCGTAAACAGCTGA AAGAACAGGGTCAGTCTCTGGGTGAAGCGCACCTGTACTTCGGTTGCCGTTCTCCG CACGAAGACTACCTGTACCAGGAAGAACTGGAAAACGCGCAGTCTGAAGGTATCAT CACCCTGCACACCGCGTTCTCTCGTATGCCGAACCAGCCGAAAACCTACGTTCAGCA CGTTATGGAACAGGACGGTAAAAAACTGATCGAACTGCTGGACCAGGGTGCGCACT TCTACATCTGCGGTGACGGTTCTCAGATGGCGCCGGCGGTTGAAGCGACCCTGATGA AATCTTACGCGGACGTTCACCAGGTTTCTGAAGCGACGCGCGGTCTGTGGGCTGCAG CAGCTGGAAGAAAAAGGTCGTTACGCGAAAGACGTTTGGGCGGGGTCTGGAACATCA TCACCACCATCACCATCATTGA
Protein Sequence	MTIKEMPQPKTFGELKNLPLLNTDKPVQALMKIADELGEIFKFEAPGRVTRYLSSQRLIK EACDESRFDKNLSQALKFMRDFAGDGLFTSWTHEKNWKKAHNILLPSFSQQAMKGYH AMMVDIAVQLVQKWERLNADEHIEVPEDMTRLTLDTIGLCGFNYRFNSFYRDQPHPFIT SMVRAVDEAMNKLQRANPDDPAYDENKRQFQEDIKVMNDLVDKIIADRKASGEQSDD LLTHMLNGKDPETGEPLDDENIRYQIITFLIAGHEATSGLLSFALYFLVKNPHVLQKAAEE AARVLVDPVPSYKQVKQLKYVGMVLNEALRLWPTAPAFSLYAKEDTVLGGEYPLEKG DELMVLIPQLHRDKTIWGDDVEEFRPERFENPSAIPQHAFKPFGNGQRAHIGQQFALHE ATLVLGMMLKHFDFEDHTNYELDIKETWTLKPEGFVVKAKSKKIPLGGIPSPSTEQSAK KVRKKAENAHNTPLLVLYGSNMGTAEGTARDLADIAMSKGFAPQVATLDSHAGNLPRE GAVLIVTASYNGHPPDNAKQFVDWLDQASADEVKGVRYSVFGCGDKNWATTYQKVPA FIDETLAAKGAENIADRGEADASDDFEGTYEEWREHMWSDVAAYFNLDIENSEDNKST LSLQFVDSAADMPLAKMHGAFSTNVVASKELQQPGSARSTRHLEIELPKEASYQEGDH LGVIPRNYEGIVNRVTARFGLDASQQIRLEAEEEKLAHLPLAKTVSVEELLQYVELQDP VTRTQLRAMAAKTVCPPHKVELEALLEKQAYKEQVLAKRLTMLELLEKYPACEMKFS EFIALLPSIRPRYYSISSSPRVDEKQASITVSVVSGEAWSGYGEYKGIASNYLAELQEGDT ITCFISTPQSEFTLPKDPETPLIMVGPGTGVAPFRGFVQARKQLKEQQSLGEAHLYFGC RSPHEDYLYQEELENAQSEGIITLHTAFSRMPNQPKTYVQHVMEQDGKKLIELLDQGAH FYICGDGSQMAPAVEATLMKSYADVHQVSEADARLWLQQLEEKGRYAKDVWAGLEHH HHHHHH*

Supplementary References

- Yar, M., McGarrigle, E. M. & Aggarwal, V. K. An Annulation Reaction for the Synthesis of Morpholines, Thiomorpholines, and Piperazines from β-Heteroatom Amino Compounds and Vinyl Sulfonium Salts. *Angew. Chem. Int. Ed.* 47, 3784-3786 (2008).
- Lavis, L. D., Chao, T.-Y. & Raines, R. T. Synthesis and utility of fluorogenic acetoxymethyl ethers. *Chem. Sci.* 2, 521-530 (2011).